Characterization and Expression Analysis of PUB Gene Family Involved in Drought Stress Response in Trifoliate Orange (Poncirus trifoliata)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome-Wide Identification of PUB Gene Family in Trifoliate Orange
2.2. Multiple Sequence Alignment and Phylogenetic Analysis
2.3. Gene Structure, Conserved Domain, and Motif Analysis
2.4. Cis-Acting Element Analysis
2.5. Collinearity and Ka/Ks Analysis
2.6. Plant Materials, Growth Conditions, ABA and Dehydration Treatment
2.7. RNA-Seq Analysis
2.8. RNA Extraction and Quantitative Reverse Transcription PCR Analysis
3. Results
3.1. Whole-Genome Identification of PUB Genes in Trifoliate Orange
3.2. The Chromosomal Distribution of PUB Genes in Trifoliate Orange Genome
3.3. Phylogenetic Analysis of PUB Genes in Trifoliate Orange, Arabidopsis, and Tomato
3.4. Gene Structure, Conserved Domain, and Motif Analysis of PUB Gene Family
3.5. Cis-Acting Element Analysis of PtrPUB Genes
3.6. Synteny Analysis of PUB Gene Family in Trifoliate Orange
3.7. Expression Pattern Analysis of PtrPUB Genes Under Abiotic Stresses
3.8. Quantitative Real-Time PCR (qRT-PCR) Analysis of PtrPUB Genes Under Abiotic Stresses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PUB | Plant U-box gene |
ABA | Abscisic acid |
MeJA | Methyl jasmonate |
qRT-PCR | Quantitative real-time PCR |
References
- Peng, Z.; Bredeson, J.V.; Wu, G.A.; Shu, S.; Rawat, N.; Du, D.; Parajuli, S.; Yu, Q.; You, Q.; Rokhsar, D.S.; et al. A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus. Plant J. 2020, 104, 1215–1232. [Google Scholar] [CrossRef] [PubMed]
- Boava, L.P.; Cristofani-Yaly, M.; Mafra, V.S.; Kubo, K.; Kishi, L.T.; Takita, M.A.; Ribeiro-Alves, M.; Machado, M.A. Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica. BMC Genom. 2011, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.-Q.; Liu, J.-H. Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera. Plant Cell Tissue Organ Cult. (PCTOC) 2013, 113, 137–147. [Google Scholar] [CrossRef]
- Dahro, B.; Li, C.; Liu, J.-H. Overlapping responses to multiple abiotic stresses in citrus: From mechanism understanding to genetic improvement. Hortic. Adv. 2023, 1, 4. [Google Scholar] [CrossRef]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.-Y.; Li, J.; Wang, P.-Y.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef]
- Hirayama, T.; Shinozaki, K. Research on plant abiotic stress responses in the post-genome era: Past, present and future. Plant J. 2010, 61, 1041–1052. [Google Scholar] [CrossRef]
- Cho, S.K.; Ryu, M.Y.; Song, C.; Kwak, J.M.; Kim, W.T. Arabidopsis PUB22 and PUB23 Are Homologous U-Box E3 Ubiquitin Ligases That Play Combinatory Roles in Response to Drought Stress. Plant Cell 2008, 20, 1899–1914. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Li, Z.; Shi, Y.; Wang, J.; Hua, J.; Gong, Z.; Zhou, J.M.; Yang, S. PUB25 and PUB26 Promote Plant Freezing Tolerance by Degrading the Cold Signaling Negative Regulator MYB15. Dev. Cell 2019, 51, 222–235.e5. [Google Scholar] [CrossRef]
- Bergler, J.; Hoth, S. Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol. 2011, 13, 725–730. [Google Scholar] [CrossRef]
- Li, W.; Ahn, I.-P.; Ning, Y.; Park, C.-H.; Zeng, L.; Whitehill, J.G.A.; Lu, H.; Zhao, Q.; Ding, B.; Xie, Q.; et al. The U-Box/ARM E3 Ligase PUB13 Regulates Cell Death, Defense, and Flowering Time in Arabidopsis. Plant Physiol. 2012, 159, 239–250. [Google Scholar] [CrossRef]
- Wang, D.-R.; Zhang, X.-W.; Xu, R.-R.; Wang, G.-L.; You, C.-X.; An, J.-P. Apple U-box-type E3 ubiquitin ligase MdPUB23 reduces cold-stress tolerance by degrading the cold-stress regulatory protein MdICE1. Hortic. Res. 2022, 9, uhac171. [Google Scholar] [CrossRef] [PubMed]
- Wiborg, J.; O’Shea, C.; Skriver, K. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem. J. 2008, 413, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.-R.; Park, C.H.; Venu, R.C.; Gough, J.; Wang, G.-L. Classification, Expression Pattern, and E3 Ligase Activity Assay of Rice U-Box-Containing Proteins. Mol. Plant 2008, 1, 800–815. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Taganna, J. Genome-wide analysis of the U-box E3 ubiquitin ligase enzyme gene family in tomato. Sci. Rep. 2020, 10, 9581. [Google Scholar] [CrossRef]
- Lu, X.; Shu, N.; Wang, D.; Wang, J.; Chen, X.; Zhang, B.; Wang, S.; Guo, L.; Chen, C.; Ye, W. Genome-wide identification and expression analysis of PUB genes in cotton. BMC Genom. 2020, 21, 213. [Google Scholar] [CrossRef]
- Hu, H.; Dong, C.; Sun, D.; Hu, Y.; Xie, J. Genome-Wide Identification and Analysis of U-Box E3 Ubiquitin-Protein Ligase Gene Family in Banana. Int. J. Mol. Sci. 2018, 19, 3874. [Google Scholar] [CrossRef]
- Song, J.; Mo, X.; Yang, H.; Yue, L.; Song, J.; Mo, B. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS ONE 2017, 12, e0182402. [Google Scholar] [CrossRef]
- Wang, C.; Duan, W.; Riquicho, A.R.; Jing, Z.; Liu, T.; Hou, X.; Li, Y. Genome-wide survey and expression analysis of the PUB family in Chinese cabbage (Brassica rapa ssp. pekinesis). Mol. Genet. Genom. 2015, 290, 2241–2260. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Y.; Cong, Y.; Wang, T.; Zhong, X.; Yang, S.; Li, Y.; Gai, J. Genome-Wide Identification of Soybean U-Box E3 Ubiquitin Ligases and Roles of GmPUB8 in Negative Regulation of Drought Stress Response in Arabidopsis. Plant Cell Physiol. 2016, 57, 1189–1209. [Google Scholar] [CrossRef]
- Wang, K.; Yang, Q.; Lanhuang, B.; Lin, H.; Shi, Y.; Dhanasekaran, S.; Godana, E.A.; Zhang, H. Genome-wide investigation and analysis of U-box Ubiquitin–Protein ligase gene family in apple: Expression profiles during Penicillium expansum infection process. Physiol. Mol. Plant Pathol. 2020, 111, 101487. [Google Scholar] [CrossRef]
- Wang, C.; Song, B.; Dai, Y.; Zhang, S.; Huang, X. Genome-wide identification and functional analysis of U-box E3 ubiquitin ligases gene family related to drought stress response in Chinese white pear (Pyrus bretschneideri). BMC Plant Biol. 2021, 21, 235. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.-H. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res. 2012, 40, W569–W572. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Rombauts, S.; Déhais, P.; Van Montagu, M.; Rouzé, P. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 1999, 27, 295–296. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Song, J.; Sun, P.; Kong, W.; Xie, Z.; Li, C.; Liu, J.-H. SnRK2.4-mediated phosphorylation of ABF2 regulates expression and putrescine accumulation under drought stress. New Phytol. 2023, 238, 216–236. [Google Scholar] [CrossRef]
- Wei, T.; Wang, Y.; Liu, J.-H. Comparative transcriptome analysis reveals synergistic and disparate defense pathways in the leaves and roots of trifoliate orange (Poncirus trifoliata) autotetraploids with enhanced salt tolerance. Hortic. Res. 2020, 7, 88. [Google Scholar] [CrossRef]
- Brown, J.; Pirrung, M.; McCue, L.A. FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 2017, 33, 3137–3139. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Langdon, W.B. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013, 41, e108. [Google Scholar] [CrossRef]
- Song, B.; Tang, Z.; Li, X.; Li, J.; Zhang, M.; Zhao, K.; Liu, H.; Zhang, S.; Wu, J. Mining and evolution analysis of lateral organ boundaries domain (LBD) genes in Chinese white pear (Pyrus bretschneideri). BMC Genom. 2020, 21, 644. [Google Scholar] [CrossRef]
- Gong, X.; Zhao, L.; Song, X.; Lin, Z.; Gu, B.; Yan, J.; Zhang, S.; Tao, S.; Huang, X. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biol. 2019, 19, 161. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Stone, S.L. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front. Plant Sci. 2014, 5, 135. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Shi, Z.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M.A.; Tao, S.; Korban, S.S.; Wang, H. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013, 23, 396–408. [Google Scholar] [CrossRef]
- Sun, X.; Jiao, C.; Schwaninger, H.; Chao, C.T.; Ma, Y.; Duan, N.; Khan, A.; Ban, S.; Xu, K.; Cheng, L.; et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 2020, 52, 1423–1432. [Google Scholar] [CrossRef]
- Sharma, A.; Goldfarb, S.; Raveh, D.; Bar-Zvi, D. Arabidopsis ubiquitin ligase PUB41 positively regulates ABA-mediated seed dormancy and drought response. Physiol. Mol. Biol. Plants 2024, 30, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xing, Y.; Lou, Q.; Feng, P.; Liu, S.; Zhu, M.; Yin, W.; Fang, S.; Lin, Y.; Zhang, T.; et al. Dwarf and short grain 1, encoding a putative U-box protein regulates cell division and elongation in rice. J. Plant Physiol. 2017, 209, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.M. Possible role of abscisic acid in reducing seed set in water-stressed wheat plants. Nature 1980, 285, 655–657. [Google Scholar] [CrossRef]
- Ober, E.S.; Setter, T.L.; Madison, J.T.; Thompson, J.F.; Shapiro, P.S. Influence of Water Deficit on Maize Endosperm Development 1: Enzyme Activities and RNA Transcripts of Starch and Zein Synthesis, Abscisic Acid, and Cell Division. Plant Physiol. 1991, 97, 154–164. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.H.; Ye, Y.X.; Wang, Z.Q.; Zhu, Q.S.; Liu, L.J. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ. 2004, 27, 1055–1064. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Liu, K.; Wang, Z.; Liu, L. Abscisic Acid and Ethylene Interact in Rice Spikelets in Response to Water Stress During Meiosis. J. Plant Growth Regul. 2007, 26, 318–328. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, W.; Zhang, Y.; Zhang, X.; Lang, D.; Zhang, X. The roles of methyl jasmonate to stress in plants. Funct. Plant Biol. 2019, 46, 197–212. [Google Scholar] [CrossRef]
- Wang, G.; Wang, F.; Huang, Q.; Li, Y.; Liu, Y.; Wang, Y. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites. Biomed. Res. Int. 2015, 2015, 757530. [Google Scholar] [CrossRef]
Gene Name | Sequence ID | Chromosome | Start | End | Strand | Number of Amino Acids | Molecular Weight | Theoretical pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity | Prediction of Subcellular Localization |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PtrPUB1 | Pt1g007380.1 | chr1 | 6,710,159.00 | 6,715,696.00 | − | 1075 | 119,144.45 | 5.87 | 44.49 | 94.45 | −0.15 | chloroplast |
PtrPUB2 | Pt2g001490.1 | chr2 | 1,149,165.00 | 1,154,283.00 | + | 1067 | 119,415.26 | 5.82 | 57.1 | 85.49 | −0.435 | cytoplasmic |
PtrPUB3 | Pt2g017990.1 | chr2 | 21,179,351.00 | 21,181,028.00 | + | 444 | 49,828.80 | 7.84 | 41.82 | 99.86 | −0.109 | chloroplast |
PtrPUB4 | Pt2g019220.1 | chr2 | 22,312,601.00 | 22,315,973.00 | − | 534 | 58,756.22 | 5.36 | 46.57 | 98.28 | −0.1 | endoplasmic reticulum |
PtrPUB5 | Pt2g026880.1 | chr2 | 26,692,028.00 | 26,707,328.00 | − | 552 | 59,464.48 | 6.49 | 39.49 | 93.86 | −0.043 | chloroplast |
PtrPUB6 | Pt2g030000.1 | chr2 | 28,605,977.00 | 28,608,609.00 | + | 603 | 65,767.43 | 6.38 | 36.82 | 97.46 | −0.066 | cytoplasmic |
PtrPUB7 | Pt3g000350.1 | chr3 | 813,458.00 | 815,896.00 | − | 539 | 59,153.26 | 6.17 | 50.47 | 90.98 | −0.246 | mitochondrial |
PtrPUB8 | Pt3g005690.1 | chr3 | 3,714,851.00 | 3,719,010.00 | + | 755 | 83,979.55 | 5.16 | 37.06 | 100.26 | −0.101 | chloroplast |
PtrPUB9 | Pt3g027970.1 | chr3 | 33,447,591.00 | 33,450,120.00 | + | 458 | 50,573.57 | 5.91 | 42.69 | 108.89 | −0.131 | chloroplast |
PtrPUB10 | Pt3g030630.1 | chr3 | 36,223,006.00 | 36,228,493.00 | − | 775 | 85,154.50 | 6.47 | 49.18 | 94.65 | −0.226 | nuclear |
PtrPUB11 | Pt3g034050.1 | chr3 | 40,678,904.00 | 40,684,397.00 | + | 968 | 107,843.91 | 5.55 | 47.54 | 99.45 | −0.198 | nuclear |
PtrPUB12 | Pt3g038440.1 | chr3 | 41,726,881.00 | 41,732,113.00 | − | 857 | 95,732.18 | 5.96 | 58.54 | 85.03 | −0.414 | nuclear |
PtrPUB13 | Pt4g004310.1 | chr4 | 2,698,514.00 | 2,700,984.00 | + | 685 | 75,842.19 | 8.2 | 36.92 | 110.18 | 0.053 | chloroplast |
PtrPUB14 | Pt4g005220.1 | chr4 | 4,083,092.00 | 4,088,205.00 | − | 774 | 85,795.06 | 5.62 | 45.9 | 92.89 | −0.245 | nuclear |
PtrPUB15 | Pt4g007900.1 | chr4 | 5,227,193.00 | 5,252,128.00 | + | 3181 | 358,374.23 | 6.25 | 47.74 | 87.43 | −0.355 | cytoplasmic |
PtrPUB16 | Pt4g012070.1 | chr4 | 8,988,357.00 | 8,990,532.00 | + | 428 | 47,803.42 | 8.7 | 39.82 | 98.48 | −0.246 | cytoplasmic |
PtrPUB17 | Pt4g012080.1 | chr4 | 8,995,100.00 | 9,000,163.00 | − | 281 | 32,002.53 | 5.89 | 38.06 | 88.61 | −0.458 | cytoplasmic |
PtrPUB18 | Pt4g017780.1 | chr4 | 17,247,975.00 | 17,251,003.00 | − | 604 | 65,864.22 | 5.28 | 36.22 | 101.66 | −0.238 | plasma membrane |
PtrPUB19 | Pt4g021480.1 | chr4 | 20,798,857.00 | 20,800,920.00 | − | 687 | 75,190.49 | 6.85 | 44.37 | 110.77 | 0.035 | Golgi apparatus |
PtrPUB20 | Pt5g000620.1 | chr5 | 402,632.00 | 406,549.00 | − | 813 | 89,139.47 | 5.38 | 38.83 | 106.61 | −0.024 | cytoplasmic |
PtrPUB21 | Pt5g000810.1 | chr5 | 539,950.00 | 542,479.00 | − | 646 | 71,931.33 | 5.41 | 41.87 | 109.78 | −0.132 | cytoplasmic |
PtrPUB22 | Pt5g003010.1 | chr5 | 2,005,545.00 | 2,010,737.00 | − | 744 | 82,897.34 | 6.88 | 47.26 | 100.3 | −0.159 | nuclear |
PtrPUB23 | Pt5g006730.1 | chr5 | 4,523,794.00 | 4,524,990.00 | + | 398 | 44,620.09 | 8.36 | 41.78 | 110.85 | 0.063 | chloroplast |
PtrPUB24 | Pt5g023640.1 | chr5 | 24,591,740.00 | 24,593,365.00 | − | 331 | 36,930.12 | 9.07 | 44.3 | 110.82 | 0.003 | nuclear |
PtrPUB26 | Pt6g001930.1 | chr6 | 1,451,905.00 | 1,454,111.00 | − | 546 | 59,465.00 | 8.23 | 53.22 | 88.55 | −0.228 | nuclear |
PtrPUB25 | Pt6g003430.1 | chr6 | 432,358.00 | 438,871.00 | − | 1049 | 118,494.06 | 5.44 | 48.22 | 95.05 | −0.172 | cytoplasmic |
PtrPUB27 | Pt6g008440.1 | chr6 | 5,609,236.00 | 5,610,480.00 | + | 414 | 46,792.68 | 8.15 | 44.16 | 104.18 | −0.023 | cytoplasmic |
PtrPUB28 | Pt6g008450.1 | chr6 | 5,618,107.00 | 5,619,622.00 | + | 416 | 46,091.89 | 8.19 | 43.87 | 109.71 | 0.042 | cytoplasmic |
PtrPUB29 | Pt6g011780.1 | chr6 | 7,976,281.00 | 7,978,337.00 | − | 611 | 66,916.52 | 9.05 | 51.95 | 101.55 | −0.033 | chloroplast |
PtrPUB30 | Pt7g003860.1 | chr7 | 4,699,779.00 | 4,701,056.00 | + | 425 | 47,238.63 | 8.29 | 50.68 | 110.05 | −0.027 | cytoplasmic |
PtrPUB31 | Pt7g015030.1 | chr7 | 16,438,505.00 | 16,442,608.00 | − | 785 | 88,800.38 | 6.06 | 40.07 | 86.48 | −0.407 | cytoplasmic |
PtrPUB32 | Pt7g016250.1 | chr7 | 17,348,949.00 | 17,351,587.00 | + | 450 | 48,997.31 | 7.01 | 39.55 | 109.6 | 0.124 | cytoplasmic |
PtrPUB33 | Pt7g016640.1 | chr7 | 17,648,298.00 | 17,655,841.00 | − | 828 | 90,518.07 | 5.92 | 42.39 | 96.15 | −0.227 | cytoplasmic |
PtrPUB34 | Pt7g018860.1 | chr7 | 19,373,953.00 | 19,379,419.00 | + | 719 | 79,722.81 | 6.32 | 44.56 | 100.35 | −0.058 | chloroplast |
PtrPUB35 | Pt8g000480.1 | chr8 | 282,195.00 | 285,558.00 | − | 643 | 71,519.60 | 6.51 | 33.81 | 104.53 | −0.218 | cytoplasmic |
PtrPUB36 | Pt8g004210.1 | chr8 | 2,850,930.00 | 2,852,951.00 | − | 418 | 45,682.56 | 6.21 | 49.73 | 103.64 | 0.067 | cytoplasmic |
PtrPUB37 | Pt8g010040.1 | chr8 | 8,325,428.00 | 8,331,577.00 | − | 661 | 71,505.65 | 5.49 | 42.57 | 95.37 | −0.237 | endoplasmic reticulum |
PtrPUB38 | Pt8g010120.1 | chr8 | 8,381,649.00 | 8,387,886.00 | + | 835 | 93,892.85 | 8.51 | 54.24 | 85.16 | −0.347 | nuclear |
PtrPUB39 | Pt9g006300.1 | chr9 | 4,265,094.00 | 4,271,056.00 | − | 1012 | 112,828.40 | 5.83 | 38.04 | 108.11 | −0.083 | nuclear |
PtrPUB40 | Pt9g016770.1 | chr9 | 21,704,431.00 | 21,709,935.00 | − | 741 | 82,895.50 | 5.74 | 50.7 | 81.9 | −0.526 | cytoplasmic |
PtrPUB41 | Pt9g019740.1 | chr9 | 24,048,959.00 | 24,054,175.00 | + | 781 | 88,582.14 | 6.55 | 48.54 | 87.48 | −0.418 | nuclear |
PtrPUB42 | PtUn003420.1 | chrUn | 3,871,362.00 | 3,872,698.00 | + | 405 | 45,634.26 | 8.93 | 38.35 | 104.72 | −0.103 | cytoplasmic |
PtrPUB43 | PtUn003430.1 | chrUn | 3,885,448.00 | 3,886,671.00 | − | 407 | 45,441.04 | 8.85 | 55.16 | 106.09 | 0.015 | cytoplasmic |
PtrPUB44 | PtUn019120.1 | chrUn | 38,720,628.00 | 38,728,015.00 | − | 1496 | 166,670.90 | 5.65 | 49.08 | 87.23 | −0.261 | cytoplasmic |
PtrPUB45 | PtUn022430.1 | chrUn | 47,382,204.00 | 47,386,151.00 | − | 511 | 56,399.60 | 5.61 | 38.53 | 102.13 | −0.253 | plasma membrane |
PtrPUB46 | PtUn029010.1 | chrUn | 58,286,434.00 | 58,288,761.00 | + | 539 | 59,168.28 | 6.13 | 51.09 | 90.98 | −0.25 | nuclear |
PtrPUB47 | PtUn034180.1 | chrUn | 66,253,831.00 | 66,259,599.00 | + | 1006 | 113,585.67 | 5.48 | 48.54 | 95.91 | −0.163 | cytoplasmic |
Gene1 | Gene2 | Ka | Ks | Ka/Ks |
---|---|---|---|---|
PtrPUB8 | PtrPUB13 | 0.335771521 | 1.896995484 | 0.17700175 |
PtrPUB12 | PtrPUB41 | 0.396444871 | 1.550784125 | 0.255641559 |
PtrPUB7 | PtrPUB46 | 0.002456669 | 0.002543453 | 0.965879561 |
PtrPUB23 | PtrPUB30 | 0.493534696 | 2.152366529 | 0.22929863 |
PtrPUB21 | PtrPUB35 | 0.238373552 | 2.28050998 | 0.104526424 |
PtrPUB27 | PtrPUB42 | 0.388042096 | 2.540631716 | 0.152734493 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, B.; Jin, S.; Gong, X.; Liu, Y.; Liu, D.; Yang, L.; Hu, W.; Kuang, L.; Song, J. Characterization and Expression Analysis of PUB Gene Family Involved in Drought Stress Response in Trifoliate Orange (Poncirus trifoliata). Horticulturae 2025, 11, 604. https://doi.org/10.3390/horticulturae11060604
Song B, Jin S, Gong X, Liu Y, Liu D, Yang L, Hu W, Kuang L, Song J. Characterization and Expression Analysis of PUB Gene Family Involved in Drought Stress Response in Trifoliate Orange (Poncirus trifoliata). Horticulturae. 2025; 11(6):604. https://doi.org/10.3390/horticulturae11060604
Chicago/Turabian StyleSong, Bobo, Sanpeng Jin, Xuchen Gong, Yong Liu, Dechun Liu, Li Yang, Wei Hu, Liuqing Kuang, and Jie Song. 2025. "Characterization and Expression Analysis of PUB Gene Family Involved in Drought Stress Response in Trifoliate Orange (Poncirus trifoliata)" Horticulturae 11, no. 6: 604. https://doi.org/10.3390/horticulturae11060604
APA StyleSong, B., Jin, S., Gong, X., Liu, Y., Liu, D., Yang, L., Hu, W., Kuang, L., & Song, J. (2025). Characterization and Expression Analysis of PUB Gene Family Involved in Drought Stress Response in Trifoliate Orange (Poncirus trifoliata). Horticulturae, 11(6), 604. https://doi.org/10.3390/horticulturae11060604