Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = U-box genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 19172 KiB  
Communication
DEAD-Box Helicase 3 Modulates the Non-Coding RNA Pool in Ribonucleoprotein Condensates During Stress Granule Formation
by Elizaveta Korunova, B. Celia Cui, Hao Ji, Aliaksandra Sikirzhytskaya, Srestha Samaddar, Mengqian Chen, Vitali Sikirzhytski and Michael Shtutman
Non-Coding RNA 2025, 11(4), 59; https://doi.org/10.3390/ncrna11040059 - 1 Aug 2025
Viewed by 201
Abstract
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of [...] Read more.
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of mammalian stress granules is the DEAD-box RNA helicase DDX3, which unwinds RNA in an ATP-dependent manner. DDX3 is involved in multiple steps of RNA metabolism, facilitating gene transcription, splicing, and nuclear export and regulating cytoplasmic translation. In this study, we investigate the role of the RNA helicase DDX3’s enzymatic activity in shaping the RNA content of ribonucleoprotein (RNP) condensates formed during arsenite-induced stress by inhibiting DDX3 activity with RK-33, a small molecule previously shown to be effective in cancer clinical studies. Using the human osteosarcoma U2OS cell line, we purified the RNP granule fraction and performed RNA sequencing to assess changes in the RNA pool. Our results reveal that RK-33 treatment alters the composition of non-coding RNAs within the RNP granule fraction. We observed a DDX3-dependent increase in circular RNA (circRNA) content and alterations in the granule-associated intronic RNAs, suggesting a novel role for DDX3 in regulating the cytoplasmic redistribution of non-coding RNAs. Full article
Show Figures

Figure 1

20 pages, 6736 KiB  
Article
Genome-Wide Identification, Characterization, and Expression Analysis of the U-Box Gene Family in Cucumber (Cucumis sativus)
by Quanqing Chen, Tian Zhao, Hao Song, Siyuan Sha, Jun Ma, Ruihan Zhang, Weiwen Kong, Shuying Yang, Jinglan Liu and Yiping Wang
Plants 2025, 14(12), 1801; https://doi.org/10.3390/plants14121801 - 12 Jun 2025
Viewed by 571
Abstract
Plant U-box (PUB) E3 ubiquitin ligases have undergone significant expansion compared to their fungal and animal counterparts. These E3 ligases play critical roles in diverse biological processes, including responses to biotic and abiotic stresses. However, systematic identification of PUB genes in cucumber ( [...] Read more.
Plant U-box (PUB) E3 ubiquitin ligases have undergone significant expansion compared to their fungal and animal counterparts. These E3 ligases play critical roles in diverse biological processes, including responses to biotic and abiotic stresses. However, systematic identification of PUB genes in cucumber (Cucumis sativus L.) has been lacking, and their expression and functional characterization remain largely unexplored. Leveraging the recently released near-complete cucumber genome, we identified 53 putative PUB proteins classified into eight distinct groups based on domain architecture. The molecular weights of CsPUBs range from 26 to 166 kilodaltons (kDa). Exon numbers in CsPUB genes vary substantially, with CsPUB48 containing a maximum of 17 exons, while 18 CsPUB genes harbor only a single exon. Chromosomal distribution of CsPUBs is uneven, with Chr 3 harboring the highest density (12 genes) and Chr 7 the lowest (1 gene). Notably, tandem duplications (e.g., CsPUB29-CsPUB36 and CsPUB18-CsPUB49) and seven collinear gene pairs were identified, suggesting evolutionary diversification. Promoter regions of CsPUBs are enriched with cis-regulatory elements linked to plant growth and development, phytohormone, stress responses, light, and so on, implying their regulatory roles in various biological processes. Expression profiling revealed tissue-specific patterns and differential regulation of multiple CsPUBs under stress conditions. Subcellular localization studies demonstrated that CsPUBs target diverse organelles, with some localizing to punctate structures potentially representing uncharacterized compartments. Collectively, this systematic analysis establishes a comprehensive framework for understanding particular CsPUB functions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

19 pages, 3126 KiB  
Article
Characterization and Expression Analysis of PUB Gene Family Involved in Drought Stress Response in Trifoliate Orange (Poncirus trifoliata)
by Bobo Song, Sanpeng Jin, Xuchen Gong, Yong Liu, Dechun Liu, Li Yang, Wei Hu, Liuqing Kuang and Jie Song
Horticulturae 2025, 11(6), 604; https://doi.org/10.3390/horticulturae11060604 - 29 May 2025
Viewed by 425
Abstract
The U-box E3 ubiquitin ligase (PUB) gene family plays an important role in regulating plant responses to abiotic stress. Poncirus trifoliata (trifoliate orange), a citrus rootstock with notable cold, drought, and salt tolerance, serves as an excellent model for studying stress-responsive genes. In [...] Read more.
The U-box E3 ubiquitin ligase (PUB) gene family plays an important role in regulating plant responses to abiotic stress. Poncirus trifoliata (trifoliate orange), a citrus rootstock with notable cold, drought, and salt tolerance, serves as an excellent model for studying stress-responsive genes. In this study, a total of 47 PUB genes (PtrPUBs) were identified in the trifoliate orange genome. Chromosomal distribution analysis indicated that PtrPUB genes were unevenly distributed across nine trifoliate orange chromosomes. Phylogenetic tree analysis indicated that 170 PUB proteins from trifoliate orange, Arabidopsis thaliana, and tomato were clustered into five subfamilies. Gene structure, conserved domain, and motif analyses revealed diverse exon–intron and motif organizations of PtrPUB genes, suggesting potential functional differentiation among PtrPUBs. Cis-acting analysis indicated that the promoters of PtrPUB genes harbor elements related to hormone signaling (ABA, MeJA), drought stress, and low-temperature responses. Transcriptomic data and qRT-PCR results suggested that PtrPUB genes are responsive to ABA and dehydration treatments. This study provides a foundation for understanding the functional roles of PUB genes in trifoliate orange and offers insights for improving stress tolerance in citrus breeding programs. Full article
(This article belongs to the Special Issue New Insights into Breeding and Genetic Improvement of Fruit Crops)
Show Figures

Figure 1

22 pages, 13614 KiB  
Article
Interaction Between Glycoside Hydrolase FsGH28c from Fusarium solani and PnPUB35 Confers Resistance in Piper nigrum
by Shichao Liu, Tianci Xing, Ruibing Liu, Shengfeng Gao, Jianfeng Yang, Tian Tian, Chong Zhang, Shiwei Sun and Chenchen Zhao
Int. J. Mol. Sci. 2025, 26(9), 4189; https://doi.org/10.3390/ijms26094189 - 28 Apr 2025
Viewed by 500
Abstract
Pathogens deploy various molecular mechanisms to overcome host defenses, among which glycoside hydrolases (GHs) play a critical role as virulence factors. Understanding the functional roles of these enzymes is essential for uncovering pathogen–host interactions and developing strategies for disease management. Fusarium wilt has [...] Read more.
Pathogens deploy various molecular mechanisms to overcome host defenses, among which glycoside hydrolases (GHs) play a critical role as virulence factors. Understanding the functional roles of these enzymes is essential for uncovering pathogen–host interactions and developing strategies for disease management. Fusarium wilt has occurred in the main Piper nigrum cultivation regions, which seriously affects the yield and quality of P. nigrum. Here, we identified and characterized FsGH28c, a GH28 family member in Fusarium solani. Its expression was significantly upregulated during the infection of black pepper (Piper nigrum) roots by F. solani cv. WN-1, indicating its potential role in pathogenicity. FsGH28c elicited cell death in Nicotiana benthamiana and modulated the expression of genes related to pathogenesis. FsGH28c exerts a positive influence on the pathogenicity of F. solani. The knockout of FsGH28c mutant strains markedly attenuated F. solani ’s virulence in black pepper plants. The knockout mutant strains decrease the ability of F. solani to utilize carbon sources. The FsGH28c deletion did not affect mycelial growth on PDA but did impact spore development. We identified a U-box protein, PnPUB35, interacting with FsGH28c using yeast two-hybrid and bimolecular fluorescence complementation assays. PnPUB35 conferred enhanced resistance to F. solani in black pepper through positive regulation. These findings suggest that FsGH28c may function as a virulence factor by modulating host immune responses through its interaction with PnPUB35. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding: 5th Edition)
Show Figures

Figure 1

25 pages, 19913 KiB  
Article
Genome-Wide Identification, Evolution and Expression Analysis of the U-Box E3 Ubiquitin Ligases Gene Family in Poplar (Populus alba × P. tremula var. glandulosa)
by Bobo Song, Qixuan Wei, Xudong Liu, Kexin Sun, Lingdou Liao, Anning Zu, Yifan Wei, Qian Liu, Fangfang Fu and Meiling Ming
Forests 2025, 16(5), 749; https://doi.org/10.3390/f16050749 - 27 Apr 2025
Viewed by 436
Abstract
Plant U-box E3 ubiquitin ligases (PUBs) serve as crucial regulators of protein degradation and are fundamentally involved in plant developmental processes and stress response mechanisms. Despite their well-characterized roles in model plant species, the PUB gene family in the hybrid poplar (Populus [...] Read more.
Plant U-box E3 ubiquitin ligases (PUBs) serve as crucial regulators of protein degradation and are fundamentally involved in plant developmental processes and stress response mechanisms. Despite their well-characterized roles in model plant species, the PUB gene family in the hybrid poplar (Populus alba × P. tremula var. glandulosa) remains poorly understood. By conducting a comprehensive genome-wide analysis, we identified 152 PUB genes in poplar and phylogenetically classified them into five distinct clades based on a comparative analysis with Arabidopsis thaliana and tomato PUB homologs. The structural characterization revealed that numerous PagPUB proteins possess additional functional domains, including ARM and WD40 repeats, which are indicative of potential functional diversification. Genomic distribution and synteny analyses demonstrated that the expansion of the PUB gene family predominantly resulted from whole-genome duplication (WGD) events, with evolutionary constraint analyses (Ka/Ks ratios < 1) suggesting strong purifying selection. An examination of the promoter region uncovered an abundance of stress-responsive cis-elements, particularly ABRE and MYB binding sites associated with abiotic stress and hormonal regulation. Transcriptome profiling demonstrated both tissue-specific expression patterns and dynamic regulation under diverse stress conditions, including drought, salinity, temperature extremes, and pathogen infection. Our findings provide the first systematic characterization of the PUB gene family in poplar and establish a valuable framework for elucidating their evolutionary history and functional significance in environmental stress adaptation. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

18 pages, 30114 KiB  
Article
Genome-Wide Identification of ATL Gene Family in Wheat and Their Expression Analysis in Response to Salt Stress
by Xuqing Li, Shuotong Liu and Pei Yu
Plants 2025, 14(9), 1306; https://doi.org/10.3390/plants14091306 - 25 Apr 2025
Viewed by 771
Abstract
Wheat (Triticum aestivum) is one of the most important cereal crops globally, with significant economic value. The Arabidopsis Tóxicos en Levadura (ATL) gene family, which comprises members of ubiquitin ligase enzymes (E3s), functions in substrate protein tagging during ubiquitin-mediated [...] Read more.
Wheat (Triticum aestivum) is one of the most important cereal crops globally, with significant economic value. The Arabidopsis Tóxicos en Levadura (ATL) gene family, which comprises members of ubiquitin ligase enzymes (E3s), functions in substrate protein tagging during ubiquitin-mediated protein modification. Recent studies have demonstrated its involvement in stress responses. However, the ATL gene family in wheat remains poorly characterized. This study aimed to identify the members of the ATL gene family in wheat and investigate their roles under salt stress. We identified 334 TaATL genes in the wheat genome, all of which contain either RING-H2, RING U-box, or RAD18 superfamily domains, exhibiting a remarkably low proportion of intron-containing genes. The Ka/Ks (non-synonymous to synonymous substitution rate) analysis and cis-acting element analysis of the TaATL gene family indicate that its sequences are highly conserved and functionally constrained, suggesting that it may participate in abiotic stress responses through the ABA, MeJA, and MYB signaling pathways. Both RNA-seq analysis and RT-qPCR data demonstrated that the expression levels of the TaATL gene family were significantly upregulated under stress conditions, indicating their crucial roles in stress responses. This study demonstrates that the targeted regulation of stress-responsive signaling pathways mediated by superior TaATL gene family members can effectively enhance wheat salt tolerance, thereby providing a viable strategy for the development of high-yielding cultivars adapted to saline agricultural ecosystems. Full article
Show Figures

Figure 1

15 pages, 4150 KiB  
Article
Ubiquitin Ligase Gene OsPUB57 Negatively Regulates Rice Blast Resistance
by Jian Zhang, Qiang Du, Yugui Wu, Mengyu Shen, Furong Gao, Zhilong Wang, Xiuwen Xiao, Wenbang Tang and Qiuhong Chen
Plants 2025, 14(5), 758; https://doi.org/10.3390/plants14050758 - 1 Mar 2025
Cited by 1 | Viewed by 767
Abstract
The ubiquitination and degradation of proteins are widely involved in plant biotic and abiotic stress responses. E3 ubiquitin ligases play an important role in the ubiquitination of specific proteins. In this study, we identified the function of a U-box E3 ubiquitin ligase gene [...] Read more.
The ubiquitination and degradation of proteins are widely involved in plant biotic and abiotic stress responses. E3 ubiquitin ligases play an important role in the ubiquitination of specific proteins. In this study, we identified the function of a U-box E3 ubiquitin ligase gene OsPUB57 in rice. Expression analyses revealed that OsPUB57 was mainly expressed in the aboveground part of rice. Drought, salt, cold, JA (jasmonic acid), PAMPs (pathogen-associated molecular patterns) or Magnaportheoryzae treatment could significantly suppress the expression of OsPUB57 in rice. Compared with wild-type plants, OsPUB57-overexpressing plants showed a decrease in resistance to M. oryzae, while the mutant plants exhibited an enhancement of M. oryzae resistance. The expression level detection indicated that OsPUB57 negatively regulates rice blast resistance, probably by down-regulating the expression of the defense-related genes OsPR1a and OsAOS2. This study provides a candidate gene for the genetic improvement of rice blast resistance. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

26 pages, 4386 KiB  
Article
The Expression Level of SOX Family Transcription Factors’ mRNA as a Diagnostic Marker for Osteoarthritis
by Kamila Baran, Ewa Brzeziańska-Lasota, Jakub Kryczka, Joanna Boncela, Aleksandra Czechowska, Karolina Kopacz, Gianluca Padula, Krzysztof Nowak and Marcin Domżalski
J. Clin. Med. 2025, 14(4), 1176; https://doi.org/10.3390/jcm14041176 - 11 Feb 2025
Cited by 2 | Viewed by 1312
Abstract
Background/Objectives: Osteoarthritis (OA) is the most common degenerative and chronic joint disease and is a leading cause of pain and disability in adults worldwide. The SRY-related HMG box (SOX) family transcription factors (TFs) play a crucial role during the pathogenesis [...] Read more.
Background/Objectives: Osteoarthritis (OA) is the most common degenerative and chronic joint disease and is a leading cause of pain and disability in adults worldwide. The SRY-related HMG box (SOX) family transcription factors (TFs) play a crucial role during the pathogenesis of OA; however, their exact mechanisms remain unexplored. The aim of our study was to conduct a bioinformatics analysis of the common interactions of SOX-5, SOX-9, and SOX-11 with other proteins, as well as their role in OA pathogenesis. Methods:SOX5, SOX9, and SOX11 mRNA expression levels in articular cartilage with subchondral bone and synovium from knee OA patients were assessed using the qPCR method. The study group consisted of thirty-one patients (n = 31). Total RNA was isolated from the articular cartilage with subchondral bone and synovium from the affected and unaffected area of the knee joint. Results: Our results revealed a regulatory network between SOX-5, SOX-9, and SOX-11, and various proteins involved in the pathogenesis of knee OA and their collective interactions, which are involved in the regulation of cartilage extracellular matrix (ECM) organization, response to stimulus, regulation of gene expression, inflammatory response, cartilage condensation, and ossification in chondrocytes. Higher expression levels of SOX5, SOX9, and SOX11 mRNA were noted in OA-affected articular cartilage with subchondral bone compared to control tissue (p = 0.00015, p = 0.0024 and p > 0.05, respectively, Mann–Whitney U-test). All studied genes demonstrated elevated mRNA expression levels in the articular cartilage with subchondral bone from stage 4 patients than those with stage 3 (p > 0.05; Mann–Whitney U-test). Lower SOX5, SOX9, and SOX11 mRNA expression levels were found in OA-affected synovium compared to the control tissue (p = 0.0003, p > 0.05 and p = 0.0007, respectively, Mann–Whitney U-test). Decreased SOX9 mRNA expression levels in synovium were noted in patients with stage 4 disease than those with stage 3; however, SOX5 and SOX11 mRNA expression levels were higher in patients with stage 4 (p > 0.05; Mann–Whitney U-test). Conclusions: The results of our research show that the studied SOX TFs play a role in the development of OA, contributing to the formation of pathological changes not only in the articular cartilage, but also in the synovial membrane. The changes in the SOX5, SOX9, and SOX11 mRNA expression levels in the articular cartilage with subchondral bone and synovium may serve as potential molecular diagnostic biomarkers for detecting OA and could indicate the progression of this disease; however, our observations require further investigation. Full article
Show Figures

Figure 1

13 pages, 2522 KiB  
Article
Identification of Leaf Stripe Resistance Genes in Hulless Barley Landrace Teliteqingke from Qinghai-Tibet Plateau
by Zemin Tan, Sai Zhang, Yunfeng Qu, Shenghua Kang, Shiyu Fang and Lu Hou
Int. J. Mol. Sci. 2025, 26(3), 1133; https://doi.org/10.3390/ijms26031133 - 28 Jan 2025
Viewed by 827
Abstract
Leaf stripe disease, caused by Pyrenophora graminea, is a seed-borne fungal disease that significantly impacts hulless barley (Hordeum vulgare var. nudum) production on the Qinghai-Tibet Plateau. This study aimed to identify genetic factors conferring resistance to the leaf stripe by [...] Read more.
Leaf stripe disease, caused by Pyrenophora graminea, is a seed-borne fungal disease that significantly impacts hulless barley (Hordeum vulgare var. nudum) production on the Qinghai-Tibet Plateau. This study aimed to identify genetic factors conferring resistance to the leaf stripe by analyzing an F3 population derived from a cross between the resistant landrace Teliteqingke and the susceptible landrace Dulihuang. Genetic analysis revealed that resistance in Teliteqingke was governed by two dominant genes. Using bulked segregant analysis combined with an SNP array (BSA-SNP) and RNA-seq, we identified two candidate regions on chromosomes 3H and 7H. Further analysis focused on chromosome 3H, which revealed a candidate genomic region containing seven potential disease-resistance genes. Among these, RT-qPCR experiments demonstrated significant expression induction of HORVU.MOREX.r3.3HG0232110.1 (encoding a RING/U-box superfamily protein) and HORVU.MOREX.r3.3HG0232410.1 (encoding a bZIP transcription factor) showed significant expression induction following inoculation with P. graminea. These genes are strong candidates for the resistance mechanism against leaf stripes in Teliteqingke. These results provide a foundation for functional validation of these genes and offer valuable insights for breeding disease-resistant hulless barley. Full article
(This article belongs to the Special Issue Molecular Research Progress of Cereal Crop Disease Resistance)
Show Figures

Figure 1

20 pages, 4631 KiB  
Article
Global Transcriptomic Analysis of Inbred Lines Reveal Candidate Genes for Response to Maize Lethal Necrosis
by Ann Murithi, Gayathri Panangipalli, Zhengyu Wen, Michael S. Olsen, Thomas Lübberstedt, Kanwarpal S. Dhugga and Mark Jung
Plants 2025, 14(2), 295; https://doi.org/10.3390/plants14020295 - 20 Jan 2025
Cited by 1 | Viewed by 1434
Abstract
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response [...] Read more.
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN. Key findings included the identification of components of the plant innate immune system, such as differentially regulated R genes (mainly LRRs), and activation/deactivation of virus resistance pathways, including RNA interference (RNAi) via Argonaute (AGO), Dicer-like proteins, and the ubiquitin–proteasome system (UPS) via RING/U-box and ubiquitin ligases. Genes associated with redox signaling, WRKY transcription factors, and cell modification were also differentially expressed. Additionally, the expression of translation initiation and elongation factors, eIF4E and eIF4G, correlated with the presence of MLN viruses. These findings provide valuable insights into the molecular mechanisms of MLN resistance and highlight potential gene candidates for engineering or selecting MLN-resistant maize germplasm for SSA. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding)
Show Figures

Figure 1

14 pages, 4011 KiB  
Article
Ubiquitin Ligase U-Box51 Positively Regulates Drought Stress in Potato (Solanum tuberosum L.)
by Meng Wei, Shantwana Ghimire, Anuja Rijal, Kaitong Wang, Huanhuan Zhang, Huaijun Si and Xun Tang
Int. J. Mol. Sci. 2024, 25(23), 12961; https://doi.org/10.3390/ijms252312961 - 2 Dec 2024
Cited by 1 | Viewed by 941
Abstract
The ubiquitin-proteasome system (UPS) is a key protein degradation pathway in eukaryotes, in which E3 ubiquitin ligases mediate protein ubiquitination, directly or indirectly targeting substrate proteins to regulate various biological processes, including plant growth, hormone signaling, immune responses, and adaptation to abiotic stress. [...] Read more.
The ubiquitin-proteasome system (UPS) is a key protein degradation pathway in eukaryotes, in which E3 ubiquitin ligases mediate protein ubiquitination, directly or indirectly targeting substrate proteins to regulate various biological processes, including plant growth, hormone signaling, immune responses, and adaptation to abiotic stress. In this study, we identified plant U-box protein 51 in Solanum tuberosum (StPUB51) as an E3 ubiquitin ligase through transcriptomic analysis, and used it as a candidate gene for gene-function analysis. Quantitative real-time PCR (qRT-PCR) was used to examine StPUB51 expression across different tissues, and its expression patterns under simulated drought stress induced by polyethylene glycol (PEG 6000) were assessed. Transgenic plants overexpressing StPUB51 and plants with down-regulated StPUB51 expression were generated to evaluate drought tolerance. The activities of key antioxidant enzymes-superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) as well as malondialdehyde (MDA) content in transgenic plants’ leaves were measured under drought conditions. Protein–protein interactions involving StPUB51 were explored via yeast two-hybrid (Y2H) screening, with interaction verification by bimolecular fluorescence complementation (BiFC). StPUB51 was predominantly expressed in stems, with lower expression observed in tubers, and its expression was significantly upregulated in response to 20% PEG-6000 simulated drought. Subcellular localization assays revealed nuclear localization of the StPUB51 protein. Under drought stress, StPUB51-overexpressing plants exhibited enhanced SOD, POD, and CAT activities and reduced MDA levels, in contrast to plants with suppressed StPUB51 expression. Y2H and BiFC analyses identified two interacting proteins, StSKP2A and StGATA1, which may be functionally linked to StPUB51. Collectively, these findings suggest that StPUB51 plays a positive regulatory role in drought tolerance, enhancing resilience in potato growth and stress adaptation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 8589 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Alfalfa (Medicago sativa L.) U-Box Gene Family in Response to Abiotic Stresses
by Shuaixian Li, Xiuhua Chen, Meiyan Guo, Xiaoyue Zhu, Wangqi Huang, Changhong Guo and Yongjun Shu
Int. J. Mol. Sci. 2024, 25(22), 12324; https://doi.org/10.3390/ijms252212324 - 17 Nov 2024
Cited by 1 | Viewed by 1246
Abstract
E3 ubiquitin ligases known as plant U-box (PUB) proteins regulate a variety of aspects of plant growth, development, and stress response. However, the functions and characteristics of the PUB gene family in alfalfa remain unclear. This work involved a genome-wide examination of the [...] Read more.
E3 ubiquitin ligases known as plant U-box (PUB) proteins regulate a variety of aspects of plant growth, development, and stress response. However, the functions and characteristics of the PUB gene family in alfalfa remain unclear. This work involved a genome-wide examination of the alfalfa U-box E3 ubiquitin ligase gene. In total, 210 members were identified and divided into five categories according to their homology with the members of the U-box gene family in Arabidopsis thaliana. The phylogenetic analysis, conserved motifs, chromosomal localization, promoters, and regulatory networks of this gene were investigated. Chromosomal localization and covariance analyses indicated that the MsPUB genes expanded MsPUB gene family members through gene duplication events during evolution. MsPUB genes may be involved in the light response, phytohormone response, growth, and development of several biological activities, according to cis-acting element analysis of promoters. In addition, transcriptome analysis and expression analysis by qRT-PCR indicated that most MsPUB genes were significantly upregulated under cold stress, drought stress, and salt stress treatments. Among them, MsPUBS106 and MsPUBS185 were significantly and positively correlated with cold resistance in alfalfa. MsPUBS110, MsPUBS067, MsPUBS111 and MsPUB155 were comprehensively involved in drought stress, low temperature, and salt stress resistance. All things considered, these discoveries offer fresh perspectives on the composition, development, and roles of the PUB gene family in alfalfa. They also provide theoretical guidance for further investigations into the mechanisms regulating the development, evolution, and stress tolerance of MsPUB. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 2nd Edition)
Show Figures

Figure 1

13 pages, 1965 KiB  
Article
The Impact of Ten Days of Periodic Fasting on the Modulation of the Longevity Gene in Overweight and Obese Individuals: A Quasi-Experimental Study
by Nurma Yuliyanasari, Eva Nabiha Zamri, Purwo Sri Rejeki and Muhammad Miftahussurur
Nutrients 2024, 16(18), 3112; https://doi.org/10.3390/nu16183112 - 15 Sep 2024
Cited by 2 | Viewed by 3398
Abstract
Background: Fasting potentially alters the aging process induced by obesity by regulating telomere integrity, which is related to longevity genes. However, the impact of periodic fasting (PF) on the expression of longevity genes, particularly Forkhead Box O Transcription Factors (FOXO3a) and the Human [...] Read more.
Background: Fasting potentially alters the aging process induced by obesity by regulating telomere integrity, which is related to longevity genes. However, the impact of periodic fasting (PF) on the expression of longevity genes, particularly Forkhead Box O Transcription Factors (FOXO3a) and the Human Telomerase Reverse Transcriptase (hTERT), is not fully understood. This study aimed to analyze the effects of PF, specifically on FOXO3a, hTERT expression, and other associated factors. Methods: A quasi-experimental 10-day study was conducted in Surabaya, East Java, Indonesia. This study consisted of an intervention group (PFG), which carried out PF for ten days using a daily 12 h time-restricted eating protocol, and a control group (CG), which had daily meals as usual. FOXO3a and hTERT expression were analyzed by quantitative real-time qPCR. A paired t-test/Wilcoxon test, independent t-test/Mann–Whitney U-test, and Spearman’s correlation test were used for statistical analysis. Result: Thirty-six young men participated in this study. During the post-test period, FOXO3a expression in the PFG increased 28.56 (±114.05) times compared to the pre-test, but the difference was not significant. hTERT expression was significantly higher in both the CG and PFG. The hTERT expression in the PFG was 10.26 (±8.46) times higher than in the CG, which was only 4.73 (±4.81) times higher. There was also a positive relationship between FOXO and hTERT in the CG. Conclusions: PF significantly increased hTERT expression in the PFG; however, no significant increase was found in FOXO3a expression. PF regimens using the 12 h time-restricted eating approach may become a potential strategy for preventing obesity-induced premature aging by regulating longevity gene expression. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Graphical abstract

18 pages, 4884 KiB  
Article
Genome-Wide Identification of B-Box Family Genes and Their Potential Roles in Seed Development under Shading Conditions in Rapeseed
by Si Chen, Yushan Qiu, Yannong Lin, Songling Zou, Hailing Wang, Huiyan Zhao, Shulin Shen, Qinghui Wang, Qiqi Wang, Hai Du, Jiana Li and Cunmin Qu
Plants 2024, 13(16), 2226; https://doi.org/10.3390/plants13162226 - 11 Aug 2024
Cited by 1 | Viewed by 1684
Abstract
B-box (BBX) proteins, a subfamily of zinc-finger transcription factors, are involved in various environmental signaling pathways. In this study, we conducted a comprehensive analysis of BBX family members in Brassica crops. The 482 BBX proteins were divided into five groups based on gene [...] Read more.
B-box (BBX) proteins, a subfamily of zinc-finger transcription factors, are involved in various environmental signaling pathways. In this study, we conducted a comprehensive analysis of BBX family members in Brassica crops. The 482 BBX proteins were divided into five groups based on gene structure, conserved domains, and phylogenetic analysis. An analysis of nonsynonymous substitutions and (Ka)/synonymous substitutions (Ks) revealed that most BBX genes have undergone purifying selection during evolution. An analysis of transcriptome data from rapeseed (Brassica napus) organs suggested that BnaBBX3d might be involved in the development of floral tissue-specific RNA-seq expression. We identified numerous light-responsive elements in the promoter regions of BnaBBX genes, which were suggestive of participation in light signaling pathways. Transcriptomic analysis under shade treatment revealed 77 BnaBBX genes with significant changes in expression before and after shading treatment. Of these, BnaBBX22e showed distinct expression patterns in yellow- vs. black-seeded materials in response to shading. UPLC-HESI-MS/MS analysis revealed that shading influences the accumulation of 54 metabolites, with light response BnaBBX22f expression correlating with the accumulation of the flavonoid metabolites M46 and M51. Additionally, BnaBBX22e and BnaBBX22f interact with BnaA10.HY5. These results suggest that BnaBBXs might function in light-induced pigment accumulation. Overall, our findings elucidate the characteristics of BBX proteins in six Brassica species and reveal a possible connection between light and seed coat color, laying the foundation for further exploring the roles of BnaBBX genes in seed development. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding of Oilseed Crops—2nd Edition)
Show Figures

Figure 1

14 pages, 2840 KiB  
Article
Comprehensive Genome-Wide Identification and Characterization of the AP2 Subfamily in Beta vulgaris L. in Response to Exogenous Abscisic Acid
by Yan Zhai, Yuanrong Ni, Hao Wang, Yuanhang Zhou and Wang Xing
Agriculture 2024, 14(8), 1273; https://doi.org/10.3390/agriculture14081273 - 2 Aug 2024
Viewed by 1171
Abstract
APETALA2 (AP2) belongs to transcription factor (TF) families, with crucial roles in regulating plant growth, development, and stress responses. In order to explore the characteristics of sugar beet (Beta vulgaris L.) AP2s (BvAP2s) in response to drought stress hormone abscisic [...] Read more.
APETALA2 (AP2) belongs to transcription factor (TF) families, with crucial roles in regulating plant growth, development, and stress responses. In order to explore the characteristics of sugar beet (Beta vulgaris L.) AP2s (BvAP2s) in response to drought stress hormone abscisic acid (ABA), genome-wide identification, and the phylogeny, gene structure and promoter precursor analysis of the BvAP2s were employed to predict their potential functions. It is shown that there are a total of 13 BvAP2 genes in the Beta vulgaris. Based on the primary amino acid sequence, the BvAP2s can be further subdivided into euAP2, euANT and basalANT. In addition, cis-acting element analysis showed that BvAP2s contained several abiotic stress-related elements, including those associated with ABA and drought stress. Roots are the first to perceive stress signals, and ABA-treated beetroot transcriptome and downstream gene prediction of BvAP2s revealed that BVRB_4g074790, BVRB_6g128480 and BVRB_7g179610 may play an important role involved in ABA signaling pathways during the stress response by regulating downstream GRAM genes, LEAs and U-boxes. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) further confirmed the downregulation of these three BvAP2s in response to ABA induction in sugar beet roots. These findings provide a basis for future utilization of BvAP2s in developing drought-tolerant Beta vulgaris varieties. Full article
(This article belongs to the Special Issue Genetic Diversity Assessment and Phenotypic Characterization of Crops)
Show Figures

Figure 1

Back to TopTop