Nematicidal Efficacy of a dsRNA-Chitosan Formulation Against Acrobeloides nanus Estimated by a Soil Drenching Application
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Nematode Collection and Rearing
2.2. Nematode Identification Using Morphological Characteristics
2.3. Chemicals Common in Different Treatments
2.4. Nematode Identification Using Molecular Marker
2.5. Prediction of Three Target Genes from the Nematode Genome
2.6. RNA Extraction, cDNA Preparation, and RT-PCR
2.7. dsRNA Preparation
2.8. Bioassay to Test Gene Silencing by dsRNA Application in an Agar Plate Assay
2.9. Bioassay to Test Gene Silencing by dsRNA Application in Soil
2.10. Whole-Mount In Situ Hybridization of vATPase-B
2.11. Preparation of Chitosan-Formulated dsRNA
2.12. Statistical Analysis
3. Results
3.1. Identification of a Nematode Isolate Collected from an Agricultural Land
3.2. Prediction of Three Target Genes of RNAi from A. nanus Genome
3.3. Nematicidal Effects of Three dsRNAs Against A. nanus Using an Agar Plate Assay
3.4. Nematicidal Effects of Three dsRNAs Against A. nanus in Soil
3.5. Chitosan-Formulated dsRNA to Protect dsRNA Stability in Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Kobayashi, H.; Tomari, Y. RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochim. Biophys. Acta 2016, 1859, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Silver, K.; Cooper, A.M.; Zhu, K.Y. Strategies for enhancing the efficiency of RNA interference in insects. Pest Manag. Sci. 2021, 77, 2645–2658. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.Y.; Palli, S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020, 65, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Biedenkopf, D.; Furch, A.; Weber, L.; Rossbach, O.; Abdellatef, E.; Linicus, L.; Johannsmeier, J.; Jelonek, L.; Goesmann, A.; et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 2016, 12, e1005901. [Google Scholar] [CrossRef]
- Holterman, M.; van der Wurff, A.; van den Elsen, S.; van Megen, H.; Bongers, T.; Holovachov, O.; Bakker, J.; Helder, J. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 2006, 23, 1792–1800. [Google Scholar] [CrossRef]
- De Ley, P.; Blaxter, M.L. Systematic position and phylogeny. In The Biology of Nematodes; Lee, D.L., Ed.; Taylor and Francis: London, UK, 2002; pp. 1–30. [Google Scholar]
- Timmons, L.; Fire, A. Specific interference by ingested dsRNA. Nature 1998, 395, 854. [Google Scholar] [CrossRef]
- Hewezi, T.; Baum, T.J. Manipulation of plant cells by cyst and root-knot nematode effectors. Mol. Plant Microbe Interact. 2013, 26, 9–16. [Google Scholar] [CrossRef]
- Huang, G.; Allen, R.; Davis, E.L.; Baum, T.J.; Hussey, R.S. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl. Acad. Sci. USA 2006, 103, 14302–14306. [Google Scholar] [CrossRef]
- Yang, Y.; Jittayasothorn, Y.; Chronis, D.; Wang, X.; Cousins, P.; Zhong, G.Y. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS ONE 2013, 8, e69463. [Google Scholar] [CrossRef]
- Papolu, P.K.; Gantasala, N.P.; Kamaraju, D.; Banakar, P.; Sreevathsa, R.; Rao, U. Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode, Meloidogyne incognita. PLoS ONE 2013, 8, e80603. [Google Scholar] [CrossRef]
- Youssef, R.M.; Kim, K.H.; Haroon, S.A.; Matthews, B.F. Post-transcriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots. Exp. Parasitol. 2013, 134, 266–274. [Google Scholar] [CrossRef]
- Walawage, S.L.; Britton, M.T.; Leslie, C.; Uratsu, S.L.; Li, Y.; Dandekar, A.M. Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genom. 2012, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Bairwa, A.; Dipta, B.; Siddappa, S.; Singh, B.; Sharma, N.; Naga, K.C.; Mhatre, P.H.; Sharma, S.; Venkatasalam, E.P.; Singh, B. Kaolinite nanoclay-shielded dsRNA drenching for management of Globodera pallida: An environmentally friendly pest management approach. Protoplasma 2024, 261, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Bird, A.F.; Ryder, M.H. Feeding of the nematode Acrobeloides nanus on bacteria. J. Nematol. 1993, 25, 493–499. [Google Scholar] [PubMed]
- Alvarez, O.A.; Jager, T.; Redondo, E.M.; Kammenga, J.E. Physiological modes of action of toxic chemicals in the nematode Acrobeloides nanus. Environ. Toxicol. Chem. 2006, 25, 3230–3237. [Google Scholar] [CrossRef]
- Baermann, G. A simple method for detecting Ankylostomum (nematodes) larvae in soil samples. Med. J. Dutch East Indie 1917, 57, 131–137. [Google Scholar]
- Seinhorst, J.W. A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 1959, 4, 67–69. [Google Scholar] [CrossRef]
- Shirayama, Y.; Kaku, T.; Higgins, R.P. Double-sided microscopic observation of meiofauna using an HS-slide. Benthos Res. 1993, 44, 41–44. [Google Scholar] [CrossRef]
- Swibawa, I.G.; Fitriana, Y.U.; Suharjo, R.; Susilo, F.X.; Rani, E.K.A. Morpho-molecular identification and pathogenicity test on fungal parasites of guava root-knot nematode eggs in Lampung, Indonesia. Biodiversitas 2020, 21, 1108–1115. [Google Scholar]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, W.M.; Shipley, L.G.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Livak, K.J.; Schimittgen, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wang, C.; Zhuge, J.; Tang, S.; Zhou, X.; Zhou, L.; Guo, K. Comparative effects of two in situ hybridization methods for the pinewood nematode (Bursaphelenchus xylophilus). Front. Microbiol. 2023, 14, 234895. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Jin, G.; Kim, Y. Spraying dsRNA with chitosan formulation improves control of the western flower thrips, Frankliniella occidentalis, in a greenhouse. Insect Mol. Biol. 2024, 34, 552–569. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS/STAT User’s Guide; Release 6.03; SAS Institute Inc.: Cary, NC, USA, 1989. [Google Scholar]
- Nsengimana, J.; Bauters, L.; Haegeman, A.; Gheysen, G. Silencing of Mg-pat-10 and Mg-unc-87 in the plant parasitic nematode Meloidogyne graminicola using siRNAs. Agriculture 2013, 3, 567–578. [Google Scholar] [CrossRef]
- Khan, F.; Esmaeily, M.; Jin, G.; Sevin, S.; Jung, C.; Ham, E.; Kim, Y. A sprayable long hairpin dsRNA formulated with layered double hydroxide against the western flower thrips, Frankliniella occidentalis: Control efficacy in a greenhouse and influence on beneficial insects. Pestic. Biochem. Physiol. 2025, 209, 106331. [Google Scholar] [CrossRef]
- Hao, W.; Li, Q.; Zhang, J.; Jiang, Y.; Liang, W. Utility of nematode Acrobeloides nanus for assessing subacute toxicity of heavy metals. Environ. Monit. Assess. 2010, 164, 273–278. [Google Scholar] [CrossRef]
- Schiffer, P.H.; Polsky, A.L.; Cole, A.G.; Camps, J.I.R.; Kroiher, M.; Silver, D.H.; Grishkevich, V.; Anavy, L.; Koutsovoulos, G.; Hashimshony, T.; et al. The gene regulatory program of Acrobeloides nanus reveals conservation of phylum-specific expression. Proc. Natl. Acad. Sci. USA 2018, 115, 4459–4464. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J.; Bae, Y.J.; Park, J. First record of Acrobeloides nanus (Cephalobidae: Rhabditida: Nematoda) from Korea. Anim. Syst. Evol. Divers. 2016, 32, 258–265. [Google Scholar] [CrossRef]
- Pervez, R. Acrobeloides ishraqi sp. n. and Acrobeloides mushtaqi sp. n. (Nematoda: Rhabditida) from chickpea rhizosphere, Uttar Pradesh, India. Arch. Phytopathol. Plant Prot. 2011, 44, 1438–1446. [Google Scholar] [CrossRef]
- Dong, L.; Xu, J.; Chen, S.; Li, X.; Zuo, Y. Mi-flp-18 and Mi-mpk-1 genes are potential targets for Meloidogyne incognita control. J. Parasitol. 2016, 102, 208–213. [Google Scholar] [CrossRef]
- Joseph, S.; Gheysen, G.; Subramaniam, K. RNA interference in Pratylenchus coffeae: Knock down of Pc-pat-10 and Pc-unc-87 impedes migration. Mol. Biochem. Parasitol. 2012, 186, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Wei, Z.; Zhang, M.; Ma, P.; Liu, G.; Zheng, J.; Guo, X.; Zhang, P. Resistance to Ditylenchus destructor infection in sweet potato by the expression of small interfering RNAs targeting unc-15, a movement-related gene. Phytopathology 2015, 105, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Gill, S.S.; Gawade, B.H.; Jain, P.K.; Subramaniam, K.; Sirohi, A. Host delivered RNAi of two cuticle collagen genes, Mi-col-1 and Lemmi-5 hampers structure and fecundity in Meloidogyne incognita. Front. Plant Sci. 2018, 8, 2266. [Google Scholar] [CrossRef] [PubMed]
- Basso, M.F.; Lourenço-Tessutti, I.T.; Mendes, R.A.G.; Pinto, C.E.M.; Bournaud, C.; Gillet, F.X.; Togawa, R.C.; de Macedo, L.L.P.; de Almeida Engler, J.; Grossi-de-Sa, M.F. MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Sci. Rep. 2020, 10, 6991. [Google Scholar] [CrossRef]
- Kumar, A.; Joshi, I.; Changwal, C.; Sirohi, A.; Jain, P.K. Host-delivered RNAi-mediated silencing of the root-knot nematode (Meloidogyne incognita) effector genes, Mi-msp10 and Mi-msp23, confers resistance in Arabidopsis and impairs reproductive ability of the root-knot nematode. Planta 2022, 256, 74. [Google Scholar] [CrossRef]
- Thorat, Y.E.; Dutta, T.K.; Jain, P.K.; Subramaniam, K.; Sirohi, A. A nematode-inducible promoter can effectively drive RNAi construct to confer Meloidogyne incognita resistance in tomato. Plant Cell Rep. 2023, 43, 3. [Google Scholar] [CrossRef]
- Schmitt-Engel, C.; Schultheis, D.; Schwirz, J.; Ströhlein, N.; Troelenberg, N.; Majumdar, U.; Dao, V.A.; Grossmann, D.; Richter, T.; Tech, M.; et al. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat. Commun. 2015, 8, 7822. [Google Scholar] [CrossRef]
- Ulrich, J.; Dao, V.A.; Majumdar, U.; Schmitt-Engel, C.; Schwirz, J.; Schultheis, D.; Ströhlein, N.; Troelenberg, N.; Grossmann, D.; Richter, T.; et al. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target. BMC Genom. 2015, 16, 674. [Google Scholar] [CrossRef]
- Oka, T.; Toyomura, T.; Honjo, K.; Wada, Y.; Futai, M. Four subunit a isoforms of Caenorhabditis elegans vacuolar H+-ATPase. Cell-specific expression during development. J. Biol. Chem. 2001, 276, 33079–33085. [Google Scholar] [CrossRef]
- Barroso, I.G.; Santos, C.S.; Bertotti, M.; Ferreira, C.; Terra, W.R. Molecular mechanisms associated with acidification and alkalization along the larval midgut of Musca domestica. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 237, 110535. [Google Scholar] [CrossRef]
- Choi, K.Y.; Ji, Y.J.; Dhakal, B.K.; Yu, J.R.; Cho, C.; Song, W.K.; Ahnn, J. Vacuolar-type H+-ATPase E subunit is required for embryogenesis and yolk transfer in Caenorhabditis elegans. Gene 2003, 311, 13–23. [Google Scholar] [CrossRef]
- Khan, F.; Kim, M.; Kim, Y. Greenhouse test of spraying dsRNA to control the western flower thrips, Frankliniella occidentalis, infesting hot peppers. BMC Biotechnol. 2023, 23, 10. [Google Scholar] [CrossRef] [PubMed]
- Dubelman, S.; Fischer, J.; Zapata, F.; Huizinga, K.; Jiang, C.; Uffman, J.; Levine, S.; Carson, D. Environmental fate of double-stranded RNA in agricultural soils. PLoS ONE 2014, 9, e93155. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wan, F.; Jian, Y.; Guo, F.; Zhang, M.; Shi, S.; Yang, L.; Li, S.; Liu, Y.; Ding, W. Chitosan/dsRNA polyplex nanoparticles advance environmental RNA interference efficiency through activating clathrin-dependent endocytosis. Int. J. Biol. Macromol. 2023, 253, 127021. [Google Scholar] [CrossRef] [PubMed]
- Gurusamy, D.; Mogilicherla, K.; Palli, S.R. Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 2020, 104, e21677. [Google Scholar] [CrossRef]
- Adams, B.J.; Burnell, A.M.; Powers, T.O. A phylogenetic analysis of Heterorhabditis (Nemata: Rhabditidae) based on internal transcribed spacer 1 DNA sequence data. J. Nematol. 1998, 30, 22–39. [Google Scholar]
Characters | Mean ± SD (95% CI) | |||
---|---|---|---|---|
Isolate | A. nanus | P. goodeyi | M. incognita | |
Body length (BL), µm | 391.9 ± 28.8 (351.9~419.7) | 408.6 ± 29.0 (335.3~442.3) | 522.5 ± 15.9 (487~710) | 417 ± 15 (387~459) |
Body width (BW), µm | 22.6 ± 2.8 (16.5~26.2) | 21.3 ± 2.1 (17.1~24.5) | 21.5 ± 4.8 (16.6~27.1) | 21.8 ± 5.8 (15.8~27.8) |
Tail length (T), µm | 23.4 ± 3.4 (18.8~30.0) | 23.4 ± 1.4 (20.5~25.4) | 36.0 ± 5.0 (27.7~41) | 49 ± 9.5 (36~56) |
Anus width (AW), µm | 12.9 ± 1.1 (10.7~14.2) | 12.5 ± 1.4 (10.5~14.0) | 7.8 ± 2.7 (5.0~10.9) | 7.5 ± 0.8 (7.1~8.0) |
BL/BW | 17.3 ± 1.3 (15.4~19.5) | 19.2 ± 1.1 (17.1~21.5) | 24.3 ± 3.3 (19.7~29.5) | 30.6 ± 4.1 (27.1~35.9) |
BL/M to P | 3.1 ± 0.4 (2.6~3.5) | 3.3 ± 0.1 (3.0~3.5) | 5.8 ± 0.9 (4.1~8.1) | 2.24 ± 0.58 (2.10~3.35) |
BL/M to E | 3.4 ± 0.4 (2.8~4.1) | 3.4 ± 0.4 (2.8~4.1) | 4.9 ± 0.8 (2.9~5.3) | 7.5 ± 0.5 (7.1~8.0) |
BL/T | 13.6 ± 2.0 (11.2~17.4) | 17.5 ± 0.8 (15.8~19.0) | 13.8 ± 0.3 (13.8~20.0) | 8.5 ± 2.8 (7.3~11.1) |
BL/AW | 24.4 ± 1.4 (21.4~26.5) | 33.03 ± 9.1 (24.0~42.1) | 67.0 ± 4.0 (62.5~71.2) | 55.6 ± 8.3 (46.9~65.8) |
Homology to isolate (%) | 100% (9/9) | 44.4% (4/9) | 33.3% (3/9) |
Blasted Species | GenBank Accession Number | Match Score | Query Cover (%) | E-Value | Identity (%) |
---|---|---|---|---|---|
Acrobeloides nanus | KY828308.1 | 1354 | 92 | 0.00 | 99.5 |
Pratylenchus goodeyi | KM874803.1 | 1227 | 91 | 0.00 | 96.8 |
Zeldia punctata | ON738667.1 | 859 | 92 | 0.00 | 87.9 |
Aphelenchoides arachidis | EF371501.1 | 811 | 88 | 0.00 | 87.2 |
Heterorhabditis indica | MK271288.1 | 601 | 91 | 6.00 × 10−167 | 81.7 |
Gene | Species | GenBank Number | Match Score | Query Cover (%) | E-Value | Identity (%) |
---|---|---|---|---|---|---|
Match to A. nanus vATPase-B | ||||||
vATPase-B | Heamonchus contortus | WOA00646.1 | 1021 | 100 | 0 | 100 |
vATPase-B | Parelaphostrongylus tenuis | KAJ1373751.1 | 1003 | 99 | 0 | 97.96 |
vATPase-B | Dictyocaulus viviparus | KJH42266.1 | 986 | 100 | 0 | 91.49 |
vATPase-B | Necator americanus | ETN82885.1 | 976 | 100 | 0 | 94.53 |
vATPase-B | Oesophagostomum dentatum | KHJ93652.1 | 970 | 99 | 0 | 94.70 |
Match to A. nanus Pat-10 | ||||||
Troponin C | Caenorhabditis brenneri | EU677743.1 | 452 | 89 | 5.0 × 10−75 | 82.53 |
Pat-10 | Brugia malayi | XM_001901190.2 | 315 | 99 | 2.0 × 10−80 | 72.34 |
EF-hand | Onchocerca volvulus | GQ202196.1 | 291 | 100 | 2.0 × 10−73 | 71.21 |
Troponin C | Caenorhabditis elegans | D45896.1 | 434 | 89 | 3.0 × 10−72 | 81.85 |
Troponin | Anisakis simplex | AJ012103.2 | 436 | 89 | 1.0 × 10−69 | 81.16 |
Match to A. nanus Unc-87 | ||||||
Calponin | Pratylenchus coffeae | JQ929656.1 | 424 | 66 | 5.0 × 10−119 | 88.22 |
Calponin-1 | Meloidogyne incognita | AJ277868.1 | 579 | 95 | 5.0 × 10−113 | 78.87 |
Unc-87 | Heterodera glycines | AY672636.1 | 571 | 99 | 4.0 × 10−102 | 76.67 |
Unc-87 | Caenorhabditis elegans | NM_001025922.6 | 397 | 100 | 3.0 × 10−78 | 73.06 |
Pat-10 | Brugia malayi | XM_001901190.2 | 240 | 92 | 1.0 × 10−57 | 71.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Khan, F.; Kim, Y. Nematicidal Efficacy of a dsRNA-Chitosan Formulation Against Acrobeloides nanus Estimated by a Soil Drenching Application. Biology 2025, 14, 1161. https://doi.org/10.3390/biology14091161
Song T, Khan F, Kim Y. Nematicidal Efficacy of a dsRNA-Chitosan Formulation Against Acrobeloides nanus Estimated by a Soil Drenching Application. Biology. 2025; 14(9):1161. https://doi.org/10.3390/biology14091161
Chicago/Turabian StyleSong, Taegeun, Falguni Khan, and Yonggyun Kim. 2025. "Nematicidal Efficacy of a dsRNA-Chitosan Formulation Against Acrobeloides nanus Estimated by a Soil Drenching Application" Biology 14, no. 9: 1161. https://doi.org/10.3390/biology14091161
APA StyleSong, T., Khan, F., & Kim, Y. (2025). Nematicidal Efficacy of a dsRNA-Chitosan Formulation Against Acrobeloides nanus Estimated by a Soil Drenching Application. Biology, 14(9), 1161. https://doi.org/10.3390/biology14091161