Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = TiO2 NTAs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 27979 KiB  
Article
Effect of Chemical Polishing on the Formation of TiO2 Nanotube Arrays Using Ti Mesh as a Raw Material
by Wanshun Li, Shiqiu Zhang and Fei Li
Nanomaterials 2024, 14(23), 1893; https://doi.org/10.3390/nano14231893 - 26 Nov 2024
Cited by 1 | Viewed by 1046
Abstract
As a unique form of TiO2, TiO2 nanotube arrays (TiO2NTAs) have been widely used. TiO2NTAs are usually prepared by Ti foil, with little research reporting its preparation by Ti mesh. In this paper, TiO2NTAs [...] Read more.
As a unique form of TiO2, TiO2 nanotube arrays (TiO2NTAs) have been widely used. TiO2NTAs are usually prepared by Ti foil, with little research reporting its preparation by Ti mesh. In this paper, TiO2NTAs are prepared on a Ti mesh surface via an anodic oxidation method in the F-containing electrolyte. The optimal parameters for the synthesis of TiO2NTAs are as follows: the solvent is ethylene glycol and water; the electrolyte is NH4F (0.175 mol/L); the voltage is 20 V; and the anodic oxidation time is 40 min without chemical polishing. However, there is a strange phenomenon where the nanotube arrays grow only at the intersection of Ti wires, which may be caused by chemical polishing, and the other areas, where TiO2NTAs cannot be observed on the surface of Ti mesh, are covered by a dense TiO2 film. New impurities (the hydrate of TiO2 or other products) introduced by chemical polishing and attaching to the surface of the Ti mesh reduce the current of anodic oxidation and further inhibit the growth of TiO2 nanotubes. Hence, under laboratory conditions, for commercially well-preserved Ti mesh, there is no necessity for chemical polishing. The formation of TiO2NTAs includes growth and crystallization processes. For the growth process, F ions corrode the dense TiO2 film on the surface of Ti mesh to form soluble complexes ([TiF6]2−), and the tiny pores remain on the surface of Ti mesh. Given the basic photoelectrochemical measurements, TiO2NTAs without chemical polishing have better properties. Full article
(This article belongs to the Special Issue Nanoscale Material Catalysis for Environmental Protection)
Show Figures

Figure 1

15 pages, 5247 KiB  
Article
Glucose Oxidation Performance of Zinc Nano-Hexagons Decorated on TiO2 Nanotube Arrays
by Ke Wang and Hoda Amani Hamedani
Nanomanufacturing 2024, 4(4), 187-201; https://doi.org/10.3390/nanomanufacturing4040013 - 4 Oct 2024
Cited by 1 | Viewed by 1275
Abstract
Electrochemically anodized TiO2 nanotube arrays (NTAs) were used as a support material for the electrodeposition of zinc nanoparticles. The morphology, composition, and crystallinity of the materials were examined using scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was performed to evaluate the [...] Read more.
Electrochemically anodized TiO2 nanotube arrays (NTAs) were used as a support material for the electrodeposition of zinc nanoparticles. The morphology, composition, and crystallinity of the materials were examined using scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was performed to evaluate the electrochemical properties of TiO2 NTAs. Annealing post-anodization was shown to be effective in lowering the impedance of the TiO2 NTAs (measured at 1 kHz frequency). Zinc nanohexagons (NHexs) with a mean diameter of ~300 nm and thickness of 10–20 nm were decorated on the surface of TiO2 NTAs (with a pore diameter of ~80 nm and tube length of ~5 µm) via an electrodeposition process using a zinc-containing deep eutectic solvent. EIS and CV tests were performed to evaluate the functionality of zinc-decorated TiO2 NTAs (Zn/TiO2 NTAs) for glucose oxidation applications. The Zn/TiO2 NTA electrocatalysts obtained at 40 °C demonstrated enhanced glucose sensitivity (160.8 μA mM−1 cm−2 and 4.38 μA mM−1 cm−2) over zinc-based electrocatalysts reported previously. The Zn/TiO2 NTA electrocatalysts developed in this work could be considered as a promising biocompatible electrocatalyst material for in vivo glucose oxidation applications. Full article
Show Figures

Figure 1

14 pages, 5368 KiB  
Article
Functionalization of Polypropylene by TiO2 Photocatalytic Nanoparticles: On the Importance of the Surface Oxygen Plasma Treatment
by Karolina Zajac, Joanna Macyk, Konrad Szajna, Franciszek Krok, Wojciech Macyk and Andrzej Kotarba
Nanomaterials 2024, 14(16), 1372; https://doi.org/10.3390/nano14161372 - 22 Aug 2024
Cited by 1 | Viewed by 1747
Abstract
A new two-step method for developing a nanocomposite of polypropylene (PP) decorated with photocatalytically active TiO2 nanoparticles (nTiO2) is proposed. This method involves the low-temperature plasma functionalization of polypropylene followed by the ultrasound-assisted anchoring of nTiO2. The nanoparticles, [...] Read more.
A new two-step method for developing a nanocomposite of polypropylene (PP) decorated with photocatalytically active TiO2 nanoparticles (nTiO2) is proposed. This method involves the low-temperature plasma functionalization of polypropylene followed by the ultrasound-assisted anchoring of nTiO2. The nanoparticles, polymeric substrate, and resultant nanocomposite were thoroughly characterized using nanoparticle tracking analysis (NTA), microscopic observations (SEM, TEM, and EDX), spectroscopic investigations (XPS and FTIR), thermogravimetric analysis (TG/DTA), and water contact angle (WCA) measurements. The photocatalytic activity of the nanocomposites was evaluated through the degradation of methyl orange. The individual TiO2 nanoparticles ranged from 2 to 6 nm in size. The oxygen plasma treatment of PP generated surface functional groups (mainly -OH and -C=O), transforming the surface from hydrophobic to hydrophilic, which facilitated the efficient deposition of nTiO2. Optimized plasma treatment and sonochemical deposition parameters resulted in an active photocatalytic nTiO2/PP system, degrading 80% of the methyl orange under UVA irradiation in 200 min. The proposed approach is considered versatile for the functionalization of polymeric materials with photoactive nanoparticles and, in a broader perspective, can be utilized for the fabrication of self-cleaning surfaces. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

15 pages, 8012 KiB  
Article
Bamboo-like MnO2/TiO2 Nanotube Arrays with Enhanced Photocatalytic Degradation
by Feng Liang, Yanxiong Xiang, Yunjiang Yu and Changwei Zou
Coatings 2024, 14(7), 894; https://doi.org/10.3390/coatings14070894 - 17 Jul 2024
Viewed by 1237
Abstract
In this paper, the photocatalytic degradation of methyl orange solution by MnO2/TiO2 nanotube arrays (NTAs) with different structure was studied. Initially, bamboo-like TiO2 NTAs with folded tube walls were synthesized using the anodic oxidation method. Subsequently, MnO2 nanowires/TiO [...] Read more.
In this paper, the photocatalytic degradation of methyl orange solution by MnO2/TiO2 nanotube arrays (NTAs) with different structure was studied. Initially, bamboo-like TiO2 NTAs with folded tube walls were synthesized using the anodic oxidation method. Subsequently, MnO2 nanowires/TiO2 NTAs and MnO2 nanoparticles/TiO2 NTAs were prepared via high-temperature and low-temperature hydrothermal methods, respectively. Photocurrent-time transient tests revealed that MnO2 nanoparticles/TiO2 NTAs produced by the low-temperature hydrothermal method exhibited a relatively good photocurrent response. All the deposited MnO2/TiO2 bamboo-like nanotube nanocomposites were tested for photocatalytic decomposition under different pH and light conditions. The results showed that MnO2 could adsorb and degrade methyl orange in the absence of light and acidity, and the degradation degree was proportional to the concentrations of Mn. MnO2 was stimulated to produce photogenic electrons, which migrated to the surface of the TiO2 and extended the life of photogenic charge carriers. Full article
(This article belongs to the Collection Advanced Surface Coating of Nanoparticles)
Show Figures

Figure 1

14 pages, 2878 KiB  
Article
Preparation and Photovoltaic Performance of a Composite TiO2 Nanotube Array/Polyaniline UV Photodetector
by Chunlian Liu, Peipei Huang, Wei Wang, Miao Tan, Fangbao Fu and Yunhui Feng
Polymers 2023, 15(22), 4400; https://doi.org/10.3390/polym15224400 - 14 Nov 2023
Cited by 3 | Viewed by 1843
Abstract
TiO2 has great potential for application in UV photodetectors due to its excellent photoelectric response. In this work, composite nanomaterials of TiO2 nanotube arrays (TiO2 NTAs) and polyaniline (PANI) were successfully prepared on titanium sheets using an anodic oxidation electrochemical [...] Read more.
TiO2 has great potential for application in UV photodetectors due to its excellent photoelectric response. In this work, composite nanomaterials of TiO2 nanotube arrays (TiO2 NTAs) and polyaniline (PANI) were successfully prepared on titanium sheets using an anodic oxidation electrochemical method. The results showed that the TiO2 NTA/PANI composite materials had excellent UV photosensitivity and responsiveness and good stability and reproducibility. This was mainly attributed to the p–n heterostructure formed inside the TiO2 NTA/PANI composites that hindered the recombination of photogenerated electron–hole pairs and improved their utilization of UV light. This work provides a theoretical basis for the application of metal oxides in UV photodetectors, which is important for the development of UV photodetectors. Full article
(This article belongs to the Special Issue Green Synthesis of Polymers)
Show Figures

Figure 1

14 pages, 4981 KiB  
Article
Discovery of Environmental Nanoparticles in a Mineral Water Spring from Yiyuan County, Shandong Province, Eastern China: A New Form of Elements in Mineral Water
by Rui Liu, Zhiqiang Zhao, Minghui Lv, Hongwei Wang, Lixia Li, Shenting Gang, Lei Zuo, Peng Zhang, Yaqin Wang, Changsuo Li and Qianqian Lu
Water 2023, 15(19), 3497; https://doi.org/10.3390/w15193497 - 7 Oct 2023
Cited by 2 | Viewed by 1804
Abstract
Environmental nanoparticles are known to be present in various aquatic environments, exerting significant influences on water quality, particularly in water distribution systems. However, there has been a notable dearth of research on the presence and impact of environmental nanoparticles in mineral water, a [...] Read more.
Environmental nanoparticles are known to be present in various aquatic environments, exerting significant influences on water quality, particularly in water distribution systems. However, there has been a notable dearth of research on the presence and impact of environmental nanoparticles in mineral water, a unique water resource. In this study, we employed Nanoparticle Tracking Analysis (NTA) and conducted High-Resolution Transmission Electron Microscopy (HRTEM) to address this research gap. This groundbreaking study represents the first comprehensive exploration of environmental nanoparticles within natural mineral water from Zibo City, Shandong Province, China. The results of the NTA showed that the concentration of the particles was 5.5 × 105 particles/mL and the peak diameter of the size distribution was 180 nm. The HRTEM showed that the nanoparticles were granular, pinniform, rodlike, and flakey in shape, and some of the nanoparticles existed in aggregation. The energy-dispersive spectrometry results showed that most of the nanoparticles contained O, Mg, Ca, Si, Fe, Ti, and P, and some of them also contained F, V, S, and Mn. When combined with the characteristics of the selected area electron diffraction pattern, the nanoparticles were confirmed to be Ca-bearing nanoparticles, attapulgite nanorods, MnO2 nanosheets, and TiO2 nanoparticles. These findings shed light on a novel manifestation of elemental compositions in mineral water. Furthermore, considering the chemical and physical attributes of both the nanoparticles and mineral water, it is highly plausible that these environmental nanoparticles result from the weathering of minerals. The presence of these nanoparticles within mineral water offers a unique opportunity to advance our comprehension of nanoparticle behavior across diverse systems. Significantly, the realm of environmental nanoparticle science holds paramount importance for ongoing endeavors in ensuring water safety, enhancing treatment processes, and facilitating effective remediation procedures. Full article
(This article belongs to the Special Issue Origin, Characterization, and Protection of Spring Water)
Show Figures

Figure 1

13 pages, 2593 KiB  
Article
A Heterostructure Photoelectrode Based on Two-Dimensional Covalent Organic Framework Film Decorated TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Hydrogen Generation
by Yue Zhang, Yujie Li, Jing Yu, Bing Sun and Hong Shang
Molecules 2023, 28(2), 822; https://doi.org/10.3390/molecules28020822 - 13 Jan 2023
Cited by 4 | Viewed by 2434
Abstract
The well-defined heterostructure of the photocathode is desirable for photoelectrochemically producing hydrogen from aqueous solutions. Herein, enhanced heterostructures were fabricated based on typical stable covalent organic framework (TpPa-1) films and TiO2 nanotube arrays (NTAs) as a proof-of-concept model to tune the photoelectrochemical [...] Read more.
The well-defined heterostructure of the photocathode is desirable for photoelectrochemically producing hydrogen from aqueous solutions. Herein, enhanced heterostructures were fabricated based on typical stable covalent organic framework (TpPa-1) films and TiO2 nanotube arrays (NTAs) as a proof-of-concept model to tune the photoelectrochemical (PEC) hydrogen generation by tailoring the photoelectrode microstructure and interfacial charge transport. Ultrathin TpPa-1 films were uniformly grown on the surface of TiO2 NTAs via a solvothermal condensation of building blocks by tuning the monomer concentration. The Pt1@TpPa-1/TiO2-NTAs photoelectrode with single-atom Pt1 as a co-catalyst demonstrated improved visible-light response, enhanced photoconductance, lower onset potential, and decreased Tafel slope value for hydrogen evolution. The hydrogen evolution rate of the Pt1@TpPa-1/TiO2-NTAs photoelectrode was five times that of Pt1@TpPa-1 under AM 1.5 simulated sunlight irradiation and the bias voltage of 0 V. A lower overpotential was recorded as 77 mV@10 mA cm−2 and a higher photocurrent density as 1.63 mA cm−2. The hydrogen evolution performance of Pt1@TpPa-1/TiO2-NTAs photoelectrodes may benefit from the well-matched band structures, effective charge separation, lower interfacial resistance, abundant interfacial microstructural sites, and surficial hydrophilicity. This work may raise a promising way to design an efficient PEC system for hydrogen evolution by tuning well-defined heterojunctions and interfacial microstructures. Full article
(This article belongs to the Special Issue Chemical Functionalization of Two-Dimensional Materials)
Show Figures

Figure 1

10 pages, 5656 KiB  
Article
Simulation Calculation Verification of Graphene Oxide-Decorated Silver Nanoparticles Growing on Titania Nanotube Array as SERS Sensor Substrate
by Yibing Xie
Chemosensors 2022, 10(12), 507; https://doi.org/10.3390/chemosensors10120507 - 30 Nov 2022
Cited by 9 | Viewed by 2216
Abstract
Graphene oxide-decorated silver nanoparticles growing on titania nanotube array (GO/Ag/TiO2 NTA) were designed as active Surface-enhanced Raman scattering (SERS) sensor substrates for sensitive determination of the organic compound bisphenol A. The theoretical simulation calculation and experimental measurements have been adopted to investigate [...] Read more.
Graphene oxide-decorated silver nanoparticles growing on titania nanotube array (GO/Ag/TiO2 NTA) were designed as active Surface-enhanced Raman scattering (SERS) sensor substrates for sensitive determination of the organic compound bisphenol A. The theoretical simulation calculation and experimental measurements have been adopted to investigate the electronic and sensing properties of GO/Ag/TiO2 NTA SERS substrate. The molecule adsorption and surface energy are applied to investigate the interfacial interaction between the SERS substrate and the organic molecule. The Raman spectrum response intensity and the electron transfer behavior are applied to investigate sensing activity of GO/Ag/TiO2 NTA SERS substrate. The specific adsorption amount of BPA is 3.3, 7.1, and 52.4 nmol cm−2 for TiO2, Ag/TiO2, and GO/Ag/TiO2 NTA, respectively, presenting superior adsorption and aggregation capability. GO/Ag/TiO2 NTA SERS sensor accordingly achieves the low detection limit of 5 × 10−7 M for bisphenol A molecule. The density functional theory simulation calculation proves that GO/Ag/TiO2 reveals a higher density of states, lower HOMO-LUMO gap, stronger electrostatic interaction, and similar band gaps in comparison with Ag/TiO2. Binary-interfaced GO/Ag/TiO2 presents a more declined molecule structure surface energy of 5.87 eV rather than 4.12 eV for mono-interfaced Ag/TiO2. GO/Ag/TiO2 also exhibits a more declined surface adsorption energy of 7.81 eV rather than 4.32 eV for Ag/TiO2 in the adsorption of bisphenol A. The simulation calculation verification results well confirm the superior activity of GO/Ag/TiO2 NTA substrate for sensitive detection and quantitative determination of the organic compound bisphenol A. Full article
(This article belongs to the Special Issue Nanocomposites for SERS Sensing)
Show Figures

Figure 1

41 pages, 13050 KiB  
Article
Comprehension of the Synergistic Effect between m&t-BiVO4/TiO2-NTAs Nano-Heterostructures and Oxygen Vacancy for Elevated Charge Transfer and Enhanced Photoelectrochemical Performances
by Zhufeng Shao, Jianyong Cheng, Yonglong Zhang, Yajing Peng, Libin Shi and Min Zhong
Nanomaterials 2022, 12(22), 4042; https://doi.org/10.3390/nano12224042 - 17 Nov 2022
Cited by 5 | Viewed by 2212
Abstract
Through the utilization of a facile procedure combined with anodization and hydrothermal synthesis, highly ordered alignment TiO2 nanotube arrays (TiO2-NTAs) were decorated with BiVO4 with distinctive crystallization phases of monoclinic scheelite (m-BiVO4) and tetragonal zircon (t-BiVO4 [...] Read more.
Through the utilization of a facile procedure combined with anodization and hydrothermal synthesis, highly ordered alignment TiO2 nanotube arrays (TiO2-NTAs) were decorated with BiVO4 with distinctive crystallization phases of monoclinic scheelite (m-BiVO4) and tetragonal zircon (t-BiVO4), favorably constructing different molar ratios and concentrations of oxygen vacancies (Vo) for m&t-BiVO4/TiO2-NTAs heterostructured nanohybrids. Simultaneously, the m&t-BiVO4/TiO2-NTAs nanocomposites significantly promoted photoelectrochemical (PEC) activity, tested under UV–visible light irradiation, through photocurrent density testing and electrochemical impedance spectra, which were derived from the positive synergistic effect between nanohetero-interfaces and Vo defects induced energetic charge transfer (CT). In addition, a proposed self-consistent interfacial CT mechanism and a convincing quantitative dynamic process (i.e., rate constant of CT) for m&t-BiVO4/TiO2-NTAs nanoheterojunctions are supported by time-resolved photoluminescence and nanosecond time-resolved transient photoluminescence spectra, respectively. Based on the scheme, the m&t-BiVO4/TiO2-NTAs-10 nanohybrids exhibited a photodegradation rate of 97% toward degradation of methyl orange irradiated by UV–visible light, 1.14- and 1.04-fold that of m&t-BiVO4/TiO2-NTAs-5 and m&t-BiVO4/TiO2-NTAs-20, respectively. Furthermore, the m&t-BiVO4/TiO2-NTAs-10 nanohybrids showed excellent PEC biosensing performance with a detection limit of 2.6 μM and a sensitivity of 960 mA cm−2 M−1 for the detection of glutathione. Additionally, the gas-sensing performance of m&t-BiVO4/TiO2-NTAs-10 is distinctly superior to that of m&t-BiVO4/TiO2-NTAs-5 and m&t-BiVO4/TiO2-NTAs-20 in terms of sensitivity and response speed. Full article
Show Figures

Figure 1

14 pages, 3508 KiB  
Article
Photocatalytic Activity of Sulfanyl Porphyrazine/Titanium Dioxide Nanocomposites in Degradation of Organic Pollutants
by Tomasz Koczorowski, Barbara Wicher, Rafal Krakowiak, Kinga Mylkie, Aleksandra Marusiak, Ewa Tykarska and Marta Ziegler-Borowska
Materials 2022, 15(20), 7264; https://doi.org/10.3390/ma15207264 - 18 Oct 2022
Viewed by 2196
Abstract
Magnesium(II) sulfanyl porphyrazine with peripheral morpholinethoxy substituents was embedded on the surface of titanium(IV) dioxide nanoparticles. The obtained nanocomposites were characterized with the use of particle size and distribution (NTA analysis), electron microscopy (SEM), thermal analysis (TGA), FTIR–ATR spectroscopy, and X-ray powder diffraction [...] Read more.
Magnesium(II) sulfanyl porphyrazine with peripheral morpholinethoxy substituents was embedded on the surface of titanium(IV) dioxide nanoparticles. The obtained nanocomposites were characterized with the use of particle size and distribution (NTA analysis), electron microscopy (SEM), thermal analysis (TGA), FTIR–ATR spectroscopy, and X-ray powder diffraction (XRD). The measured particle size of the obtained material was 327.4 ± 15.5 nm. Analysis with XRD showed no visible changes in the crystallinity of the material after deposition of porphyrazine on the TiO2 surface. However, SEM images revealed noticeable changes in the morphology of the obtained hybrid material: higher aggregation and less ordered structure of the aggregates. The TGA analysis revealed the lost 3.6% (0.4 mg) of the mass of obtained material in the range 250–550 °C. In the FTIR–ATR analysis, C-H stretching vibratins in the range of 3000–2800 cm−1, originating from porphyrazine moieties, were detected. The photocatalytic applicability of the nanomaterial was assessed in photodegradation studies of methylene blue and bisphenol A as reference environmental pollutants. In addition, the photocatalytic degradation of carbamazepine with porphyrazine/TiO2 hybrids as photocatalysts was studied, accompanied by an HPLC chromatography assessment of photodegradation. In total, 43% of the initial concentration was achieved in the case of bisphenol A, after 4 h of irradiation, whereas 57% was achieved in the case of carbamazepine. In each photodegradation reaction, the activity of the obtained photocatalytic nanomaterial was proved with almost linear degradation. The photodegradation reaction rate constants were calculated, and revealed 5.75 × 10−5 s−1 for bisphenol A and 5.66 × 10−5 s−1 for carbamazepine. Full article
Show Figures

Figure 1

16 pages, 5073 KiB  
Article
Highly Efficient CuInSe2 Sensitized TiO2 Nanotube Films for Photocathodic Protection of 316 Stainless Steel
by Zhanyuan Yang, Hong Li, Xingqiang Cui, Jinke Zhu, Yanhui Li, Pengfei Zhang and Junru Li
Coatings 2022, 12(10), 1448; https://doi.org/10.3390/coatings12101448 - 30 Sep 2022
Cited by 9 | Viewed by 1935
Abstract
CuInSe2 nanoparticles were successfully deposited on the surface of TiO2 nanotube arrays (NTAs) by a solvothermal method for the photocathodic protection (PCP) of metals. Compared with TiO2 NTAs, the CuInSe2/TiO2 composites exhibited stronger visible light absorption and [...] Read more.
CuInSe2 nanoparticles were successfully deposited on the surface of TiO2 nanotube arrays (NTAs) by a solvothermal method for the photocathodic protection (PCP) of metals. Compared with TiO2 NTAs, the CuInSe2/TiO2 composites exhibited stronger visible light absorption and higher photoelectric conversion efficiency. After 316 Stainless Steel (SS) was coupled with CuInSe2/TiO2, the potential of 316 SS could drop to −0.90 V. The photocurrent density of CuInSe2/TiO2 connected to 316 SS reached 140 μA cm−2, which was four times that of TiO2 NTAs. The composites exhibited a protective effect in the dark state for more than 8 h after 4 h of visible light illumination. The above could be attributed to increased visible light absorption, the extended lifetime of photogenerated electrons, and generation of oxygen vacancies. Full article
Show Figures

Graphical abstract

19 pages, 5316 KiB  
Article
Gallic Acid-Functionalized, TiO2-Based Nanomaterial—Preparation, Physicochemical and Biological Properties
by Pawel Bakun, Beata Czarczynska-Goslinska, Dariusz T. Mlynarczyk, Marika Musielak, Kinga Mylkie, Jolanta Dlugaszewska, Tomasz Koczorowski, Wiktoria M. Suchorska, Marta Ziegler-Borowska, Tomasz Goslinski and Rafal Krakowiak
Materials 2022, 15(12), 4177; https://doi.org/10.3390/ma15124177 - 13 Jun 2022
Cited by 6 | Viewed by 3024
Abstract
Wound healing and skin tissue regeneration remain the most critical challenges faced by medical professionals. Titanium(IV) oxide-based materials were proposed as components of pharmaceutical formulations for the treatment of difficult-to-heal wounds and unsightly scarring. A gallic acid-functionalized TiO2 nanomaterial (TiO2-GA) [...] Read more.
Wound healing and skin tissue regeneration remain the most critical challenges faced by medical professionals. Titanium(IV) oxide-based materials were proposed as components of pharmaceutical formulations for the treatment of difficult-to-heal wounds and unsightly scarring. A gallic acid-functionalized TiO2 nanomaterial (TiO2-GA) was obtained using the self-assembly technique and characterized using the following methods: scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), X-ray powder diffraction (XRPD), infrared spectroscopy (IR), Raman spectroscopy and thermogravimetry (TG). Additionally, physicochemical and biological tests (DPPH assay, Microtox® acute toxicity test, MTT assay) were performed to assess antioxidant properties as well as to determine the cytotoxicity of the novel material against eukaryotic (MRC-5 pd19 fibroblasts) and prokaryotic (Staphylococcus aureus, Escherichia coli, Candida albicans, Aliivibrio fischeri) cells. To determine the photocytotoxicity of the material, specific tests were carried out with and without exposure to visible light lamps (425 nm). Following the results, the TiO2-GA material could be considered an additive to dressings and rinsing suspensions for the treatment of difficult-to-heal wounds that are at risk of bacterial infections. Full article
(This article belongs to the Special Issue Nanostructured Materials for Biomedical Applications)
Show Figures

Figure 1

12 pages, 2467 KiB  
Article
Black 3D-TiO2 Nanotube Arrays on Ti Meshes for Boosted Photoelectrochemical Water Splitting
by Ming Meng, Yamin Feng, Chunyang Li, Zhixing Gan, Honglei Yuan and Honghui Zhang
Nanomaterials 2022, 12(9), 1447; https://doi.org/10.3390/nano12091447 - 24 Apr 2022
Cited by 7 | Viewed by 2550
Abstract
Black 3D-TiO2 nanotube arrays are successfully fabricated on the Ti meshes through a facile electrochemical reduction method. The optimized black 3D-TiO2 nanotubes arrays yield a maximal photocurrent density of 1.6 mA/cm2 at 0.22 V vs. Ag/AgCl with Faradic efficiency of [...] Read more.
Black 3D-TiO2 nanotube arrays are successfully fabricated on the Ti meshes through a facile electrochemical reduction method. The optimized black 3D-TiO2 nanotubes arrays yield a maximal photocurrent density of 1.6 mA/cm2 at 0.22 V vs. Ag/AgCl with Faradic efficiency of 100%, which is about four times larger than that of the pristine 3D-TiO2 NTAs (0.4 mA/cm2). Such boosted PEC water splitting activity primarily originates from the introduction of the oxygen vacancies, which results in the bandgap shrinkage of the 3D-TiO2 NTAs, boosting the utilization efficiency of visible light including the incident, reflected and/or refracted visible light captured by the 3D configuration. Moreover, the oxygen vacancies (Ti3+) can work as electron donors, which leads to the enhanced electronic conductivity and upward shift of the Fermi energy level, and thereby facilitating the transfer and separation of the photogenerated charge carrier at the semiconductor-electrolyte interface. This work offers a new opportunity to promote the PEC water splitting activity of TiO2-based photoelectrodes. Full article
(This article belongs to the Special Issue Advance in Photoactive Nanomaterials)
Show Figures

Graphical abstract

15 pages, 1503 KiB  
Article
Analytical Parameters of a Novel Glucose Biosensor Based on Grafted PFM as a Covalent Immobilization Technique
by Margalida Artigues, Joan Gilabert-Porres, Robert Texidó, Salvador Borrós, Jordi Abellà and Sergi Colominas
Sensors 2021, 21(12), 4185; https://doi.org/10.3390/s21124185 - 18 Jun 2021
Cited by 15 | Viewed by 4513
Abstract
Bioanalytical methods, in particular electrochemical biosensors, are increasingly used in different industrial sectors due to their simplicity, low cost, and fast response. However, to be able to reliably use this type of device, it is necessary to undertake in-depth evaluation of their fundamental [...] Read more.
Bioanalytical methods, in particular electrochemical biosensors, are increasingly used in different industrial sectors due to their simplicity, low cost, and fast response. However, to be able to reliably use this type of device, it is necessary to undertake in-depth evaluation of their fundamental analytical parameters. In this work, analytical parameters of an amperometric biosensor based on covalent immobilization of glucose oxidase (GOx) were evaluated. GOx was immobilized using plasma-grafted pentafluorophenyl methacrylate (pgPFM) as an anchor onto a tailored HEMA-co-EGDA hydrogel that coats a titanium dioxide nanotubes array (TiO2NTAs). Finally, chitosan was used to protect the enzyme molecules. The biosensor offered outstanding analytical parameters: repeatability (RSD = 1.7%), reproducibility (RSD = 1.3%), accuracy (deviation = 4.8%), and robustness (RSD = 2.4%). In addition, the Ti/TiO2NTAs/ppHEMA-co-EGDA/pgPFM/GOx/Chitosan biosensor showed good long-term stability; after 20 days, it retained 89% of its initial sensitivity. Finally, glucose concentrations of different food samples were measured and compared using an official standard method (HPLC). Deviation was lower than 10% in all measured samples. Therefore, the developed biosensor can be considered to be a reliable analytical tool for quantification measurements. Full article
Show Figures

Graphical abstract

18 pages, 7595 KiB  
Article
The Photocatalytic and Antibacterial Performance of Nitrogen-Doped TiO2: Surface-Structure Dependence and Silver-Deposition Effect
by Abdul Wafi, Erzsébet Szabó-Bárdos, Ottó Horváth, Mihály Pósfai, Éva Makó, Tatjána Juzsakova and Orsolya Fónagy
Nanomaterials 2020, 10(11), 2261; https://doi.org/10.3390/nano10112261 - 15 Nov 2020
Cited by 18 | Viewed by 3790
Abstract
Catalysts for visible-light-driven oxidative cleaning processes and antibacterial applications (also in the dark) were developed. In order to extend the photoactivity of titanium dioxide into the visible region, nitrogen-doped TiO2 catalysts with hollow and non-hollow structures were synthesized by co-precipitation (NT-A) and [...] Read more.
Catalysts for visible-light-driven oxidative cleaning processes and antibacterial applications (also in the dark) were developed. In order to extend the photoactivity of titanium dioxide into the visible region, nitrogen-doped TiO2 catalysts with hollow and non-hollow structures were synthesized by co-precipitation (NT-A) and sol–gel (NT-U) methods, respectively. To increase their photocatalytic and antibacterial efficiencies, various amounts of silver were successfully loaded on the surfaces of these catalysts by using a facile photo-deposition technique. Their physical and chemical properties were evaluated by using scanning electron microscopy (SEM), transmission electron microscopy–energy dispersive X-ray spectroscopy (TEM–EDS), Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). The photocatalytic performances of the synthesized catalysts were examined in coumarin and 1,4-hydroquinone solutions. The results showed that the hollow structure of NT-A played an important role in obtaining high specific surface area and appreciable photoactivity. In addition, Ag-loading on the surface of non-hollow structured NT-U could double the photocatalytic performance with an optimum Ag concentration of 10−6 mol g−1, while a slight but monotonous decrease was caused in this respect for the hollow surface of NTA upon increasing Ag concentration. Comparing the catalysts with different structures regarding the photocatalytic performance, silverized non-hollow NT-U proved competitive with the hollow NT-A catalyst without Ag-loading for efficient visible-light-driven photocatalytic oxidative degradations. The former one, due to the silver nanoparticles on the catalyst surface, displayed an appreciable antibacterial activity, which was comparable to that of a reference material practically applied for disinfection in polymer coatings. Full article
(This article belongs to the Special Issue Nano‐Photocatalytic Materials: Possibilities and Challenges)
Show Figures

Graphical abstract

Back to TopTop