Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortes Rivera, M.; Mastronardi, C.; Silva-Aldana, C.T.; Arcos-Burgos, M.; Lidbury, B.A. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics 2019, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; The National Academies Press: Washington, DC, USA, 2015. [CrossRef]
- Nacul, L.C.; Lacerda, E.M.; Pheby, D.; Campion, P.; Molokhia, M.; Fayyaz, S.; Leite, J.C.; Poland, F.; Howe, A.; Drachler, M.L. Prevalence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in three regions of England: A repeated cross-sectional study in primary care. BMC Med. 2011, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Estevez-Lopez, F.; Castro-Marrero, J.; Wang, X.; Bakken, I.J.; Ivanovs, A.; Nacul, L.; Sepúlveda, N.; Strand, E.B.; Pheby, D.; Alegre, J.; et al. Prevalence and incidence of myalgic encephalomyelitis/chronic fatigue syndrome in Europe-the Euro-epiME study from the European network EUROMENE: A protocol for a systematic review. BMJ Open 2018, 8, e020817. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; Van De Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef]
- Brurberg, K.G.; Fonhus, M.S.; Larun, L.; Flottorp, S.; Malterud, K. Case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): A systematic review. BMJ Open 2014, 4, e003973. [Google Scholar] [CrossRef]
- Maes, M.; Rodriguez, L.A.; Morris, G. Is a diagnostic blood test for chronic fatigue syndrome on the horizon? Expert. Rev. Mol. Diagn. 2019, 19, 1049–1051. [Google Scholar] [CrossRef]
- Rasa, S.; Nora-Krukle, Z.; Henning, N.; Eliassen, E.; Shikova, E.; Harrer, T.; Scheibenbogen, C.; Murovska, M.; Prusty, B.K. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med. 2018, 16, 268. [Google Scholar] [CrossRef]
- Sotzny, F.; Blanco, J.; Capelli, E.; Castro-Marrero, J.; Steiner, S.; Murovska, M.; Scheibenbogen, C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Evidence for an autoimmune disease. Autoimmun. Rev. 2018, 17, 601–609. [Google Scholar] [CrossRef]
- Klimas, N.G.; Koneru, A.O. Chronic fatigue syndrome: Inflammation, immune function, and neuroendocrine interactions. Curr. Rheumatol. Rep. 2007, 9, 482–487. [Google Scholar] [CrossRef]
- Keller, R.H.; Lane, J.L.; Klimas, N.; Reiter, W.M.; Fletcher, M.A.; van Riel, F.; Morgan, R. Association between HLA class II antigens and the chronic fatigue immune dysfunction syndrome. Clin. Infect. Dis. 1994, 18 (Suppl. S1), S154–S156. [Google Scholar] [CrossRef]
- Smith, J.; Fritz, E.L.; Kerr, J.R.; Cleare, A.J.; Wessely, S.; Mattey, D.L. Association of chronic fatigue syndrome with human leucocyte antigen class II alleles. J. Clin. Pathol. 2005, 58, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Hernandez, O.D.; Cuccia, M.; Bozzini, S.; Bassi, N.; Moscavitch, S.; Diaz-Gallo, L.-M.; Blank, M.; Agmon-Levin, N.; Shoenfeld, Y. Autoantibodies, polymorphisms in the serotonin pathway, and human leukocyte antigen class II alleles in chronic fatigue syndrome: Are they associated with age at onset and specific symptoms? Ann. N. Y. Acad. Sci. 2009, 1173, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Underhill, J.A.; Mahalingam, M.; Peakman, M.; Wessely, S. Lack of association between HLA genotype and chronic fatigue syndrome. Eur. J. Immunogenet. 2001, 28, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, A.D.; Lacerda, E.M.; Nacul, L.; Sepúlveda, N. Review of the Quality Control Checks Performed by Current Genome-Wide and Targeted-Genome Association Studies on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Pediatr. 2020, 8, 293. [Google Scholar] [CrossRef]
- van de Putte, E.M.; van Doornen, L.J.P.; Engelbert, R.H.H.; Kuis, W.; Kimpen, J.L.L.; Uiterwaal, C.S.P.M. Mirrored symptoms in mother and child with chronic fatigue syndrome. Pediatrics 2006, 117, 2074–2079. [Google Scholar] [CrossRef]
- Albright, F.; Light, K.; Light, A.; Bateman, L.; Cannon-Albright, L.A. Evidence for a heritable predisposition to Chronic Fatigue Syndrome. BMC Neurol. 2011, 11, 62. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Evengard, B.; Jacks, A.; Pedersen, N.L. Twin analyses of chronic fatigue in a Swedish national sample. Psychol. Med. 2005, 35, 1327–1336. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Allander, T.; Lysholm, F.; Goh, S.; Persson, B.; Jacks, A.; Evengård, B.; Pedersen, N.L.; Andersson, B. An unbiased metagenomic search for infectious agents using monozygotic twins discordant for chronic fatigue. BMC Microbiol. 2011, 11, 2. [Google Scholar] [CrossRef]
- Carruthers, B.M.; Jain, A.K.; de Meirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.M.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.C.P.; et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. J. Chronic Fatigue Syndr. 2003, 11, 7–115. [Google Scholar] [CrossRef]
- Velez, J.I.; Chandrasekharappa, S.C.; Henao, E.; Martinez, A.F.; Harper, U.; Jones, M.; Solomon, B.D.; Lopez, L.; Garcia, G.; Aguirre-Acevedo, D.C.; et al. Pooling/bootstrap-based GWAS (pbGWAS) identifies new loci modifying the age of onset in PSEN1 p.Glu280Ala Alzheimer’s disease. Mol. Psychiatry 2013, 18, 568–575. [Google Scholar] [CrossRef]
- Schlauch, K.A.; Khaiboullina, S.F.; De Meirleir, K.L.; Rawat, S.; Petereit, J.; Rizvanov, A.A.; Blatt, N.; Mijatovic, T.; Kulick, D.; Palotás, A.; et al. Genome-wide association analysis identifies genetic variations in subjects with myalgic encephalomyelitis/chronic fatigue syndrome. Transl. Psychiatry 2016, 6, e730. [Google Scholar] [CrossRef]
- Davis, J.M.; Heft, I.; Scherer, S.W.; Sikela, J.M. A Third Linear Association Between Olduvai (DUF1220) Copy Number and Severity of the Classic Symptoms of Inherited Autism. Am. J. Psychiatry 2019, 176, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Sikela, J.M.; Van Roy, F. Changing the name of the NBPF/DUF1220 domain to the Olduvai domain. F1000Research 2017, 6, 2185. [Google Scholar] [CrossRef] [PubMed]
- Quick, V.B.S.; Davis, J.M.; Olincy, A.; Sikela, J.M. DUF1220 copy number is associated with schizophrenia risk and severity: Implications for understanding autism and schizophrenia as related diseases. Transl. Psychiatry 2015, 5, e697. [Google Scholar] [CrossRef] [PubMed]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Smets, E.M.A.; Garssen, B.; Bonke, B.; De Haes, J.C.J.M. The multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef]
- Lidbury, B.A.; Kita, B.; Richardson, A.M.; Lewis, D.P.; Privitera, E.; Hayward, S.; de Kretser, D.; Hedger, M. Rethinking ME/CFS Diagnostic Reference Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom Severity. Diagnostics 2019, 9, 79. [Google Scholar] [CrossRef]
- Richardson, A.M.; Lewis, D.P.; Kita, B.; Ludlow, H.; Groome, N.P.; Hedger, M.P.; de Kretser, D.M.; Lidbury, B.A. Weighting of orthostatic intolerance time measurements with standing difficulty score stratifies ME/CFS symptom severity and analyte detection. J. Transl. Med. 2018, 16, 97. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Burrows, M.; Wheeler, D. A Block-Sorting Lossless Data Compression Algorithm; Digital SRC Research Report (Citeseer); Digital Equipment Corporation: Palo Alto, CA, USA, 1994. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.11–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R. BEDTools: The Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinform. 2014, 47, 11.12.1–11.12.34. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Libiger, O.; Torkamani, A.; Schork, N.J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 2010, 11, 773–785. [Google Scholar] [CrossRef]
- Brookes, A.J. The essence of SNPs. Gene 1999, 234, 177–186. [Google Scholar] [CrossRef]
- Karki, R.; Pandya, D.; Elston, R.C.; Ferlini, C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med. Genom. 2015, 8, 37. [Google Scholar] [CrossRef]
- Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Segura, V.; Vilhjalmsson, B.J.; Platt, A.; Korte, A.; Seren, Ü.; Long, Q.; Nordborg, M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2012, 44, 825–830. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Al-Shahrour, F.; Diaz-Uriarte, R.; Dopazo, J. FatiGO: A web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 2004, 20, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Al-Shahrour, F.; Minguez, P.; Vaquerizas, J.M.; Conde, L.; Dopazo, J. BABELOMICS: A suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 2005, 33, W460–W464. [Google Scholar] [CrossRef]
- Minguez, P.; Gotz, S.; Montaner, D.; Al-Shahrour, F.; Dopazo, J. SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks. Nucleic Acids Res. 2009, 37, W109–W114. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alonso, L.; Alonso, R.; Vidal, E.; Amadoz, A.; de María, A.; Minguez, P.; Medina, I.; Dopazo, J. Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments. Nucleic Acids Res. 2012, 40, e158. [Google Scholar] [CrossRef]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’Ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Kaur, R.; Greeley, B.; Ciok, A.; Mehta, K.; Tsai, M.; Robertson, H.; Debelic, K.; Zhang, L.X.; Nelson, T.; Boulter, T.; et al. A Multimodal Magnetic Resonance Imaging Study on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Feasibility and Clinical Correlation. Medicina 2024, 60, 1370. [Google Scholar] [CrossRef]
- Mueller, C.; Lin, J.C.; Sheriff, S.; Maudsley, A.A.; Younger, J.W. Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: Assessment with whole-brain magnetic resonance spectroscopy. Brain Imaging Behav. 2020, 14, 562–572. [Google Scholar] [CrossRef]
- Barnden, L.R.; Crouch, B.; Kwiatek, R.; Burnet, R.; Del Fante, P. Evidence in chronic fatigue syndrome for severity-dependent upregulation of prefrontal myelination that is independent of anxiety and depression. NMR Biomed. 2015, 28, 404–413. [Google Scholar] [CrossRef]
- Lee, J.S.; Sato, W.; Son, C.G. Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis. Autoimmun. Rev. 2024, 23, 103484. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.Y.; Barnden, L.R.; Kwiatek, R.A.; Bhuta, S.; Hermens, D.F.; Lagopoulos, J. Neuroimaging characteristics of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A systematic review. J. Transl. Med. 2020, 18, 335. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.; Zhang, L.X.; Guo, H.; Nacul, L.; Song, X. Brainstem Abnormalities in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Scoping Review and Evaluation of Magnetic Resonance Imaging Findings. Front. Neurol. 2021, 12, 769511. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.K.; Fang, H.; Whistler, T.; Unger, E.R.; Rajeevan, M.S. Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome. Neuropsychobiology 2011, 64, 183–194. [Google Scholar] [CrossRef]
- Kenna, K.P.; McLaughlin, R.L.; Hardiman, O.; Bradley, D.G. Using reference databases of genetic variation to evaluate the potential pathogenicity of candidate disease variants. Hum. Mutat. 2013, 34, 836–841. [Google Scholar] [CrossRef]
- Stanescu, H.C.; Arcos-Burgos, M.; Medlar, A.; Bockenhauer, D.; Kottgen, A.; Dragomirescu, L.; Voinescu, C.; Patel, N.; Pearce, K.; Hubank, M.; et al. Risk HLA-DQA1 and PLA (2)R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 2011, 364, 616–626. [Google Scholar] [CrossRef]
- Enciso-Mora, V.; Hosking, F.J.; Kinnersley, B.; Wang, Y.; Shete, S.; Zelenika, D.; Broderick, P.; Idbaih, A.; Delattre, J.-Y.; Hoang-Xuan, K.; et al. Deciphering the 8q24.21 association for glioma. Hum. Mol. Genet. 2013, 22, 2293–2302. [Google Scholar] [CrossRef]
- Chornokur, G.; Lin, H.-Y.; Tyrer, J.P.; Lawrenson, K.; Dennis, J.; Amankwah, E.K.; Qu, X.; Tsai, Y.-Y.; Jim, H.S.L.; Chen, Z.; et al. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE 2015, 10, e0128106. [Google Scholar] [CrossRef]
- Zheng-Bradley, X.; Flicek, P. Applications of the 1000 Genomes Project resources. Brief. Funct. Genom. 2017, 16, 163–170. [Google Scholar] [CrossRef]
- Vandepoele, K.; Andries, V.; Van Roy, N.; Staes, K.; Vandesompele, J.; Laureys, G.; De Smet, E.; Berx, G.; Speleman, F.; van Roy, F.; et al. A constitutional translocation t(1;17)(p36.2;q11.2) in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes. PLoS ONE 2008, 3, e2207. [Google Scholar] [CrossRef]
- Vandepoele, K.; Van Roy, N.; Staes, K.; Speleman, F.; Van Roy, F. A novel gene family NBPF: Intricate structure generated by gene duplications during primate evolution. Mol. Biol. Evol. 2005, 22, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Andries, V.; Vandepoele, K.; Staes, K.; Berx, G.; Bogaert, P.; Van Isterdael, G.; Ginneberge, D.; Parthoens, E.; Vandenbussche, J.; Gevaert, K.; et al. NBPF1, a tumor suppressor candidate in neuroblastoma, exerts growth inhibitory effects by inducing a G1 cell cycle arrest. BMC Cancer 2015, 15, 391. [Google Scholar] [CrossRef] [PubMed]
- Andries, V.; Vandepoele, K.; Van Roy, F. The NBPF gene family. In Neuroblastoma–Present and Future, 1st ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Vandepoele, K.; Andries, V.; van Roy, F. The NBPF1 promoter has been recruited from the unrelated EVI5 gene before simian radiation. Mol. Biol. Evol. 2009, 26, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Fiddes, I.T.; Pollen, A.A.; Davis, J.M.; Sikela, J.M. Paired involvement of human-specific Olduvai domains and NOTCH2NL genes in human brain evolution. Hum. Genet. 2019, 138, 715–721. [Google Scholar] [CrossRef]
- Heft, I.E.; Mostovoy, Y.; Levy-Sakin, M.; Ma, W.; Stevens, A.J.; Pastor, S.; McCaffrey, J.; Boffelli, D.; I Martin, D.; Xiao, M.; et al. The Driver of Extreme Human-Specific Olduvai Repeat Expansion Remains Highly Active in the Human Genome. Genetics 2020, 214, 179–191. [Google Scholar] [CrossRef]
- Keeney, J.G.; Davis, J.M.; Siegenthaler, J.; Post, M.D.; Nielsen, B.S.; Hopkins, W.D.; Sikela, J.M. DUF1220 protein domains drive proliferation in human neural stem cells and are associated with increased cortical volume in anthropoid primates. Brain Struct. Funct. 2015, 220, 3053–3060. [Google Scholar] [CrossRef]
- Sikela, J.M.; Searles Quick, V.B. Genomic trade-offs: Are autism and schizophrenia the steep price of the human brain? Hum. Genet. 2018, 137, 1–13. [Google Scholar] [CrossRef]
- Dumas, L.; Sikela, J.M. DUF1220 domains, cognitive disease, and human brain evolution. Cold Spring Harb. Symp. Quant. Biol. 2009, 74, 375–382. [Google Scholar] [CrossRef]
- Davis, J.M.; Searles, V.B.; Anderson, N.; Keeney, J.; Dumas, L.; Sikela, J.M.; Foroud, T. DUF1220 dosage is linearly associated with increasing severity of the three primary symptoms of autism. PLoS Genet. 2014, 10, e1004241. [Google Scholar] [CrossRef]
- Davis, J.M.; Searles Quick, V.B.; Sikela, J.M. Replicated linear association between DUF1220 copy number and severity of social impairment in autism. Hum. Genet. 2015, 134, 569–575. [Google Scholar] [CrossRef]
- Ortiz, B.; Fabius, A.W.M.; Wu, W.H.; Pedraza, A.; Brennan, C.W.; Schultz, N.; Pitter, K.L.; Bromberg, J.F.; Huse, J.T.; Holland, E.C.; et al. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc. Natl. Acad. Sci. USA 2014, 111, 8149–8154. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.; Strawbridge, R.J.; Bailey, M.E.S.; Graham, N.; Ferguson, A.; Lyall, D.M.; Cullen, B.; Pidgeon, L.M.; Cavanagh, J.; Mackay, D.F.; et al. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry 2017, 7, 1264. [Google Scholar] [CrossRef] [PubMed]
- Mattheisen, M.; Samuels, J.F.; Wang, Y.; Greenberg, B.D.; Fyer, A.J.; McCracken, J.T.; Geller, D.A.; Murphy, D.L.; Knowles, J.A.; Grados, M.A.; et al. Genome-wide association study in obsessive-compulsive disorder: Results from the OCGAS. Mol. Psychiatry 2015, 20, 337–344. [Google Scholar] [CrossRef] [PubMed]
- International Obsessive-Compulsive Disorder Foundation Genetics Studies. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol. Psychiatry 2018, 23, 1181–1188. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Lv, L.; Ma, C.; Du, B.; Lu, T.; Jin, C.; Yan, H.; Yang, Y.; Li, W.; et al. Genome-Wide Association Study Suggested the PTPRD Polymorphisms Were Associated With Weight Gain Effects of Atypical Antipsychotic Medications. Schizophr. Bull. 2016, 42, 814–823. [Google Scholar] [CrossRef]
- Chibnik, L.B.; White, C.C.; Mukherjee, S.; Raj, T.; Yu, L.; Larson, E.B.; Montine, T.J.; Keene, C.D.; Sonnen, J.; A Schneider, J.; et al. Susceptibility to neurofibrillary tangles: Role of the PTPRD locus and limited pleiotropy with other neuropathologies. Mol. Psychiatry 2018, 23, 1521–1529. [Google Scholar] [CrossRef]
- Naviaux, R.K.; Naviaux, J.C.; Li, K.; Bright, A.T.; Alaynick, W.A.; Wang, L.; Baxter, A.; Nathan, N.; Anderson, W.; Gordon, E. Metabolic features of chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 2016, 113, E5472–E5480. [Google Scholar] [CrossRef]
- Yamano, E.; Kataoka, Y. New Diagnostic Biomarkers for Chronic Fatigue Syndrome. Brain Nerve 2018, 70, 27–34. [Google Scholar]
- Armstrong, C.W.; McGregor, N.R.; Sheedy, J.R.; Buttfield, I.; Butt, H.L.; Gooley, P.R. NMR metabolic profiling of serum identifies amino acid disturbances in chronic fatigue syndrome. Clin. Chim. Acta 2012, 413, 1525–1531. [Google Scholar] [CrossRef]
- Armstrong, C.W.; McGregor, N.R.; Butt, H.L.; Gooley, P.R. Metabolism in chronic fatigue syndrome. Adv. Clin. Chem. 2014, 66, 121–172. [Google Scholar]
- Missailidis, D.; Annesley, S.J.; Allan, C.Y.; Sanislav, O.; Lidbury, B.A.; Lewis, D.P.; Fisher, P.R. An Isolated Complex V Inefficiency and Dysregulated Mitochondrial Function in Immortalized Lymphocytes from ME/CFS Patients. Int. J. Mol. Sci. 2020, 21, 1074. [Google Scholar] [CrossRef]
A. Multi-Locus Additive Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | MAF | p-Value | Beta (βreg) | Beta SE | FDR |
1 | 16909052 | rs3897177 | NBPF1 | synonymous | C/T | 0.36 | 3.15 × 10−8 | 0.055 | 0.01 | 6.36 × 10−4 |
1 | 145303971 | rs10910794 | NBPF10 | synonymous | A/G | 0.24 | 2.63 × 10−7 | 0.047 | 0.009 | 4.25 × 10−3 |
1 | 145355624 | rs1553120233 | NBPF10 | intron | C/T | 0.5 | 1.81 × 10−10 | 0.08 | 0.012 | 7.33 × 10−6 |
1 | 148756363 | rs200632836 | NBPF16 | intergenic | A/G | 0.45 | 1.04 × 10−6 | 0.047 | 0.01 | 0.01 |
3 | 142233470 | rs6440086 | ATR | intron | T/C | 0.49 | 1.68 × 10−6 | −0.038 | 0.008 | 0.02 |
7 | 6006431 | rs2711192 | RSPH10B | intron | G/A | 0.45 | 3.73 × 10−6 | −0.038 | 0.008 | 0.03 |
8 | 12291415 | rs80169473 | FAM86B2 | intergenic | C/A | 0.48 | 1.98 × 10−10 | −0.052 | 0.008 | 5.32 × 10−6 |
8 | 12294359 | rs2980473 | FAM86B2 | intergenic | G/C | 0.35 | 2.62 × 10−18 | 0.096 | 0.01 | 2.11 × 10−13 |
19 | 14499357 | rs2302094 | ADGRE5-CD97 | intron | T/A | 0.05 | 2.48 × 10−6 | 0.085 | 0.018 | 0.03 |
22 | 51183255 | rs5771002 | ACR | missense | A/G | 0.48 | 6.09 × 10−6 | 0.037 | 0.008 | 0.05 |
B. Single-Locus Additive Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | MAF | p-Value | Beta (βreg) | Beta SE | FDR |
1 | 16904121 | rs5003678 | NBPF1 | intron | T/G | 0.41 | 1.61 × 10−10 | 0.08 | 0.012 | 6.52 × 10−6 |
1 | 16909052 | rs3897177 | NBPF1 | synonymous | C/T | 0.36 | 2.43 × 10−10 | 0.07 | 0.011 | 4.91 × 10−6 |
1 | 145355624 | rs1553120233 | NBPF10 | intron | C/T | 0.5 | 9.26 × 10−13 | 0.1 | 0.014 | 7.49 × 10−8 |
1 | 148756363 | rs200632836 | NBPF16 | intergenic | A/G | 0.45 | 1.09 × 10−9 | 0.07 | 0.011 | 1.76 × 10−5 |
1 | 236396811 | rs2463185 | ERO1B | intron | C/A | 0.49 | 1.20 × 10−6 | 0.05 | 0.01 | 6.91 × 10−3 |
2 | 87069431 | rs4514875 | CD8B | stop_retained | C/T | 0.47 | 3.06 × 10−8 | 0.06 | 0.01 | 4.13 × 10−4 |
2 | 233273504 | rs183793479 | ALPG | missense | T/G | 0.49 | 1.36 × 10−7 | 0.05 | 0.01 | 1.37 × 10−3 |
3 | 52965713 | rs2710339 | SFMBT1 | intron | G/A | 0.47 | 2.75 × 10−6 | 0.04 | 0.009 | 0.01 |
3 | 142233470 | rs6440086 | ATR | intron | T/C | 0.49 | 1.44 × 10−6 | −0.05 | 0.009 | 7.27 × 10−3 |
8 | 12294359 | rs2980473 | LOC100506990 | intergenic | G/C | 0.35 | 1.93 × 10−10 | 0.07 | 0.011 | 5.19 × 10−6 |
8 | 92052619 | rs13277356 | PIP4P2- TMEM55A | intron | C/A | 0.48 | 3.90 × 10−6 | −0.05 | 0.01 | 0.02 |
9 | 139249991 | rs28603210 | GPSM1 | intron | T/C | 0.43 | 5.17 × 10−6 | 0.04 | 0.009 | 0.02 |
10 | 65355538 | rs10733794 | REEP3 | intron | A/G | 0.46 | 2.57 × 10−7 | 0.05 | 0.01 | 2.08 × 10−3 |
11 | 121459522 | rs1792122 | SORL1 | intron | C/T | 0.5 | 6.73 × 10−6 | −0.04 | 0.009 | 0.03 |
12 | 112036797 | rs4098854 | ATXN2 | synonymous | C/T | 0.38 | 1.79 × 10−7 | 0.05 | 0.01 | 1.61 × 10−3 |
14 | 105356241 | rs61996002 | CEP170B | intron | A/G | 0.4 | 1.23 × 10−6 | 0.05 | 0.009 | 6.62 × 10−3 |
16 | 3791261 | rs129968 | CREBBP | intron | A/G | 0.49 | 8.04 × 10−6 | 0.04 | 0.01 | 0.03 |
17 | 18290687 | rs35418981 | EVPLL | intron | T/A | 0.45 | 1.17 × 10−5 | −0.04 | 0.01 | 0.04 |
17 | 30358510 | rs10752705 | LRRC37B | intron | G/A | 0.46 | 7.53 × 10−7 | 0.05 | 0.009 | 5.07 × 10−3 |
17 | 38858029 | rs6416908 | KRT24 | intron | A/T | 0.45 | 8.56 × 10−7 | −0.05 | 0.01 | 5.32 × 10−3 |
19 | 14499357 | rs2302094 | ADGRE5 | intron | T/A | 0.05 | 1.11 × 10−7 | 0.12 | 0.021 | 1.28 × 10−3 |
20 | 31945861 | rs291670 | CDK5RAP1 | intergenic | G/A | 0.5 | 1.21 × 10−5 | −0.04 | 0.009 | 0.04 |
22 | 51183255 | rs5771002 | ACR | missense | A/G | 0.48 | 3.07 × 10−7 | 0.05 | 0.01 | 2.26 × 10−3 |
C. Multi-Locus Dominant Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | MAF | p-Value | Beta (βreg) | Beta SE | FDR |
3 | 142233470 | rs6440086 | ATR | intron | T/C | 0.49 | 3.88 × 10−6 | −0.068 | 0.015 | 0.03 |
6 | 129622257 | rs3798664 | LAMA2 | intron | A/G | 0.37 | 1.51 × 10−6 | −0.058 | 0.012 | 0.02 |
8 | 92052619 | rs13277356 | PIP4P2- TMEM55A | intron | C/A | 0.48 | 5.30 × 10−9 | −0.088 | 0.015 | 4.28 × 10−4 |
9 | 8436361 | rs7854171 | PTPRD | intron | A/G | 0.45 | 2.21 × 10−6 | −0.062 | 0.013 | 0.02 |
9 | 87325994 | rs1659400 | NTRK2 | intron | A/G | 0.46 | 5.77 × 10−9 | −0.082 | 0.014 | 2.33 × 10−4 |
9 | 136274058 | rs7030175 | REXO4 | intron | G/T | 0.46 | 1.44 × 10−6 | −0.064 | 0.013 | 0.02 |
11 | 121459522 | rs1792122 | SORL1 | intron | C/T | 0.5 | 7.81 × 10−8 | −0.081 | 0.015 | 1.26 × 10−3 |
12 | 46761324 | rs1873793 | SLC38A2 | intron | C/T | 0.49 | 5.20 × 10−6 | −0.06 | 0.013 | 0.04 |
17 | 38858029 | rs6416908 | KRT24 | intron | A/T | 0.45 | 4.18 × 10−8 | −0.081 | 0.014 | 8.45 × 10−4 |
17 | 66303352 | rs2072268 | ARSG | 5_primeUTR | G/A | 0.39 | 7.35 × 10−6 | −0.053 | 0.012 | 0.05 |
19 | 9526017 | rs7258150 | ZNF266 | intron | G/A | 0.44 | 2.12 × 10−8 | −0.076 | 0.013 | 5.71 × 10−4 |
19 | 15728556 | rs4019755 | CYP4F8 | intron | A/G | 0.42 | 2.68 × 10−6 | −0.059 | 0.012 | 0.02 |
D. Single-Locus Dominant Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | MAF | p-Value | Beta (βreg) | Beta SE | FDR |
1 | 40234765 | rs230319 | BMP8B | intron | A/G | 0.42 | 9.03 × 10−7 | −0.074 | 0.015 | 5.21 × 10−3 |
1 | 120301432 | rs1441010 | HMGCS2 | intron | A/G | 0.44 | 9.26 × 10−6 | −0.070 | 0.016 | 0.02 |
1 | 225555856 | rs12756111 | DNAH14 | intron | C/T | 0.48 | 1.28 × 10−6 | −0.080 | 0.016 | 5.46 × 10−3 |
2 | 108443647 | rs78477381 | RGPD4 | intron | C/G | 0.38 | 1.23 × 10−5 | −0.066 | 0.015 | 0.02 |
2 | 112870730 | rs7581849 | PIP4P2- TMEM87B | intron | G/A | 0.49 | 3.38 × 10−6 | −0.077 | 0.016 | 0.01 |
3 | 142233470 | rs6440086 | ATR | intron | T/C | 0.49 | 1.70 × 10−9 | −0.105 | 0.017 | 4.59 × 10−5 |
3 | 195460955 | rs1808432 | MUC20 | intergenic | T/A | 0.34 | 4.64 × 10−6 | −0.068 | 0.015 | 0.01 |
4 | 70596977 | rs7660770 | SULT1B1 | intron | G/A | 0.42 | 2.19 × 10−5 | −0.063 | 0.015 | 0.03 |
5 | 43614968 | rs4991951 | NNT | intron | A/G | 0.46 | 5.57 × 10−6 | −0.072 | 0.016 | 0.01 |
5 | 176898619 | rs335420 | DBN1 | intron | T/C | 0.42 | 1.85 × 10−5 | −0.062 | 0.014 | 0.03 |
6 | 130379160 | rs12661232 | L3MBTL3 | intron | T/C | 0.43 | 4.57 × 10−6 | −0.073 | 0.016 | 0.01 |
7 | 6006431 | rs2711192 | RSPH10B | intron | G/A | 0.45 | 1.21 × 10−5 | −0.069 | 0.016 | 0.02 |
7 | 22184167 | rs1859806 | RAPGEF5 | intron | G/A | 0.42 | 2.80 × 10−5 | −0.063 | 0.015 | 0.04 |
7 | 30537640 | rs4720005 | GGCT | intron | G/T | 0.47 | 2.09 × 10−7 | −0.087 | 0.017 | 1.88 × 10−3 |
8 | 90802099 | rs400411 | RIPK2 | intron | A/G | 0.50 | 2.51 × 10−7 | −0.085 | 0.016 | 1.84 × 10−3 |
8 | 92052619 | rs13277356 | PIP4P2- TMEM55A | intron | C/A | 0.48 | 6.12 × 10−9 | −0.101 | 0.017 | 9.89 × 10−5 |
8 | 113650725 | rs7833307 | CSMD3 | intron | C/T | 0.37 | 7.08 × 10−6 | −0.066 | 0.014 | 0.02 |
9 | 8436361 | rs7854171 | PTPRD | intron | A/G | 0.45 | 9.14 × 10−7 | −0.077 | 0.016 | 4.93 × 10−3 |
9 | 34724786 | rs3739878 | FAM205A | synonymous | G/A | 0.40 | 6.51 × 10−6 | −0.066 | 0.014 | 0.02 |
9 | 36121065 | rs2149006 | RECK | intron | C/G | 0.49 | 1.04 × 10−6 | −0.080 | 0.016 | 4.67 × 10−3 |
9 | 87325994 | rs1659400 | NTRK2 | intron | A/G | 0.46 | 2.24 × 10−7 | −0.084 | 0.016 | 1.81 × 10−3 |
9 | 133916387 | rs11244254 | LAMC3 | intron | G/T | 0.38 | 8.83 × 10−6 | −0.064 | 0.014 | 0.02 |
9 | 136274058 | rs7030175 | REXO4 | intron | G/T | 0.46 | 9.67 × 10−7 | −0.078 | 0.016 | 4.88 × 10−3 |
9 | 139944588 | rs7869655 | ENTPD2 | intron | T/C | 0.46 | 2.70 × 10−7 | −0.091 | 0.017 | 1.82 × 10−3 |
10 | 97367511 | rs11188397 | ALDH18A1 | intron | C/A | 0.41 | 4.29 × 10−6 | −0.070 | 0.015 | 0.01 |
10 | 129908986 | rs2782870 | MKI67 | intron | C/A | 0.44 | 3.49 × 10−5 | −0.062 | 0.015 | 0.05 |
11 | 121459522 | rs1792122 | SORL1 | intron | C/T | 0.50 | 4.43 × 10−9 | −0.102 | 0.017 | 8.94 × 10−5 |
12 | 12879570 | rs34322 | APOLD1 | intron | T/C | 0.43 | 5.65 × 10−6 | −0.071 | 0.015 | 0.01 |
12 | 46761324 | rs1873793 | SLC38A2 | intron | C/T | 0.49 | 1.02 × 10−6 | −0.078 | 0.016 | 4.86 × 10−3 |
12 | 64001613 | rs2202644 | DPY19L2 | intron | G/A | 0.42 | 2.54 × 10−5 | −0.064 | 0.015 | 0.04 |
12 | 133378852 | rs10781650 | GOLGA3 | intron | T/C | 0.47 | 4.63 × 10−6 | −0.071 | 0.015 | 0.01 |
14 | 21970379 | rs1263793 | METTL3 | intron | A/G | 0.43 | 4.04 × 10−6 | −0.072 | 0.015 | 0.01 |
14 | 69809143 | rs1296214 | GALNT16 | intron | G/A | 0.37 | 2.05 × 10−5 | −0.060 | 0.014 | 0.03 |
14 | 94120712 | rs55882426 | UNC79 | intron | C/T | 0.42 | 2.02 × 10−5 | −0.064 | 0.015 | 0.03 |
15 | 34639015 | rs383086 | NUTM1 | intron | C/T | 0.42 | 2.57 × 10−6 | −0.073 | 0.015 | 8.66 × 10−3 |
15 | 74365264 | rs1835371 | GOLGA6A | intron | T/G | 0.34 | 2.44 × 10−5 | −0.059 | 0.014 | 0.04 |
16 | 2014954 | rs2302176 | SNHG9 | intergenic | C/T | 0.49 | 1.54 × 10−5 | −0.070 | 0.016 | 0.03 |
16 | 5135380 | rs6775 | ALG1-EEF2KMT | 3_prime_UTR | A/G | 0.43 | 1.17 × 10−5 | −0.067 | 0.015 | 0.02 |
16 | 31393544 | rs9929832 | ITGAX | 3_prime_UTR | C/T | 0.39 | 9.94 × 10−6 | −0.064 | 0.014 | 0.02 |
16 | 50333837 | rs8045659 | ADCY7 | intron | T/C | 0.45 | 4.34 × 10−7 | −0.080 | 0.016 | 2.70 × 10−3 |
16 | 69986839 | rs2650542 | CLEC18A | intron | G/C | 0.44 | 1.53 × 10−6 | −0.076 | 0.016 | 5.91 × 10−3 |
17 | 6537526 | rs9914024 | KIAA0753 | intron | G/A | 0.39 | 3.08 × 10−5 | −0.061 | 0.014 | 0.04 |
17 | 18290687 | rs35418981 | EVPLL | intron | T/A | 0.45 | 3.67 × 10−8 | −0.089 | 0.016 | 4.94 × 10−4 |
17 | 20355058 | rs4332792 | LGALS9B | intron | T/G | 0.41 | 2.04 × 10−6 | −0.072 | 0.015 | 7.48 × 10−3 |
17 | 38858029 | rs6416908 | KRT24 | intron | A/T | 0.45 | 6.47 × 10−10 | −0.105 | 0.017 | 5.23 × 10−5 |
17 | 49281678 | rs28410310 | MBTD1 | intron | T/C | 0.45 | 1.57 × 10−5 | −0.068 | 0.016 | 0.03 |
18 | 50924132 | rs11082992 | DCC | intron | T/C | 0.42 | 1.43 × 10−6 | −0.075 | 0.015 | 5.78 × 10−3 |
19 | 9526017 | rs7258150 | ZNF266 | intron | G/A | 0.44 | 2.02 × 10−7 | −0.082 | 0.015 | 2.04 × 10−3 |
19 | 14499357 | rs2302094 | ADGRE5 | intron | T/A | 0.05 | 1.11 × 10−7 | 0.115 | 0.021 | 1.28 × 10−3 |
19 | 14639947 | rs7249458 | DNAJB1 | intron | A/T | 0.37 | 3.09 × 10−5 | −0.061 | 0.015 | 0.04 |
19 | 15728556 | rs4019755 | CYP4F8 | intron | A/G | 0.42 | 1.01 × 10−5 | −0.067 | 0.015 | 0.02 |
19 | 40375967 | rs62106959 | FCGBP | intron | C/T | 0.40 | 8.18 × 10−6 | −0.068 | 0.015 | 0.02 |
19 | 44132559 | rs8101721 | CADM4 | intron | G/C | 0.42 | 5.00 × 10−6 | −0.067 | 0.014 | 0.01 |
19 | 55773590 | rs10403164 | HSPBP1 | 3_prime_UTR | A/G | 0.44 | 2.58 × 10−5 | −0.064 | 0.015 | 0.04 |
19 | 56274506 | rs147984855 | RFPL4A | missense | G/A | 0.11 | 2.04 × 10−5 | 0.070 | 0.016 | 0.03 |
20 | 10624926 | rs6077861 | JAG1 | intron | A/T | 0.36 | 1.60 × 10−5 | −0.064 | 0.015 | 0.03 |
20 | 31945861 | rs291670 | CDK5RAP1 | intergenic | G/A | 0.50 | 1.58 × 10−9 | −0.107 | 0.017 | 6.40 × 10−5 |
20 | 46270379 | rs623953 | NCOA3 | intron | G/A | 0.46 | 2.51 × 10−6 | −0.074 | 0.016 | 8.82 × 10−3 |
E. Multi-Locus Dominant Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | p-Value | Beta (βreg) | Beta SE | FDR | |
9 | 8318231 | rs996924 | PTPRD | intron | A/G | 4.55 × 10−11 | 0.714 | 0.092 | 1.13 × 10−7 | |
F. Single-Locus Additive Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | p-Value | Beta (βreg) | Beta SE | FDR | |
7 | 22278040 | rs11766861 | RAPGEF5 | Intron | A/T | 7.96 × 10−5 | 0.350 | 0.08 | 4.94 × 10−2 | |
8 | 114359441 | rs17608734 | CSMD3 | intron | G/T | 3.61 × 10−5 | −0.320 | 0.073 | 3.00 × 10−2 | |
9 | 8318231 | rs996924 | PTPRD | intron | A/G | 1.14 × 10−6 | 0.483 | 0.091 | 2.84 × 10−3 | |
18 | 50369520 | rs1560521 | DCC | intron | G/A/C | 2.63 × 10−5 | 0.378 | 0.084 | 3.27 × 10−2 | |
G. Multi-Locus Recessive Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | p-Value | Beta (βreg) | Beta SE | FDR | |
8 | 113617156 | rs4876478 | CSMD3 | intron | T/G | 3.81 × 10−13 | −0.917 | 0.1035 | 4.73 × 10−10 | |
8 | 114359441 | rs17608734 | CSMD3 | intron | G/T | 2.11 × 10−22 | −0.872 | 0.0618 | 5.25 × 10−19 | |
8 | 114399612 | rs4311682 | CSMD3 | intron | A/G | 9.22 × 10−5 | 0.933 | 0.2251 | 1.53 × 10−2 | |
8 | 114406336 | rs4354335 | CSMD3 | intron | G/A | 9.22 × 10−5 | 0.933 | 0.2251 | 1.43 × 10−2 | |
8 | 114418955 | rs7002354 | CSMD3 | intron | T/C | 9.22 × 10−5 | 0.933 | 0.2251 | 1.35 × 10−2 | |
8 | 114436474 | rs2942852 | CSMD3 | intron | T/G | 9.22 × 10−5 | 0.933 | 0.2251 | 1.27 × 10−2 | |
9 | 8409888 | rs3847293 | PTPRD | intron | C/G | 1.80 × 10−7 | −0.917 | 0.1588 | 6.40 × 10−5 | |
9 | 8845429 | rs2570961 | PTPRD | intron | G/A | 1.80 × 10−7 | −0.917 | 0.1588 | 1.12 × 10−4 | |
9 | 8897215 | rs7866753 | PTPRD | intron | C/T | 9.22 × 10−5 | 0.933 | 0.2251 | 1.21 × 10−2 | |
9 | 8901739 | rs10815990 | PTPRD | intron | A/G | 9.22 × 10−5 | 0.933 | 0.2251 | 1.15 × 10−2 | |
9 | 9270379 | rs12341573 | PTPRD | intron | G/T | 9.22 × 10−5 | 0.933 | 0.2251 | 1.09 × 10−2 | |
9 | 9829690 | rs1746813 | PTPRD | intron | G/C | 7.63 × 10−6 | −0.938 | 0.1942 | 1.73 × 10−3 | |
9 | 9904274 | rs16930522 | PTPRD | intron | G/A | 7.63 × 10−6 | −0.938 | 0.1942 | 1.90 × 10−3 | |
9 | 10254793 | rs2498611 | PTPRD | intron | T/G | 1.80 × 10−7 | −0.917 | 0.1588 | 8.96 × 10−5 | |
9 | 87533389 | rs6559836 | NTRK2 | intron | G/A | 7.63 × 10−6 | −0.938 | 0.1942 | 2.37 × 10−3 | |
9 | 87631034 | rs2378672 | NTRK2 | intron | C/T | 7.63 × 10−6 | −0.938 | 0.1942 | 2.11 × 10−3 | |
10 | 97392993 | rs3750700 | ALDH18A1 | intron | T/C | 4.75 × 10−4 | −0.288 | 0.0785 | 4.37 × 10−2 | |
14 | 69734498 | rs1890939 | GALNT16 | intron | C/G | 6.71 × 10−12 | −0.772 | 0.0942 | 5.57 × 10−9 | |
14 | 93902973 | rs28385502 | UNC79 | intron | A/G | 9.22 × 10−5 | 0.933 | 0.2251 | 1.04 × 10−2 | |
18 | 50567129 | rs11874663 | DCC | intron | G/A | 7.63 × 10−6 | −0.938 | 0.1942 | 1.58 × 10−3 | |
18 | 50597529 | rs4995148 | DCC | intron | T/A | 7.63 × 10−6 | −0.938 | 0.1942 | 1.46 × 10−3 | |
18 | 50618359 | rs7233997 | DCC | intron | G/A | 3.86 × 10−4 | −0.620 | 0.1665 | 4.18 × 10−2 | |
18 | 50622857 | rs9957443 | DCC | intron | T/G | 3.86 × 10−4 | −0.620 | 0.1665 | 4.00 × 10−2 | |
18 | 50622885 | rs16956110 | DCC | intron | C/T | 3.86 × 10−4 | −0.620 | 0.1665 | 3.84 × 10−2 | |
18 | 50623189 | rs16956114 | DCC | intron | G/A | 7.63 × 10−6 | −0.938 | 0.1942 | 1.36 × 10−3 | |
18 | 50668321 | rs9956477 | DCC | intron | C/A | 3.86 × 10−4 | −0.620 | 0.1665 | 3.69 × 10−2 | |
20 | 46215501 | rs6066395 | NCOA3 | intron | G/A | 1.80 × 10−7 | −0.917 | 0.1588 | 7.47 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcos-Burgos, M.; Arcos-Holzinger, M.; Mastronardi, C.; Isaza-Ruget, M.A.; Vélez, J.I.; Lewis, D.P.; Patel, H.; Lidbury, B.A. Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders. Diagnostics 2025, 15, 1542. https://doi.org/10.3390/diagnostics15121542
Arcos-Burgos M, Arcos-Holzinger M, Mastronardi C, Isaza-Ruget MA, Vélez JI, Lewis DP, Patel H, Lidbury BA. Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders. Diagnostics. 2025; 15(12):1542. https://doi.org/10.3390/diagnostics15121542
Chicago/Turabian StyleArcos-Burgos, Mauricio, Mauricio Arcos-Holzinger, Claudio Mastronardi, Mario A. Isaza-Ruget, Jorge I. Vélez, Donald P. Lewis, Hardip Patel, and Brett A. Lidbury. 2025. "Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders" Diagnostics 15, no. 12: 1542. https://doi.org/10.3390/diagnostics15121542
APA StyleArcos-Burgos, M., Arcos-Holzinger, M., Mastronardi, C., Isaza-Ruget, M. A., Vélez, J. I., Lewis, D. P., Patel, H., & Lidbury, B. A. (2025). Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders. Diagnostics, 15(12), 1542. https://doi.org/10.3390/diagnostics15121542