Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = Trx h2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2370 KB  
Article
Kinetic and Potentiometric Characteristics of Ferredoxin: NADP+ Oxidoreductase from Chlorobaculum tepidum
by Dominykas Laibakojis, Daisuke Seo, Narimantas Čėnas and Mindaugas Lesanavičius
Int. J. Mol. Sci. 2026, 27(1), 481; https://doi.org/10.3390/ijms27010481 - 2 Jan 2026
Viewed by 161
Abstract
Chlorobaculum tepidum ferredoxin: NADP+ oxidoreductase (CtFNR) is a dimeric thioredoxin reductase (TrxR)-type FNR, whose mechanism and redox properties are poorly characterized. In this work, we focused on the reoxidation mechanisms of its flavin adenine dinucleotide (FAD) cofactor using quinones (Q), [...] Read more.
Chlorobaculum tepidum ferredoxin: NADP+ oxidoreductase (CtFNR) is a dimeric thioredoxin reductase (TrxR)-type FNR, whose mechanism and redox properties are poorly characterized. In this work, we focused on the reoxidation mechanisms of its flavin adenine dinucleotide (FAD) cofactor using quinones (Q), nitroaromatics (ArNO2), and other nonphysiological oxidants with different single-electron reduction midpoint potentials (E71) and electrostatic charge. Like in other FNRs, the rate-limiting step of the reaction is the reoxidation of FAD semiquinone (FADH). However, only one FAD per dimer functions in CtFNR due to some nonequivalence of the NADP(H) binding domains in separate subunits. The reactivity of Q increases with increasing E71, while ArNO2 form another analogous series of lower reactivity. The compounds are reduced in a dominant single-electron way. These data are consistent with an “outer sphere” electron transfer mechanism. On the basis of reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of FAD at pH 7.0 is −0.282 V. In CtFNR, 11% FADH was stabilized at equilibrium. Calculated electron transfer distances in reactions with Q and ArNO2 were in the range of 2.6–3.4 Å. Taken together with previous studies of Rhodopseudomonas palustris and Bacillus subtilis FNRs, this work allows us to generalize the information on the catalytic ant thermodynamic properties of TrxR-type FNRs. In addition, our data may be valuable from an applied perspective, e.g., the use of redox mediators in photobioelectrochemical systems or microbial cells based on anoxygenic phototrophic bacteria. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Figure 1

22 pages, 2591 KB  
Article
Novel Adamantane–Sclareol Hybrids Exploit ROS Vulnerability to Overcome Multidrug-Resistance in Glioblastoma Cells
by Ema Lupšić, Pavle Stojković, Marija Grozdanić, Nataša Terzić-Jovanović, Milica Pajović, Fani Koutsougianni, Dimitra Alexopoulou, Igor M. Opsenica, Milica Pešić and Ana Podolski-Renić
Molecules 2025, 30(24), 4756; https://doi.org/10.3390/molecules30244756 - 12 Dec 2025
Viewed by 410
Abstract
Multidrug resistance (MDR) presents a significant challenge in the treatment of glioblastoma. We evaluated six novel adamantane–sclareol hybrids that integrate a natural labdane diterpene scaffold with an adamantane moiety to address this issue. Compounds 2, 5, and 6 demonstrated the ability [...] Read more.
Multidrug resistance (MDR) presents a significant challenge in the treatment of glioblastoma. We evaluated six novel adamantane–sclareol hybrids that integrate a natural labdane diterpene scaffold with an adamantane moiety to address this issue. Compounds 2, 5, and 6 demonstrated the ability to bypass P-glycoprotein (P-gp)-mediated resistance in resistant U87-TxR cells and induced collateral sensitivity, with compound 2 exhibiting the highest selectivity for glioblastoma compared to normal glial cells. Mechanistic studies revealed that compounds 2 and 5 selectively triggered early apoptosis in MDR cells, significantly elevated levels of H2O2 and peroxynitrite, and disrupted mitochondrial membrane potential. Additionally, these compounds altered the expression of key genes involved in glutathione (GSH) and thioredoxin (Trx) antioxidant defense systems and increased ASK1 protein levels, indicating the activation of ROS-driven apoptotic signaling. Both compounds inhibited P-gp function, leading to enhanced intracellular accumulation of rhodamine 123 (Rho 123) and synergistically sensitized U87-TxR cells to paclitaxel (PTX). A preliminary Rag1 xenograft study demonstrated that compound 5 effectively suppressed tumor growth without causing significant weight loss. Collectively, these findings position adamantane–sclareol hybrids, particularly compounds 2 and 5, as promising strategies that exploit an MDR-associated reactive oxygen species (ROS) vulnerability, combining selective cytotoxicity, redox disruption, and P-gp modulation to eliminate resistant glioblastoma cells and enhance the efficacy of chemotherapeutics. Full article
Show Figures

Graphical abstract

25 pages, 3950 KB  
Article
Redox-Active Quinazolinone Thioamide Ag(I) Complexes with Potent Antibacterial Activity: Mechanistic Insights and Hydrogel-Enhanced Efficacy
by Eleni Ioanna Tzaferi, Despoina Varna, Igor V. Esarev, Konstantina Kavaratzi, Antonios G. Hatzidimitriou, Rigini Papi, Ingo Ott and Panagiotis A. Angaridis
Molecules 2025, 30(20), 4071; https://doi.org/10.3390/molecules30204071 - 13 Oct 2025
Viewed by 1601
Abstract
The antibacterial properties of Ag(I) coordination compounds are well documented; however, their effectiveness is highly dependent on the choice of appropriate ligands, and it is frequently hindered by their low water solubility and limited bioavailability. Herein, six new Ag(I) complexes incorporating the quinazolinone [...] Read more.
The antibacterial properties of Ag(I) coordination compounds are well documented; however, their effectiveness is highly dependent on the choice of appropriate ligands, and it is frequently hindered by their low water solubility and limited bioavailability. Herein, six new Ag(I) complexes incorporating the quinazolinone thioamide mqztH (=2-mercapto-4(3H)-quinazolinone) and phosphine co-ligands were synthesized and investigated for their antibacterial activity. In vitro activity assays against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial strains revealed that all complexes selectively inhibited S. aureus bacterial growth. Structure–activity relationship analysis showed that monodentate PPh3 co-ligands play a key role in enhancing the antibacterial efficacy of their complexes. Notably, complex [AgCl(mqztH)(PPh3)2] (1) exhibited broad-spectrum activity, with IC50 values of 4.2 ± 1.4 μg mL−1 (4.9 μΜ) for S. aureus and 63 ± 1.9 μg mL−1 (75 μΜ) for E. coli bacteria. To improve solubility and antibacterial activity, complex 1 was encapsulated in barium alginate (BaAlg) matrices to form hydrogel-based drug delivery formulations [1]@BaAlg. The synthesized formulations retained the bactericidal effect of the complex, achieving comparable activity at concentrations lower by an order of magnitude compared to complex 1 in free form. Combined with the demonstrated high biocompatibility of complex 1 toward L929 normal eukaryotic cells, as well as the biocompatible nature of the alginate matrix, these findings underscore the strong potential of the complex 1-loaded hydrogel formulations for further investigation and development as effective antibacterial drug platforms. Mechanistic studies confirmed the redox-active nature of complex 1 and its potential to inhibit the function of glutathione reductase (GR) and thioredoxin reductase (TrxR) at low concentrations, suggesting the interference with bacterial redox homeostasis as a relevant mechanism of bioactivity. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Europe 2025)
Show Figures

Graphical abstract

22 pages, 3111 KB  
Article
Posidonia oceanica Extract Inhibits VEGF-Induced Angiogenic and Oxidative Responses in Human Endothelial Colony-Forming Cells
by Francesca Margheri, Cecilia Anceschi, Elena Frediani, Alessandra Marzoppi, Marzia Vasarri, Donatella Degl’Innocenti, Emanuela Barletta, Anna Laurenzana and Anastasia Chillà
J. Xenobiot. 2025, 15(5), 153; https://doi.org/10.3390/jox15050153 - 17 Sep 2025
Viewed by 947
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is essential for physiological processes such as development and wound healing, but its dysregulation contributes to a range of pathological conditions including cancer, diabetic retinopathy, and chronic inflammation. In recent years, marine-derived compounds [...] Read more.
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is essential for physiological processes such as development and wound healing, but its dysregulation contributes to a range of pathological conditions including cancer, diabetic retinopathy, and chronic inflammation. In recent years, marine-derived compounds have emerged as promising multitarget agents with anti-angiogenic potential. Posidonia oceanica, a Mediterranean seagrass traditionally used in folk medicine, is increasingly recognized for its pharmacological properties, including antioxidant, anti-inflammatory, and anti-invasive activities. This study investigated the effects of a hydroethanolic extract from P. oceanica leaves (POE) on human Endothelial Colony-Forming Cells (ECFCs), a subpopulation of endothelial progenitor cells with high proliferative and vessel-forming capacity, and a relevant model for studying pathological angiogenesis. ECFCs were treated with POE (4–8 µg/mL), and cell viability, morphology, migration, invasion, tube formation, oxidative stress, and activation markers were evaluated. POE did not alter ECFC morphology or viability, as confirmed by Trypan Blue and MTT assays. However, functional assays revealed that POE significantly impaired ECFC migration, invasion, and in vitro angiogenesis in a dose-dependent manner. Under VEGF (Vascular endothelial growth factor) stimulation, POE reduced intracellular ROS accumulation and downregulated key redox-regulating genes (hTRX1, hTRX2, PRDX2, AKR1C1, AKR1B10). Western blot analysis showed that POE inhibited VEGF-induced phosphorylation of KDR, mTOR and p-ERK, while p-AKT remained elevated, indicating selective disruption of VEGF downstream signaling. Furthermore, POE reduced the expression of pro-inflammatory and pro-coagulant markers (VCAM-1, ICAM-1, TF) and partially reversed TNF-α–induced endothelial activation. These findings suggest that POE exerts anti-angiogenic effects through a multitargeted mechanism, supporting its potential as a natural therapeutic agent for diseases characterized by aberrant angiogenesis. Full article
(This article belongs to the Section Natural Products/Herbal Medicines)
Show Figures

Graphical abstract

15 pages, 5043 KB  
Article
Drosophila COMPASS Complex Subunits Set1 and Ash2 Are Required for Oocyte Determination and Maintenance of the Synaptonemal Complex
by Brigite Cabrita, Mary Enyioko and Rui Gonçalo Martinho
J. Dev. Biol. 2025, 13(3), 30; https://doi.org/10.3390/jdb13030030 - 19 Aug 2025
Viewed by 1378
Abstract
Female gametogenesis is orchestrated by dynamic epigenetic modifications. In mammals, SETDB1, a histone H3K9 methyltransferase, is required for proper meiotic progression and early embryonic development. In Drosophila, the ortholog of SETDB1 plays a critical role in germ cell differentiation, transposon silencing, and [...] Read more.
Female gametogenesis is orchestrated by dynamic epigenetic modifications. In mammals, SETDB1, a histone H3K9 methyltransferase, is required for proper meiotic progression and early embryonic development. In Drosophila, the ortholog of SETDB1 plays a critical role in germ cell differentiation, transposon silencing, and the transcriptional repression of specific germline genes during oocyte fate determination. Moreover, Polycomb group (PcG) proteins in both mammals and Drosophila are essential for primary oocyte viability and meiosis, functioning through the silencing of early prophase I genes during later stages of prophase. While the repressive roles of epigenetic regulators in both Drosophila and mammalian oogenesis are well characterized, the functions of epigenetic activators remain less defined. Gene expression is controlled by the opposing activities of PcG and Trithorax group (TrxG) proteins, with the latter constituting a diverse family of chromatin remodelling factors that include H3K4 methyltransferases. In Drosophila, SET domain containing 1 (Set1)—the ortholog of mammalian SETD1A/B—acts as the primary regulator of global H3K4me2/3 levels. Set1 is critical for germline stem cell (GSC) self-renewal, functioning through both cell-autonomous and non-cell-autonomous mechanisms, with its depletion in the germline resulting in a progressive loss of GSC. More recently, Set1 has been implicated in germline cyst differentiation, although the mechanisms underlying this role remain poorly understood due to the complexity of the observed phenotypes. To investigate this, we analyzed ovaries from recently eclosed females in which Set1 and its highly conserved COMPASS partner, absent, small, or homeotic discs 2 (Ash2), were depleted—thus minimizing the confounding effects from GSC loss. We observed striking defects in both oocyte determination and Synaptonemal Complex (SC) integrity in one- to two-day-old females, within otherwise normal egg chambers. Interestingly, while defects in oocyte fate and oocyte–chromatin architecture were partially recovered in older egg chambers, SC integrity remained compromised. These findings suggest a critical window for SC assembly during germline cyst differentiation, after which this assembly cannot occur. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Developmental Biology 2025)
Show Figures

Figure 1

15 pages, 6537 KB  
Article
Txnip/Trx Is a Potential Element in Regulating O-GlcNAc Modification in Photoreceptors to Alleviate Diabetic Retinopathy
by Laraib Imdad, Shengnan Xu, Yulang Meng, Kaimin Bao, Wenkang Dong, Xuanya Yin, Yujie Tong, Wei Zhang, Xiang Ren and Li Kong
Int. J. Mol. Sci. 2025, 26(11), 5369; https://doi.org/10.3390/ijms26115369 - 4 Jun 2025
Cited by 1 | Viewed by 1384
Abstract
Hyperglycemia is a key factor in diabetic retinopathy which leads to blindness. O-linked-N-acetylglucosamine (O-GlcNAc) modification changes are linked to various diseases, including diabetic retinopathy. This research aims to study the roles of Txnip and Trx in influencing O-GlcNAc in photoreceptor cells during diabetic [...] Read more.
Hyperglycemia is a key factor in diabetic retinopathy which leads to blindness. O-linked-N-acetylglucosamine (O-GlcNAc) modification changes are linked to various diseases, including diabetic retinopathy. This research aims to study the roles of Txnip and Trx in influencing O-GlcNAc in photoreceptor cells during diabetic retinopathy. A diabetic mouse model and 661w cells, after exposure to high glucose, were employed as models. H&E staining and ERG were used to evaluate the morphology and function of the retina, respectively. Western blotting was used to analyze protein expression, a TUNEL assay was used to measure apoptosis, and a co-immunoprecipitation (CO-IP) assay was used to detect the interactions of protein. In diabetic mice, electroretinogram (ERG) amplitude wave, retinal thickness, and body weight decreased. Glial fibrillary acidic protein (GFAP), Iba1 expression, and blood glucose level increased. In vitro, the percentage of apoptotic cell, Bax, and caspase3 levels increased, and Bcl2 decreased in 661w cells under high-glucose conditions. Moreover, Txnip expression was upregulated, while Trx was downregulated. Additionally, a Western blot analysis revealed that high-glucose exposure led to increased O-GlcNAc modification both in vivo and in vitro. The CO-IP results show that Txnip interacted with O-GlcNAc modifications. S-opsin expression was significantly downregulated in vitro under high-glucose conditions. Knockdown Txnip or upregulation Trx could reverse or delay apoptosis in 661w cells under hyperglycemic conditions. Txnip/Trx is a potential element in regulating photoreceptor apoptosis in diabetic retinopathy. The underlying mechanism is linked to regulation of O-GlcNAc modification in photoreceptor cells in DR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

21 pages, 8909 KB  
Article
Isolation, Sphalerite Bioleaching, and Whole Genome Sequencing of Acidithiobacillus ferriphilus QBS3 from Zinc-Rich Sulfide Mine Drainage
by Kan Wang, Yuandong Liu, Run Liu, Wissal Belqadi, Weimin Zeng, Runlan Yu and Xueling Wu
Life 2025, 15(5), 792; https://doi.org/10.3390/life15050792 - 15 May 2025
Cited by 1 | Viewed by 1103
Abstract
The genus Acidithiobacillus has been widely used in bioleaching, and novel strains in this genus, such as A. ferriphilus, have also been confirmed to possess bioleaching capabilities. In this study, an Acidithiobacillus ferriphilus strain, QBS3, was isolated from zinc-rich sulfide mine drainage [...] Read more.
The genus Acidithiobacillus has been widely used in bioleaching, and novel strains in this genus, such as A. ferriphilus, have also been confirmed to possess bioleaching capabilities. In this study, an Acidithiobacillus ferriphilus strain, QBS3, was isolated from zinc-rich sulfide mine drainage using the gradient dilution method. QBS3 is a Gram-negative, 1.3 µm rod-shaped bacterium with small red colonies. It showed a high iron oxidation efficiency of 0.361 g/(L·h) and a sulfur oxidation efficiency of 0.206 g/(L·d). QBS3 has sphalerite bioleaching ability; using QBS3 for pure sphalerite bioleaching, 18.8% of zinc was extracted in 14 days at 1% pulp density. Whole genome sequencing was performed on QBS3. Functional prediction showed that 9.13% of the genes were involved in replication, recombination, and repair. Bioleaching-related genes were analyzed, including iron and sulfur oxidation genes, and carbon and nitrogen fixation genes. For iron oxidation, the Cyc2→RusA pathway and Iro→RusB pathway were found in QBS3. In terms of sulfur oxidation, QBS3 has an incomplete SOX system and lacks the SDO gene, but Rho and Trx may complement the SOX system, enabling QBS3 to oxidize sulfur. QBS3 has multiple sets of carbon fixation genes, and nitrogen fixation genes were also identified. A hypothetical sphalerite bioleaching model is proposed; this study provides a theoretical basis for the zinc sulfide ore bioleaching industry. Full article
Show Figures

Figure 1

10 pages, 1710 KB  
Article
First Insights into the Biological Activity and Molecular Docking of Citral (3,7-Dimethyl-2, 6-Octadienal) Against Trichomonas vaginalis
by Alexia Brauner de Mello, Juliana Montelli Fenalti, Bruna Baccega, Yan Wahast Islabão, Filipe Obelar Martins, Paloma Taborda Birmann, Angela Maria Casaril, Tallyson Nogueira Barbosa, Angela Sena-Lopes, Francieli Liz Monteiro, Lucielli Savegnago, Sibele Borsuk, Silvia de Oliveira Hubner, Nara de Amélia da Rosa Farias, Alexandra Ibáñez-Escribano and Camila Belmonte Oliveira
Microbiol. Res. 2025, 16(5), 96; https://doi.org/10.3390/microbiolres16050096 - 9 May 2025
Cited by 1 | Viewed by 1385
Abstract
The increasing resistance of Trichomonas vaginalis to the only approved chemical family of drugs for treatment, the 5-nitroimidazoles, has prompted the exploration of new therapeutic agents against this prevalent non-viral sexually transmitted infection. Natural products have emerged as a significant source of novel [...] Read more.
The increasing resistance of Trichomonas vaginalis to the only approved chemical family of drugs for treatment, the 5-nitroimidazoles, has prompted the exploration of new therapeutic agents against this prevalent non-viral sexually transmitted infection. Natural products have emerged as a significant source of novel treatments for trichomoniasis. The aim of this study was to evaluate the anti-T. vaginalis activity of citral (3,7-dimethyl-2,6-octadienal), the main constituent of the essential oil of Cymbopogon species, commonly known as lemongrass. Our findings indicate that citral exhibits a minimum inhibitory concentration (MIC) of 100 μM, effectively inhibiting the growth of T. vaginalis trophozoites within 12 h of exposure, and a 50% inhibitory concentration (IC50) of approximately 40 μM after 24 h. Furthermore, the evaluation of nitric oxide (NO) levels suggests that citral possesses antioxidant properties. Molecular docking studies reveal a weak interaction with three parasite proteins: thioredoxin reductase (TvTrxR), purine nucleoside phosphorylase (TvPNP), and methionine gamma lyase (TvMGL). The present study highlights the potential of citral as a candidate for the development of no-nitroimidazole drugs, offering new avenues for trichomoniasis treatment and underscoring the importance of further investigation into citral’s mechanism of action. Full article
Show Figures

Figure 1

17 pages, 5765 KB  
Article
Integrated Analysis of Long Non-Coding RNAs and mRNAs Reveals Key Trans-Target Genes Associated with Heat Stress Response in Rhododendron delavayi
by Changming Liu, Yang Liu, Xinyue Zhang, Lujie An and Zhiguo Tian
Life 2025, 15(5), 697; https://doi.org/10.3390/life15050697 - 25 Apr 2025
Cited by 3 | Viewed by 925
Abstract
Long non-coding RNAs (lncRNAs) have been defined as non-coding transcripts exceeding 200 nucleotides, which play essential roles during transcriptional and post-transcriptional regulation in multiple biological processes. Understanding R. delavayi lncRNAs is of great significance as it is profoundly influenced by heat stress. In [...] Read more.
Long non-coding RNAs (lncRNAs) have been defined as non-coding transcripts exceeding 200 nucleotides, which play essential roles during transcriptional and post-transcriptional regulation in multiple biological processes. Understanding R. delavayi lncRNAs is of great significance as it is profoundly influenced by heat stress. In this research, a total of 1145 differentially expressed lncRNAs (DE-lncRNAs) and 9447 differentially expressed genes (DEGs) (log2|FC| > 1, p < 0.05) were characterized between heat-stress-treated groups and control groups. Further analysis showed that 229 DE-lncRNAs (144 upregulated and 85 downregulated) were commonly distributed in two comparisons (CK_vs._H3 and CK_vs._H6). We further investigated the cis- and trans-acting genes of the upregulated DE-lncRNAs, and found that 142 upregulated DE-lncRNAs corresponded to 1565 cis-acting DEGs, and 143 upregulated DE-lncRNAs corresponded to 3417 trans-acting DEGs. KEGG enrichment analysis of these target genes revealed that cis- and trans-acting DEGs of upregulated DE-lncRNA were primarily enriched in five and twelve KEGG pathways, respectively. Co-expression network analysis of upregulated DE-lncRNAs and DEGs enriched in the common KEGG pathways revealed 57 co-expression relationships between 28 DE-lncRNAs and 43 cis-acting DEGs and 554 co-expression relationships between 26 DE-lncRNAs and 90 trans-acting DEGs. Six DE-lncRNAs and six of their target DEGs were used as candidate genes to verify the RNA-seq data using qRT-PCR. Further analysis revealed three target genes (TrxG, PEPC, and CCR) out of six candidate DEGs that were selected as candidate genes for subsequent research. This study examined the relationship between DE-lncRNAs and DEGs and further screened out candidate DE-lncRNAs that can potentially provide an important theoretical basis and experimental data for the genetic improvement of heat tolerance in R. delavayi. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses 2024)
Show Figures

Figure 1

13 pages, 2359 KB  
Article
Transcriptomic Analysis of Campylobacter jejuni Following Exposure to Gaseous Chlorine Dioxide Reveals an Oxidative Stress Response
by Gretchen E. Dykes, Yiping He, Tony Jin, Xuetong Fan, Joe Lee, Sue Reed and Joseph Capobianco
Int. J. Mol. Sci. 2025, 26(7), 3254; https://doi.org/10.3390/ijms26073254 - 1 Apr 2025
Cited by 1 | Viewed by 1141
Abstract
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. [...] Read more.
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. Exposure to a low concentration (0.4 mg/L) of dissolved ClO2 for 2 h resulted in a >93% reduction of C. jejuni, highlighting the bacterium’s extreme sensitivity to gaseous ClO2. To elucidate the molecular mechanism of ClO2-induced bactericidal action, transcriptomic analysis was conducted using RNA sequencing (RNA-seq). The results indicate that C. jejuni responds to ClO2-induced oxidative stress by upregulating genes involved in reactive oxygen species (ROS) detoxification (sodB, ahpC, katA, msrP, and trxB), iron transport (ceuBCD, cfbpABC, and chuBCD), phosphate transport (pstSCAB), and DNA repair (rdgB and mutY). Reverse transcription-quantitative PCR (RT-qPCR) validated the increased expression of oxidative stress response genes but not general stress response genes (spoT, dnaK, and groES). These findings provide insights into the antimicrobial mechanism of ClO2, demonstrating that oxidative damage to essential cellular components results in bacterial cell death. Full article
(This article belongs to the Special Issue Molecular Insights into Antimicrobial Activity)
Show Figures

Figure 1

19 pages, 1974 KB  
Article
Topical Instillation of N-Acetylcysteine and N-Acetylcysteine Amide Impedes Age-Related Lens Opacity in Mice
by Hidetoshi Ishida, Yu Sasaki, Teppei Shibata, Hiroshi Sasaki, Bhavana Chhunchha, Dhirendra P. Singh and Eri Kubo
Biomolecules 2025, 15(3), 442; https://doi.org/10.3390/biom15030442 - 19 Mar 2025
Cited by 3 | Viewed by 2383
Abstract
Cataracts, the leading cause of blindness globally, are caused by oxidative stress and inflammation, which disrupt lens transparency due to increased accumulation of reactive oxygen species (ROS) as well as protein and DNA damage during aging. Using in vitro, ex vivo, and in [...] Read more.
Cataracts, the leading cause of blindness globally, are caused by oxidative stress and inflammation, which disrupt lens transparency due to increased accumulation of reactive oxygen species (ROS) as well as protein and DNA damage during aging. Using in vitro, ex vivo, and in vivo models, we determined the protective efficacy of N-acetylcysteine amide (NACA) against oxidative stress-induced and aging-induced cataractogenesis. We found that lens epithelial cells exposed to the oxidative stress inducers hydrogen peroxide (H2O2) or tert-butyl hydroperoxide showed significant ROS accumulation and reduced cellular viability. These effects were inhibited by NACA via the suppression of ROS and thioredoxin-interacting protein (Txnip) expression, a regulator of oxidative stress-related cellular damage and inflammation. In ex vivo lens experiments, NACA significantly reduced H2O2-induced lens opacity and preserved lens integrity. Similarly to NACA-treated lenses ex vivo, the integrity and opacity of aged mouse lenses, when topically instilled with NACA, were preserved and reduced, respectively, and are directly related to reduced Txnip and increased thioredoxin (Trx) expression levels. Overall, our findings demonstrated the protective ability of NACA to abate aberrant redox-active pathways, particularly the ROS/TRX/TXNIP axis, thereby preventing cataractogenesis and preserving eye lens integrity and ultimately impeding aging-related cataracts. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 5734 KB  
Article
Trp31 Residue of Trx-1 Is Essential for Maintaining Antioxidant Activity and Cellular Redox Defense Against Oxidative Stress
by Zongmao He, Yi Yan, Xijun Guo, Tong Wang, Xinqiao Liu, Ren-Bo Ding, Yuanfeng Fu, Jiaolin Bao and Xingzhu Qi
Antioxidants 2025, 14(3), 257; https://doi.org/10.3390/antiox14030257 - 24 Feb 2025
Viewed by 1010
Abstract
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 [...] Read more.
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 by replacing Trp31 with Ala31 (31Ala) or deleting Trp31 residue (31Del). We introduced 31Ala and 31Del mutations into prokaryotic cells for hTrx-1 protein expression, protein purification and evaluation of antioxidant activity. The results showed that neither the replacing mutation to Ala31 nor the deletion of Trp31 residue affected the efficient expression of hTrx-1 protein in prokaryotic cells, indicating that neither form of Trp31 mutation would disrupt the folded structure of the Trx-1 protein. Comparison of the antioxidant activity of purified hTrx-1 proteins of wild-type, 31Ala and 31Del forms revealed that both mutant forms significantly decreased the antioxidant capacity of hTrx-1. Further investigations on eukaryotic cells showed that H2O2 treatment caused massive cell death in EA.Hy926 human endothelial cells with 31Ala and 31Del mutations compared to wild-type cells, which was associated with increased ROS production and downregulation of antioxidant Nrf2 and HO-1 expression in the mutant cells. These results suggested that mutations in the Trp31 residue of hTrx-1 remarkably disrupted cellular redox defense against oxidative stress. The antioxidant activity of hTrx-1 relies on the thiol–disulfide exchange reaction, in which the content of thiol groups forming disulfide bonds in hTrx-1 is critical. We found that the content of free thiol groups specifically participating in disulfide bond formation was significantly lower in Trp31 mutant hTrx-1 than in wild-type hTrx-1; that was speculated to affect the formation of disulfide bonds between Cys32 and Cys35 by virtual analysis, thus abolishing the antioxidant activity of hTrx-1 in cleaving oxidized groups and defending against oxidative stress. The present study provided valuable insights towards understanding the importance of Trp31 residue of hTrx-1 in maintaining the correct conformation of the Trx fold structure, the antioxidant functionality of hTrx-1 and the cellular redox defense capability against oxidative stress. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

23 pages, 9681 KB  
Article
Structure and Function Analyses of the Thioredoxin 2 and Thioredoxin Reductase Gene in Pacific White Shrimp (Litopenaeus vannamei)
by Tong Xu, Pei-Hua Zheng, Ke-Er Luan, Xiu-Xia Zhang, Jun-Tao Li, Ze-Long Zhang, Wei-Yan Hou, Li-Min Zhang, Yao-Peng Lu and Jian-An Xian
Animals 2025, 15(5), 629; https://doi.org/10.3390/ani15050629 - 21 Feb 2025
Viewed by 1452
Abstract
The thioredoxin (Trx) system is one of the most significant systems in living organisms as it regulates cellular redox reactions and plays a pivotal protective role within the cell by promoting redox homeostasis. Trx and thioredoxin reductase (TrxR) are the core [...] Read more.
The thioredoxin (Trx) system is one of the most significant systems in living organisms as it regulates cellular redox reactions and plays a pivotal protective role within the cell by promoting redox homeostasis. Trx and thioredoxin reductase (TrxR) are the core oxidoreductases of the Trx system. In this study, the novel full-length cDNAs of LvTrx2 and LvTrxR were cloned from Litopenaeus vannamei. The ORFs of LvTrx2 and LvTrxR were 453 bp and 1785 bp, encoding polypeptides consisting of 150 and 596 amino acids. Sequence alignment analysis revealed that the amino acid sequence of LvTrx2 shared a high degree of identity (93%) with that of Penaeus chinensis, while in LvTrxR, it exhibited a similarity level of 95% with previously submitted Penaeus chinensis and Penaeus monodon sequences. Regarding tissue-specific expression patterns, LvTrx2 showed its highest expression levels in hepatopancreas and gill. For LvTrxR, the highest expression was observed in gill followed by hepatopancreas and intestine. During exposure to ammonia-N, there was a significant upregulation in the relative mRNA levels of LvTrx2 and LvTrxR in hepatopancreas and gill, with the peak values occurring at 24 h or 48 h of exposure. After LPS injection, the LvTrx2 and LvTrxR transcripts in hepatopancreas and gill had different upregulated levels. These findings suggest that LvTrx2 and LvTrxR play pivotal roles in enhancing stress resistance and bolstering antibacterial defense mechanisms in L. vannamei. To explore the roles, LvTrx2 expression was knocked down in vivo to verify the defense mechanism against 4-NP stress. LvTrx2 silencing in 4-NP-challenged shrimp could significantly induce the gene expression of antioxidant-related genes (except for LvTrxR) and aggravate the oxidative damage of lipids. This study suggests that the Trx system is involved in regulating the antioxidant processes, and LvTrx2 and LvTrxR play a vital role in defense responses against environmental stress. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

42 pages, 5203 KB  
Article
Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin
by Shengnan Liu, Jingbo Pi and Qiang Zhang
Antioxidants 2025, 14(2), 235; https://doi.org/10.3390/antiox14020235 - 18 Feb 2025
Cited by 1 | Viewed by 2104
Abstract
Hydrogen peroxide (H2O2) plays a crucial role in cell signaling in response to physiological and environmental perturbations. H2O2 can oxidize typical 2-Cys peroxiredoxin (PRX) first into a sulfenic acid, which resolves into a disulfide that can [...] Read more.
Hydrogen peroxide (H2O2) plays a crucial role in cell signaling in response to physiological and environmental perturbations. H2O2 can oxidize typical 2-Cys peroxiredoxin (PRX) first into a sulfenic acid, which resolves into a disulfide that can be reduced by thioredoxin (TRX)/TRX reductase (TR). At high levels, H2O2 can also hyperoxidize sulfenylated PRX into a sulfinic acid that can be reduced by sulfiredoxin (SRX). Therefore, PRX, TRX, TR, and SRX (abbreviated as PTRS system here) constitute the coupled sulfenylation and sulfinylation cycle (CSSC), where certain oxidized PRX and TRX forms also function as redox signaling intermediates. Earlier studies have revealed that the PTRS system is capable of rich signaling dynamics, including linearity, ultrasensitivity/switch-like response, nonmonotonicity, circadian oscillation, and possibly, bistability. However, the origins of ultrasensitivity, which is fundamentally required for redox signal amplification, have not been adequately characterized, and their roles in enabling complex nonlinear dynamics of the PTRS system remain to be determined. Through in-depth mathematical modeling analyses, here we revealed multiple sources of ultrasensitivity that are intrinsic to the CSSC, including zero-order kinetic cycles, multistep H2O2 signaling, and a mechanism arising from diminished H2O2 removal at high PRX hyperoxidation state. The CSSC, structurally a positive feedback loop, is capable of bistability under certain parameter conditions, which requires embedding multiple sources of ultrasensitivity identified. Forming a negative feedback loop with cytosolic SRX as previously observed in energetically active cells, the mitochondrial PTRS system (where PRX3 is expressed) can produce sustained circadian oscillations through supercritical Hopf bifurcations. In conclusion, our study provided novel quantitative insights into the dynamical complexity of the PTRS system and improved appreciation of intracellular redox signaling. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

24 pages, 3729 KB  
Article
Time Course of Mitochondrial Antioxidant Markers in a Preclinical Model of Severe Penetrating Traumatic Brain Injury
by Sudeep Musyaju, Hiren R. Modi, Deborah A. Shear, Anke H. Scultetus and Jignesh D. Pandya
Int. J. Mol. Sci. 2025, 26(3), 906; https://doi.org/10.3390/ijms26030906 - 22 Jan 2025
Cited by 6 | Viewed by 2267
Abstract
Traumatic brain injury (TBI) results from external mechanical forces exerted on the brain, triggering secondary injuries due to cellular excitotoxicity. A key indicator of damage is mitochondrial dysfunction, which is associated with elevated free radicals and disrupted redox balance following TBI. However, the [...] Read more.
Traumatic brain injury (TBI) results from external mechanical forces exerted on the brain, triggering secondary injuries due to cellular excitotoxicity. A key indicator of damage is mitochondrial dysfunction, which is associated with elevated free radicals and disrupted redox balance following TBI. However, the temporal changes in mitochondrial redox homeostasis after penetrating TBI (PTBI) have not been thoroughly examined. This study aimed to investigate redox alterations from 30 min to two-weeks post-injury in adult male Sprague Dawley rats that experienced either PTBI or a Sham craniectomy. Redox parameters were measured at several points: 30 min, 3 h, 6 h, 24 h, 3 d, 7 d, and 14 d post-injury. Mitochondrial samples from the injury core and perilesional areas exhibited significant elevations in protein modifications including 3-nitrotyrosine (3-NT) and protein carbonyl (PC) adducts (14–53%, vs. Sham). In parallel, antioxidants such as glutathione, NADPH, peroxiredoxin-3 (PRX-3), thioredoxin-2 (TRX-2), and superoxide dismutase 2 (SOD2) were significantly depleted (20–80%, vs. Sham). In contrast, catalase (CAT) expression showed a significant increase (45–75%, vs. Sham). These findings indicate a notable imbalance in redox parameters over the two-week post-PTBI period suggesting that the therapeutic window to employ antioxidant therapy extends well beyond 24 h post-TBI. Full article
(This article belongs to the Special Issue Mitochondrial Function in Health and Diseases)
Show Figures

Figure 1

Back to TopTop