Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = UNC93B1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6169 KB  
Review
Toll-like Receptors in Inborn Errors of Immunity in Children: Diagnostic Potential and Therapeutic Frontiers—A Review of the Latest Data
by Aleksandra Jurczuk, Paulina Bałdyga, Adam Płoński, Maria Jurczuk and Marzena Garley
Cells 2025, 14(23), 1902; https://doi.org/10.3390/cells14231902 - 1 Dec 2025
Viewed by 865
Abstract
Inborn errors of immunity (IEIs), formerly referred to as primary immunodeficiencies (PID), represent a heterogeneous group of hereditary disorders that significantly increase patients’ susceptibility to severe and recurrent infections. Toll-like receptors (TLRs) play a pivotal role in host defense as fundamental components of [...] Read more.
Inborn errors of immunity (IEIs), formerly referred to as primary immunodeficiencies (PID), represent a heterogeneous group of hereditary disorders that significantly increase patients’ susceptibility to severe and recurrent infections. Toll-like receptors (TLRs) play a pivotal role in host defense as fundamental components of innate immunity, while also linking it to adaptive immune responses. This review summarizes advances in understanding the involvement of TLRs in the pathogenesis of IEIs in children. It highlights genetic defects such as deficiencies in MyD88, IRAK-4, NEMO, and TLR3, which lead to distinct clinical phenotypes, for example, increased susceptibility to bacterial infections or herpes simplex virus type-1 (HSV-1) encephalitis. The review also examines more complex disorders, including chronic granulomatous disease (CGD), common variable immunodeficiency (CVID), and X-linked agammaglobulinemia (XLA), in which TLR signaling may be either impaired or dysregulated. This analysis demonstrates the growing importance of functional assays evaluating TLR activity as a diagnostic tool complementary to genetic testing, as well as their potential to precisely characterize immunological phenotypes. Furthermore, current therapeutic perspectives are discussed, including the use of TLR agonists, which have shown promising results in oncology, the role of gene therapy as a causal treatment option, and a proposed diagnostic algorithm incorporating TLR-based evaluation. Despite significant progress, substantial knowledge gaps remain, particularly regarding the full spectrum of TLR signaling abnormalities across IEI subtypes. The conclusions emphasize the need for large-scale, international studies to achieve a comprehensive understanding of pathogenic mechanisms and to develop more targeted and effective therapeutic interventions for children affected by these rare disorders. Full article
(This article belongs to the Collection Toll-Like Receptors in Pathologies)
Show Figures

Figure 1

18 pages, 3568 KB  
Article
Nematicidal Efficacy of a dsRNA-Chitosan Formulation Against Acrobeloides nanus Estimated by a Soil Drenching Application
by Taegeun Song, Falguni Khan and Yonggyun Kim
Biology 2025, 14(9), 1161; https://doi.org/10.3390/biology14091161 - 1 Sep 2025
Viewed by 868
Abstract
Acrobeloides nanus is a cosmopolitan, parthenogenetic soil nematode that is widely distributed across various terrestrial environments, including forests, sand dunes, and agricultural lands. In Korea, this nematode was first isolated from soil collected from a potato farm. It has been used as a [...] Read more.
Acrobeloides nanus is a cosmopolitan, parthenogenetic soil nematode that is widely distributed across various terrestrial environments, including forests, sand dunes, and agricultural lands. In Korea, this nematode was first isolated from soil collected from a potato farm. It has been used as a biological indicator for monitoring contamination caused by divalent metals such as copper and zinc. In this study, A. nanus was isolated from the soil collected from a cucumber farm, and its identity was confirmed using both morphological and molecular markers. Spray-induced gene silencing using double-stranded RNA (dsRNA) represents a promising new strategy for pest control. Here, we tested a spraying dsRNA that would specifically suppress the target genes in A. nanus. Three genes (Pat-10, Unc-87, and vATPase-B) were targeted, and their expression levels were assessed following treatment with their corresponding dsRNAs. The dsRNAs were sprayed onto the nematode diet. As the concentration of dsRNA increased, the expression levels of the target genes were significantly reduced, leading to notable nematode mortality. However, nematicidal activity varied among the three different dsRNAs. To practically assess these dsRNAs under field conditions, the dsRNAs were applied to the soil containing the nematodes by a drenching application. Significant mortality was observed in treatments with dsRNAs targeting vATPase-B or Pat-10, but not with dsRNA targeting Unc-87. To enhance nematicidal activity in soil, the dsRNAs were formulated with chitosan. This formulation significantly improved the stability of dsRNAs under soil conditions and increased their control efficacy against A. nanus. This study suggests that the drenching technique offers an effective strategy to the control of soil-dwelling nematode pests affecting agricultural crops. Full article
Show Figures

Figure 1

13 pages, 2606 KB  
Article
Inhibiting UNC13B Suppresses Cell Proliferation by Upregulating the Apoptotic Pathway in Multiple Myeloma
by Yuan Tao, Lihua Yuan, Yuntian Ding, Rongli Xie, Fangjie Liu, Zhongming Zhang, Xiaojun Xu and Xiaobo Wang
Biomedicines 2025, 13(9), 2086; https://doi.org/10.3390/biomedicines13092086 - 27 Aug 2025
Viewed by 884
Abstract
Background/Objectives: Multiple myeloma (MM) is the second most common hematological malignancy and remains incurable because of its complex and heterogeneous pathogenesis. UNC13B (unc-13 homolog B) encodes Munc13-2, a presynaptic protein that is involved in vesicle exocytosis. While its role has been explored in [...] Read more.
Background/Objectives: Multiple myeloma (MM) is the second most common hematological malignancy and remains incurable because of its complex and heterogeneous pathogenesis. UNC13B (unc-13 homolog B) encodes Munc13-2, a presynaptic protein that is involved in vesicle exocytosis. While its role has been explored in neurological diseases, its function in cancer biology remains largely uncharacterized. This study aimed to elucidate the role of UNC13B in regulating MM cell proliferation and apoptosis. Methods:UNC13B mRNA expression was assessed across human MM cell lines. ARD cells, which exhibited the highest UNC13B expression, were transduced with a UNC13B-specific shRNA via a lentiviral vector. Cell proliferation, apoptosis, and expression of associated proteins were evaluated by means of the Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and Western blot analysis. Results: UNC13B was significantly upregulated in MM cell lines. The knockdown of UNC13B in ARD cells markedly inhibited cell proliferation and induced apoptosis. These changes were accompanied by the downregulation of proliferation-related proteins and upregulation of pro-apoptotic markers. Western blot analysis suggests that UNC13B may exert its effects by modulating key regulatory proteins, including PINK1, CDK2, AKR7A3, and Bim. Conclusions: Our findings suggest that UNC13B supports MM cell survival and proliferation, potentially through the regulation of oncogenic and apoptotic signaling pathways. UNC13B may represent a novel therapeutic target in multiple myeloma. Full article
Show Figures

Figure 1

31 pages, 4874 KB  
Article
Genome-Wide Association Studies in Japanese Quails of the F2 Resource Population Elucidate Molecular Markers and Candidate Genes for Body Weight Parameters
by Natalia A. Volkova, Michael N. Romanov, Nadezhda Yu. German, Polina V. Larionova, Anastasia N. Vetokh, Ludmila A. Volkova, Alexander A. Sermyagin, Alexey V. Shakhin, Darren K. Griffin, Johann Sölkner, John McEwan, Rudiger Brauning and Natalia A. Zinovieva
Int. J. Mol. Sci. 2025, 26(17), 8243; https://doi.org/10.3390/ijms26178243 - 25 Aug 2025
Cited by 1 | Viewed by 1354
Abstract
Molecular research for genetic variants underlying body weight (BW) provides crucial information for this important selected trait when developing productive poultry breeds, lines and crosses. We searched for molecular markers—single nucleotide polymorphisms (SNPs)—and candidate genes associated with this trait in 240 F2 [...] Read more.
Molecular research for genetic variants underlying body weight (BW) provides crucial information for this important selected trait when developing productive poultry breeds, lines and crosses. We searched for molecular markers—single nucleotide polymorphisms (SNPs)—and candidate genes associated with this trait in 240 F2 resource population Japanese quails (Coturnix japonica). This population was produced by crossing two breeds with contrasting growth phenotypes, i.e., Japanese (with lower growth) and Texas White (with higher growth). The birds were genotyped using the genotyping-by-sequencing method followed by a genome-wide association study (GWAS). Using 74,387 SNPs, GWAS resulted in 142 significant SNPs and 42 candidate genes associated with BW at the age of 1, 14, 28, 35, 42, 49 and 56 days. Hereby, 25 SNPs simultaneously associated with BW at more than one age were established that colocalized with nine prioritized candidate genes (PCGs), including ITM2B, SLC35F3, ADAM33, UNC79, LEPR, RPP14, MVK, ASTN2, and ZBTB16. Twelve PCGs were identified in the regions of two or more significant SNPs, including MARCHF6, EGFR, ADGRL3, ADAM33, NPC2, LTBP2, ZC2HC1C, SATB2, ASTN2, ZBTB16, ADAR, and LGR6. These SNPs and PCGs can serve as molecular genetic markers for the genomic selection of quails with desirable BW phenotypes to enhance growth rates and meat productivity. Full article
(This article belongs to the Special Issue Molecular Research in Avian Genetics)
Show Figures

Figure 1

12 pages, 1583 KB  
Article
Characterization of Netrin-1 and Its Receptors UNC5B and Neogenin-1 in a Rat Rotator Cuff Tear Model: Associations with Inflammatory Mediators and Neurite Extension
by Kosuke Inoue, Kentaro Uchida, Mitsuyoshi Matsumoto, Ryo Tazawa, Etsuro Ohta, Akito Hattori, Tomonori Kenmoku, Yuka Ito, Yui Uekusa, Gen Inoue and Masashi Takaso
Curr. Issues Mol. Biol. 2025, 47(7), 511; https://doi.org/10.3390/cimb47070511 - 2 Jul 2025
Viewed by 995
Abstract
Rotator cuff tears are a leading cause of shoulder pain and dysfunction, yet the molecular mechanisms that link tendon injury to inflammation and nociceptive signaling remain poorly understood. Netrin-1, a classical axon guidance cue signaling through dependence receptors UNC5B and Neogenin-1, has been [...] Read more.
Rotator cuff tears are a leading cause of shoulder pain and dysfunction, yet the molecular mechanisms that link tendon injury to inflammation and nociceptive signaling remain poorly understood. Netrin-1, a classical axon guidance cue signaling through dependence receptors UNC5B and Neogenin-1, has been implicated in both neuronal plasticity and inflammatory processes, but its role in tendon pathology has not been explored. A rat supraspinatus tear model was employed to assess, in vivo, the expression of genes encoding netrin-1 (Ntn1) and its receptors (Unc5b and Neo1) at 0, 7, 14, 28, and 56 days post-injury (n = 10 per time point). Primary rat tenocytes isolated from rotator cuff tissue were treated in vitro with recombinant netrin-1, and transcriptional changes in genes encoding TNF-α (Tnfa), IL-6 (Il6), MMP-1 (Mmp1), and MMP-3 (Mmp3) were quantified by qRT-PCR. Separately, human iPSC-derived sensory neurons were exposed to netrin-1, and dose- and time-dependent effects on neurite outgrowth were measured at 4 and 14 days in culture. In injured tendons, Ntn1 mRNA increased significantly at day 14 (p = 0.010) and 28 (p = 0.042), Unc5b at day 7 (p = 0.002) and 14 (p < 0.001), and Neo1 at day 14 (p < 0.001) versus intact controls. Tenocyte exposure to 500 ng/mL netrin-1 induced transient upregulation of Tnfa (3 h, p = 0.023; 6 h, p = 0.009) and Il6 (3 h–24 h, all p < 0.013), as well as Mmp3 (3–24 h, p < 0.043) and Mmp1 (6 h–24 h, p < 0.024); no induction was observed at 50 ng/mL. In sensory neurons, 50 ng/mL of netrin-1 enhanced neurite extension at day 4 (p = 0.006) but not at 500 ng/mL or at day 14 for either dose. Netrin-1 and its receptors are upregulated in a rat rotator cuff tear model, and netrin-1 elicits distinct pro-inflammatory and matrix-remodeling responses in tenocytes while promoting early neurite growth in sensory neurons. These findings suggest netrin-1 as a key modulator of tendon inflammation, matrix turnover, and peripheral nerve plasticity following injury. Full article
Show Figures

Figure 1

19 pages, 3087 KB  
Article
Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders
by Mauricio Arcos-Burgos, Mauricio Arcos-Holzinger, Claudio Mastronardi, Mario A. Isaza-Ruget, Jorge I. Vélez, Donald P. Lewis, Hardip Patel and Brett A. Lidbury
Diagnostics 2025, 15(12), 1542; https://doi.org/10.3390/diagnostics15121542 - 17 Jun 2025
Cited by 1 | Viewed by 2891
Abstract
Background/Objectives: The aetiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic and severe debilitating disease with a complex phenotype, remains elusive. Associations with infectious diseases and autoimmune and neuropsychiatric disorders have been observed, without the identification of mechanisms. Previous studies suggest that genetic [...] Read more.
Background/Objectives: The aetiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic and severe debilitating disease with a complex phenotype, remains elusive. Associations with infectious diseases and autoimmune and neuropsychiatric disorders have been observed, without the identification of mechanisms. Previous studies suggest that genetic predisposition plays a role, but results are difficult to replicate, with Genome-Wide Association Studies of ME/CFS being challenging due to the relative rareness and heterogeneity of the disorder. Methods: We studied a well-defined Australian patient cohort diagnosed via the International Consensus Criteria, recruited by a specialist ME/CFS clinic. The whole-exome sequences of 77 patients were contrasted against genome variation in the 1000 Genome Project’s genome-matched population. Results: Significant associations with ME/CFS were harboured in genes that belong to the Neuroblastoma Breakpoint Family encoding Olduvai (DUF1220) domains, namely NBPF1 (rs3897177, p-value = 3.15 × 10−8), NBPF10 (rs1553120233, p-value = 9.262 × 10−13), and NBPF16 (rs200632836, p-value = 1.04 × 10−6). Other significantly associated variants were detected in the ATR, RSPH10B, ADGRE5-CD97, and NTRK2 genes, among others. Replication of these results was attempted via a GWAS on raw data from a US cohort, which confirmed shared significant associations with variation identified in the PTPRD, CSMD3, RAPGEF5, DCC, ALDH18A1, GALNT16, UNC79, and NCOA3 genes. Conclusions: These genes are involved in cortical neurogenesis, brain evolution, and neuroblastoma, and have been implicated by several studies in schizophrenia and autism. The sharing of these associations by the two cohorts supports their validity and grants the necessity of future studies to evaluate the implications for ME/CFS aetiology. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

16 pages, 3830 KB  
Article
Identification of Genomic Variants and Candidate Genes for Reproductive Traits and Growth Traits in Pishan Red Sheep Using Whole-Genome Resequencing
by Maimaitijiang Muhetapa, Mengting Zhu, Aladaer Qi and Sulaiman Yiming
Biology 2025, 14(6), 636; https://doi.org/10.3390/biology14060636 - 30 May 2025
Viewed by 1214
Abstract
Sheep have evolved remarkable phenotypic diversity through artificial and natural selection, with reproductive traits being pivotal for breeding economics. As a unique genetic resource, Pishan red sheep exhibit exceptional advantages, including perennial estrus, high fecundity, and stable hereditary characteristics, establishing them as an [...] Read more.
Sheep have evolved remarkable phenotypic diversity through artificial and natural selection, with reproductive traits being pivotal for breeding economics. As a unique genetic resource, Pishan red sheep exhibit exceptional advantages, including perennial estrus, high fecundity, and stable hereditary characteristics, establishing them as an optimal model for investigating reproductive genetics. In this study, we performed whole-genome resequencing of Pishan red sheep, generating 9084.81 Gb of raw data and identifying 53,968,686 high-quality single-nucleotide polymorphisms (SNPs). Through selective sweep analysis, 92 genomic regions under selection were detected, containing 90 positional candidate genes significantly associated with growth, reproduction, and immune functions. Notably, we revealed BMPRIB, UNC5C, PDLIM5, GRID2, and HPGDS as core positional candidate genes influencing litter size, operating through the TGF-beta and Thyroid hormone signaling pathways. A genome-wide association study (GWAS) further identified 59 trait-related SNPs, including 39 loci linked to growth traits (affecting positional candidate genes such as PROM1, TAPT1, LDB2, and KIF16B) and 20 loci of positional candidate genes associated with reproductive traits (involving ASPA, RAP1GAP2, PHIP, and WDR82).These findings not only elucidate the molecular basis of superior reproductive performance in Pishan red sheep, but also provide functional markers for precision breeding. Full article
(This article belongs to the Special Issue Reproductive Physiology and Pathology in Livestock)
Show Figures

Figure 1

14 pages, 638 KB  
Systematic Review
Genetic Determinants of Colonic Diverticulosis—A Systematic Review
by Piotr Nehring and Adam Przybyłkowski
Genes 2025, 16(5), 581; https://doi.org/10.3390/genes16050581 - 15 May 2025
Viewed by 2394
Abstract
Background: Colonic diverticulosis is a common condition, particularly in the elderly population. While dietary habits, obesity, smoking, and physical inactivity contribute to its pathogenesis, emerging evidence highlights a genetic predisposition affecting extracellular matrix (ECM) remodeling, inflammation, and connective tissue integrity. The aim [...] Read more.
Background: Colonic diverticulosis is a common condition, particularly in the elderly population. While dietary habits, obesity, smoking, and physical inactivity contribute to its pathogenesis, emerging evidence highlights a genetic predisposition affecting extracellular matrix (ECM) remodeling, inflammation, and connective tissue integrity. The aim of this systematic review was to summarize genetic determinants of colonic diverticulosis. Methods: The PubMed® database was searched for original studies in humans. The inclusion criteria were named genetic factor and confirmed diverticulosis. Patients with diverticulitis and diverticular diseases were excluded from this review. Results: Out of 137 publications, 10 articles met the inclusion criteria: six large association studies (GWAS) and four cross-sectional studies. The genes regulating ECM turnover, including TIMP1, MMP3, and MMP9, are involved in diverticulosis development. The TIMP1 (rs4898) T allele has been associated with increased susceptibility, potentially due to its role in ECM remodeling. Similarly, MMP3 (rs3025058) and MMP9 (rs3918242) polymorphisms contribute to altered collagen degradation. The COL3A1 (rs3134646) variant coding modified collagen type III may promote diverticular formation. Other genes, such as ARHGAP15 (rs4662344, rs6736741), affect cytoskeletal dynamics. Identified in GWAS studies, gene candidates may be grouped into blood group and immune system-related genes (ABO, HLA-DQA1, HLA-H, OAS1, TNFSF13, FADD), extracellular matrix and connective tissue genes (COL6A1, COLQ, EFEMP1, ELN, HAS2, TIMP2), signaling and cell communication (BMPR1B, WNT4, RHOU, PHGR1, PCSK5), nervous system and neurodevelopment (BDNF, CACNB2, GPR158, SIRT1, SCAPER, TRPS1), metabolism and transporters (SLC25A28, SLC35F3, RBKS, PPP1R14A, PPP1R16B), lipids and cholesterol (LDAH, LYPLAL1, STARD13), transcription and gene regulation (ZBTB4, UBTF, TNRC6B), apoptosis (FADD, PIAS1), and poorly characterized genes (C1TNF7, ENSG00000224849, ENSG00000251283, LINC01082, DISP2, SNX24, THEM4, UBL4B, UNC50, WDR70, SREK1IP1). Conclusions: There are a number of gene variants that probably predispose to colonic diverticulosis. Detailed characterization of the multigene background of diverticulosis will enable appropriate therapeutic or preventive interventions in the future. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 4089 KB  
Article
GENI as an AMPK Activator Binds α and γ Subunits and Improves the Memory Dysfunction of Alzheimer’s Disease Mouse Models via Autophagy and Neuroprotection
by Ying Wang, Lanjie Li, Danni Chen, Jiaheng Shan, Meijuan Yi, Hiroyuki Osada, Minoru Yoshida, Lan Xiang and Jianhua Qi
Antioxidants 2025, 14(1), 57; https://doi.org/10.3390/antiox14010057 - 6 Jan 2025
Cited by 2 | Viewed by 2316
Abstract
Geniposidic 4-isoamyl ester (GENI) with anti-aging effects is a new iridoid glycoside derivative from Gardenia jasminoides Ellis found in our previous study. In this study, to indicate whether this compound has anti-Alzheimer’s disease (AD) effect, the galactose-induced AD mice and naturally aging mice [...] Read more.
Geniposidic 4-isoamyl ester (GENI) with anti-aging effects is a new iridoid glycoside derivative from Gardenia jasminoides Ellis found in our previous study. In this study, to indicate whether this compound has anti-Alzheimer’s disease (AD) effect, the galactose-induced AD mice and naturally aging mice with AD were used to do drug efficacy evaluation. Furthermore, the Western blot, small interfering RNA (siRNA), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CESTA), liquid chromatography-tandem mass spectrometry (LC/MS-MS), adenosine 5′-monophosphate-activated protein kinase (AMPK) mutants and surface plasmon resonance (SPR) analysis were utilized to clarify the mechanism of action and identify target protein of this molecule. GENI exerts anti-AD efficacy in galactose-induced AD mice and naturally aging mice with AD through neuroprotection and modification of autophagy and neuron inflammation. Moreover, AMPK as the target protein of GENI to produce an anti-AD effect is identified and the ASP148, ASP157, and ASP166 of the AMPK α subunit and lysine (LYS)148, aspartic acid (ASP)156, LYS309, and ASP316 in the AMPK γ subunit as binding sites are confirmed. Meanwhile, the AMPK/unc-51-like autophagy-activating kinase 1 (ULK1)/microtubule-associated protein 1 light chain 3 beta (LC3B) and AMPK/mammalian target of rapamycin (mTOR) signaling pathways involved in anti-AD effects of GENI. The findings provide a new perspective on treating neurodegenerative diseases by activating AMPK for the energy metabolism disorder. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

25 pages, 3929 KB  
Article
Targeted Variant Assessments of Human Endogenous Retroviral Regions in Whole Genome Sequencing Data Reveal Retroviral Variants Associated with Papillary Thyroid Cancer
by Erik Stricker, Erin C. Peckham-Gregory, Stephen Y. Lai, Vlad C. Sandulache and Michael E. Scheurer
Microorganisms 2024, 12(12), 2435; https://doi.org/10.3390/microorganisms12122435 - 27 Nov 2024
Cited by 4 | Viewed by 2482
Abstract
Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid [...] Read more.
Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality. Using targeted whole-genome sequence analysis in conjunction with high sequencing depth to overcome methodological limitations, we identified associations of specific HERV variants with PTC. Analyzing WGS data from 138 patients with PTC generated through The Cancer Genome Atlas project and 2015 control samples from the 1000 Genomes Project, we examined the mutational variation in HERVs within a 20 kb radius of known cancer predisposition genes (CPGs) differentially expressed in PTC. We discovered 15 common and 13 rare germline HERV variants near or within 20 CPGs that distinguish patients with PTC from healthy controls. We identified intragenic–intronic HERV variants within RYR2, LRP1B, FN1, MET, TCRVB, UNC5D, TRPM3, CNTN5, CD70, RYR1, RUNX1, CRLF2, and PCDH1X, and three variants downstream of SERPINA1 and RUNX1T1. Sanger sequencing analyses of 20 thyroid and 5 non-thyroid cancer cell lines confirmed associations with PTC, particularly for MSTA HERV-L variant rs200077102 within the FN1 gene and HERV-L MLT1A LTR variant rs78588384 within the CNTN5 gene. Variant rs78588384, in particular, was shown in our analyses to be located within a POL2 binding site regulating an alternative transcript of CNTN5. In addition, we identified 16 variants that modified the poly(A) region in Alu elements, potentially altering the potential to retrotranspose. In conclusion, this study serves as a proof-of-concept for targeted variant analysis of HERV regions and establishes a basis for further exploration of HERVs in thyroid cancer development. Full article
(This article belongs to the Special Issue Expression and Function of Endogenous Retroviruses)
Show Figures

Figure 1

16 pages, 4399 KB  
Article
Genetic Diversity, Selection Signatures, and Genome-Wide Association Study Identify Candidate Genes Related to Litter Size in Hu Sheep
by Jingjing Bao, Jinke Xiong, Jupeng Huang, Peifu Yang, Mingyu Shang and Li Zhang
Int. J. Mol. Sci. 2024, 25(17), 9397; https://doi.org/10.3390/ijms25179397 - 29 Aug 2024
Cited by 11 | Viewed by 2433
Abstract
Hu sheep is a renowned prolific local sheep breed in China, widely distributed across the country due to its excellent reproductive performance. Deciphering the molecular mechanisms underlying the high fecundity of Hu sheep is crucial for improving the litter size of ewes. In [...] Read more.
Hu sheep is a renowned prolific local sheep breed in China, widely distributed across the country due to its excellent reproductive performance. Deciphering the molecular mechanisms underlying the high fecundity of Hu sheep is crucial for improving the litter size of ewes. In this study, we genotyped 830 female Hu sheep using the Illumina OvineSNP50 BeadChip and performed genetic diversity analysis, selection signature detection, and a genome-wide association study (GWAS) for litter size. Our results revealed that the Hu sheep population exhibits relatively high genetic diversity. A total of 4927 runs of homozygosity (ROH) segments were detected, with the majority (74.73%) being short in length. Different genomic inbreeding coefficients (FROH, FHOM, FGRM, and FUNI) ranged from −0.0060 to 0.0126, showing low levels of inbreeding in this population. Additionally, we identified 91 candidate genomic regions through three complementary selection signature methods, including ROH, composite likelihood ratio (CLR), and integrated haplotype score (iHS), and annotated 189 protein-coding genes. Moreover, we observed two significant SNPs related to the litter size of Hu sheep using GWAS analysis based on a repeatability model. Integrating the selection signatures and the GWAS results, we identified 15 candidate genes associated with litter size, among which BMPR1B and UNC5C were particularly noteworthy. These findings provide valuable insights for improving the reproductive performance and breeding of high-fecundity lines of Hu sheep. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 11156 KB  
Article
Chromium Affects Mitochondrial Function, Leading to Apoptosis and Autophagy in Turtle Primary Hepatocytes
by Shuqin Lin, Yunjuan Xiao, Jing Lin, Yue Yuan, Haitao Shi, Meiling Hong and Li Ding
Animals 2024, 14(16), 2403; https://doi.org/10.3390/ani14162403 - 19 Aug 2024
Cited by 3 | Viewed by 3481
Abstract
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves’ turtles (Mauremys reevesii) primary hepatocytes. [...] Read more.
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves’ turtles (Mauremys reevesii) primary hepatocytes. We exposed hepatocytes to two concentrations (25 μM and 50 μM) of Cr(VI) for 24 h. The results showed that compared to controls, Cr(VI)-treated cells showed elevated antioxidant enzyme activity (catalase (CAT) and superoxide dismutase (SOD)) and increased reactive oxygen species (ROS) levels. Adenosine triphosphatae (ATP) levels decreased, indicating mitochondrial dysfunction. Additionally, we found significant changes in mitochondrial dynamics related genes, with downregulation of mitofusin 2 (Mfn2) and silent information regulator 1 (SIRT1) and a decrease in sirtuin 3 (SIRT3) and tumor protein 53 (p53) mRNA levels. Annexin V-FITC fluorescence staining-positive cells increased with higher Cr(VI) concentrations, marked by elevated bcl-2-associated X protein (Bax) and cysteinyl aspartate specific proteinase (Caspase3) mRNA levels and reduced B-cell lymphoma-2 (Bcl2) expression. Autophagy-related genes were also affected, with increased microtubule-associated protein 1 light chain 3 (LC3-I), microtubule-associated protein light chain 3II (LC3-II), unc-51-like autophagy-activating kinase 1 (ULK1), and sequestosome 1 (p62/SQSTM1) mRNA levels and decreased mammalian target of rapamycin (mTOR) and Beclin1 expression. Taken together, Cr(VI) promotes cell apoptosis and autophagy in turtle hepatocytes by inducing oxidative stress and disrupting mitochondrial function. These findings highlight the serious health risks posed by Cr(VI) pollution and emphasize the need for protecting wild turtle populations. Full article
(This article belongs to the Special Issue Aquatic Animal Medicine and Pathology)
Show Figures

Figure 1

15 pages, 6024 KB  
Article
Antibiotics Trigger Host Innate Immune Response via Microbiota–Brain Communication in C. elegans
by Yangyang Wu, Guanqun Li and Hongyun Tang
Int. J. Mol. Sci. 2024, 25(16), 8866; https://doi.org/10.3390/ijms25168866 - 14 Aug 2024
Viewed by 2165
Abstract
Besides their direct bactericidal effect, antibiotics have also been suggested to stimulate the host immune response to defend against pathogens. However, it remains unclear whether any antibiotics may stimulate the host immune response by affecting bacterial activity. In this study, reasoning that genetic [...] Read more.
Besides their direct bactericidal effect, antibiotics have also been suggested to stimulate the host immune response to defend against pathogens. However, it remains unclear whether any antibiotics may stimulate the host immune response by affecting bacterial activity. In this study, reasoning that genetic mutations inhibit bacterial activities and, thereby, may mimic the effects of antibiotics, we performed genome-wide screening and identified 77 E. coli genes whose inactivation induces C. elegans cyp-14A4, representing an innate immune and detoxification response. Further analyses reveal that this host immune response can clearly be induced through either inactivating the E. coli respiratory chain via the bacterial cyoB mutation or using the antibiotic Q203, which is able to enhance host survival when encountering the pathogen Pseudomonas aeruginosa. Mechanistically, the innate immune response triggered by both the cyoB mutation and Q203 is found to depend on the host brain response, as evidenced by their reliance on the host neural gene unc-13, which is required for neurotransmitter release in head neurons. Therefore, our findings elucidate the critical involvement of the microbiota–brain axis in modulating the host immune response, providing mechanistic insights into the role of antibiotics in triggering the host immune response and, thus, facilitating host defense against pathogens. Full article
(This article belongs to the Special Issue C. elegans as a Disease Model: Molecular Perspectives)
Show Figures

Figure 1

15 pages, 15132 KB  
Article
Ceramide Ehux-C22 Targets the miR-199a-3p/mTOR Signaling Pathway to Regulate Melanosomal Autophagy in Mouse B16 Cells
by Jiyue Wan, Shumiao Zhang, Guiling Li, Shiying Huang, Jian Li, Zhengxiao Zhang and Jingwen Liu
Int. J. Mol. Sci. 2024, 25(15), 8061; https://doi.org/10.3390/ijms25158061 - 24 Jul 2024
Cited by 2 | Viewed by 2474
Abstract
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the [...] Read more.
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the skin barrier, keeping it hydrated, and warding off the signs of aging. Our preliminary study indicated that a long-chain C22-ceramide compound (Ehux-C22) isolated from the marine microalga Emiliania huxleyi, reduced melanin levels via melanosomal autophagy in B16 cells. Recently, microRNAs (miRNAs) were shown to act as melanogenesis-regulating molecules in melanocytes. However, whether the ceramide Ehux-C22 can induce melanosome autophagy at the post-transcriptional level, and which potential autophagy-dependent mechanisms are involved, remains unknown. Here, miR-199a-3p was screened and identified as a novel upregulated miRNA in Ehux-C22-treated B16 cells. An in vitro high melanin expression model in cultured mouse melanoma cells (B16 cells) was established by using 0.2 μM alpha-melanocyte-stimulating hormone(α-MSH) and used for subsequent analyses. miR-199a-3p overexpression significantly enhanced melanin degradation, as indicated by a reduction in the melanin level and an increase in melanosome autophagy. Further investigation demonstrated that in B16 cells, Ehux-C22 activated miR-199a-3p and inhibited mammalian target of rapamycin(mTOR) level, thus activating the mTOR-ULK1 signaling pathway by promoting the expression of unc-51-like autophagy activating kinase 1 (ULK1), B-cell lymphoma-2 (Bcl-2), Beclin-1, autophagy-related gene 5 (ATG5), and microtubule-associated protein light chain 3 (LC3-II) and degrading p62. Therefore, the roles of Ehux-C22-regulated miR-199a-3p and the mTOR pathway in melanosomal autophagy were elucidated. This research may provide novel perspectives on the post-translational regulation of melanin metabolism, which involves the coordinated control of melanosomes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 5613 KB  
Article
Netrin-1 Is an Important Mediator in Microglia Migration
by Hua-Li Yu, Xiu Liu, Yue Yin, Xiao-Nuo Liu, Yu-Yao Feng, Muhammad Mateen Tahir, Xin-Zhi Miao, Xiao-Xiao He, Zi-Xuan He and Xiao-Juan Zhu
Int. J. Mol. Sci. 2024, 25(13), 7079; https://doi.org/10.3390/ijms25137079 - 27 Jun 2024
Cited by 2 | Viewed by 2453
Abstract
Microglia migrate to the cerebral cortex during early embryonic stages. However, the precise mechanisms underlying microglia migration remain incompletely understood. As an extracellular matrix protein, Netrin-1 is involved in modulating the motility of diverse cells. In this paper, we found that Netrin-1 promoted [...] Read more.
Microglia migrate to the cerebral cortex during early embryonic stages. However, the precise mechanisms underlying microglia migration remain incompletely understood. As an extracellular matrix protein, Netrin-1 is involved in modulating the motility of diverse cells. In this paper, we found that Netrin-1 promoted microglial BV2 cell migration in vitro. Mechanism studies indicated that the activation of GSK3β activity contributed to Netrin-1–mediated microglia migration. Furthermore, Integrin α6/β1 might be the relevant receptor. Single-cell data analysis revealed the higher expression of Integrin α6 subunit and β1 subunit in microglia in comparison with classical receptors, including Dcc, Neo1, Unc5a, Unc5b, Unc5c, Unc5d, and Dscam. Microscale thermophoresis (MST) measurement confirmed the high binding affinity between Integrin α6/β1 and Netrin-1. Importantly, activation of Integrin α6/β1 with IKVAV peptides mirrored the microglia migration and GSK3 activation induced by Netrin-1. Finally, conditional knockout (CKO) of Netrin-1 in radial glial cells and their progeny led to a reduction in microglia population in the cerebral cortex at early developmental stages. Together, our findings highlight the role of Netrin-1 in microglia migration and underscore its therapeutic potential in microglia-related brain diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop