Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = Ti-modified Co3O4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4894 KiB  
Article
Ag-Cu Synergism-Driven Oxygen Structure Modulation Promotes Low-Temperature NOx and CO Abatement
by Ruoxin Li, Jiuhong Wei, Bin Jia, Jun Liu, Xiaoqing Liu, Ying Wang, Yuqiong Zhao, Guoqiang Li and Guojie Zhang
Catalysts 2025, 15(7), 674; https://doi.org/10.3390/catal15070674 - 11 Jul 2025
Viewed by 352
Abstract
The efficient simultaneous removal of NOx and CO from sintering flue gas under low-temperature conditions (110–180 °C) in iron and steel enterprises remains a significant challenge in the field of environmental catalysis. In this study, we present an innovative strategy to enhance [...] Read more.
The efficient simultaneous removal of NOx and CO from sintering flue gas under low-temperature conditions (110–180 °C) in iron and steel enterprises remains a significant challenge in the field of environmental catalysis. In this study, we present an innovative strategy to enhance the performance of CuSmTi catalysts through silver modification, yielding a bifunctional system capable of oxygen structure regulation and demonstrating superior activity for the combined NH3-SCR and CO oxidation reactions under low-temperature, oxygen-rich conditions. The modified AgCuSmTi catalyst achieves complete NO conversion at 150 °C, representing a 50 °C reduction compared to the unmodified CuSmTi catalyst (T100% = 200 °C). Moreover, the catalyst exhibits over 90% N2 selectivity across a broad temperature range of 150–300 °C, while achieving full CO oxidation at 175 °C. A series of characterization techniques, including XRD, Raman spectroscopy, N2 adsorption, XPS, and O2-TPD, were employed to elucidate the Ag-Cu interaction. These modifications effectively optimize the surface physical structure, modulate the distribution of acid sites, increase the proportion of Lewis acid sites, and enhance the activity of lattice oxygen species. As a result, they effectively promote the adsorption and activation of reactants, as well as electron transfer between active species, thereby significantly enhancing the low-temperature performance of the catalyst. Furthermore, in situ DRIFTS investigations reveal the reaction mechanisms involved in NH3-SCR and CO oxidation over the Ag-modified CuSmTi catalyst. The NH3-SCR process predominantly follows the L-H mechanism, with partial contribution from the E-R mechanism, whereas CO oxidation proceeds via the MvK mechanism. This work demonstrates that Ag modification is an effective approach for enhancing the low-temperature performance of CuSmTi-based catalysts, offering a promising technical solution for the simultaneous control of NOx and CO emissions in industrial flue gases. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Graphical abstract

15 pages, 9578 KiB  
Article
Interface Engineering of NCMA Cathodes with LATP Coatings for High-Performance Solid-State Lithium Batteries
by Shih-Ping Cho, Muhammad Usman Hameed, Chien-Te Hsieh and Wei-Ren Liu
Nanomaterials 2025, 15(14), 1057; https://doi.org/10.3390/nano15141057 - 8 Jul 2025
Viewed by 384
Abstract
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of [...] Read more.
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of NCMA83 (LiNi0.83Co0.06Mn0.06Al0.05O2) cathodes. Compared to conventional combinations with LPSC (Li6PS5Cl) solid electrolytes, LATP coatings significantly reduce interfacial reactivity and improve cycling stability. Structural and morphological analyses reveal that LATP coatings maintain the crystallinity of NCMA83 while fine-tuning its lattice stress. Electrochemical testing demonstrates that LATP-modified samples (83L5) achieve superior capacity retention (65 mAh/g after 50 cycles) and reduced impedance (Rct ~200 Ω), compared to unmodified samples (83L0). These results highlight LATP’s potential as a surface engineering solution to mitigate degradation effects, enhance ionic conductivity, and extend the lifespan of high-capacity SSBs. Full article
(This article belongs to the Topic Surface Science of Materials)
Show Figures

Figure 1

13 pages, 2042 KiB  
Article
Degradation of Polypropylene and Polypropylene Compounds on Co-Rotating Twin-Screw Extruders
by Paul Albrecht, Matthias Altepeter and Florian Brüning
Polymers 2025, 17(11), 1509; https://doi.org/10.3390/polym17111509 - 28 May 2025
Viewed by 679
Abstract
The degradation of polypropylene (PP) through thermal and mechanical stress, as well as the influence of oxygen, are unavoidable when processing on a co-rotating twin-screw extruder. In previous studies, a mathematical model was developed to predict the degradation while compounding on different twin-screw [...] Read more.
The degradation of polypropylene (PP) through thermal and mechanical stress, as well as the influence of oxygen, are unavoidable when processing on a co-rotating twin-screw extruder. In previous studies, a mathematical model was developed to predict the degradation while compounding on different twin-screw extruder sizes. Additionally, the examination of filled PPs was conducted. To this end, a range of operating parameters and extruder sizes were used to process PP, and the molar mass was then determined by melt flow rate (MFR) and gel permeation chromatography (GPC) measurements to derive the degree of degradation. The model was then modified by adjusting the sensitivity parameters to allow the degradation behavior of the PPs to be described independently of extruder size. Consistent with prior research, comprehensive measurements of a PP/titanium dioxide (TiO2) compound revealed that, with a few exceptions, increasing temperatures and screw speeds and decreasing throughputs generally resulted in higher degradation. However, the application of the model to the compounds did not achieve good agreement with the measured degradation, indicating different degradation conditions due to the different thermodynamic and rheological properties of the compounds. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 7737 KiB  
Article
Photocatalytic Efficiency of Pure and Palladium Co-Catalytic Modified Binary System
by Nina Kaneva and Albena Bachvarova-Nedelcheva
Inorganics 2025, 13(5), 161; https://doi.org/10.3390/inorganics13050161 - 11 May 2025
Viewed by 579
Abstract
The present work examines pure and palladium photofixed TiO2 and binary (TiO2/ZnO) photocatalysts for breaking down tartrazine, a food coloring agent, in distilled water. Powders with the following compositions are obtained using the sol-gel process: 100TiO2, 10TiO2 [...] Read more.
The present work examines pure and palladium photofixed TiO2 and binary (TiO2/ZnO) photocatalysts for breaking down tartrazine, a food coloring agent, in distilled water. Powders with the following compositions are obtained using the sol-gel process: 100TiO2, 10TiO2/90ZnO, 50TiO2/50ZnO, and 90TiO2/10ZnO. The composite materials are analyzed using SEM-EDS, UV-Vis, DTA-TG, and X-ray diffraction. The synthesized gels are then photo-fixed with UV light to incorporate palladium ions and are also examined for tartrazine (E102) degradation. The photocatalytic tests were carried out in a cylindrical glass reactor illuminated by ultraviolet light. Compared to mixed binary catalysts, the prepared pure TiO2 catalyst demonstrated greater activity in the photodegradation of tartrazine (E102). The further of a specific quantity of zinc oxide reduced the catalytic properties of TiO2. The recombination of photoinduced electron-hole pairs in ZnO may account for this. In comparison to the pure samples, the co-catalytic palladium-modified gels exhibited higher photocatalytic efficiency. Heterojunction and palladium modification of the composites partially captured and transferred the electrons. Consequently, the longer lifetime of the photogenerated charges improved the catalytic activity of the palladium titanium dioxide and binary gels. Additionally, under UV light, pure and palladium photofixed TiO2 and binary sol-gel samples displayed excellent stability for tartrazine photodegradation. Full article
(This article belongs to the Special Issue Metal Catalyst Discovery, Design and Synthesis)
Show Figures

Figure 1

30 pages, 10546 KiB  
Article
Preparation and Performance of Environmentally Friendly Micro-Surfacing for Degradable Automobile Exhaust Gas
by Tengteng Guo, Yuanzhao Chen, Chenze Fang, Zhenxia Li, Da Li, Qingyun He and Haijun Chen
Polymers 2025, 17(6), 760; https://doi.org/10.3390/polym17060760 - 13 Mar 2025
Viewed by 514
Abstract
To address the issue of air pollution caused by automobile exhaust in China, a titanium dioxide/graphite carbon nitride (TiO2/g-C3N4) composite photocatalyst capable of degrading automobile exhaust was prepared in this study. It was used as an additive [...] Read more.
To address the issue of air pollution caused by automobile exhaust in China, a titanium dioxide/graphite carbon nitride (TiO2/g-C3N4) composite photocatalyst capable of degrading automobile exhaust was prepared in this study. It was used as an additive to modify styrene–-butadiene latex (SBR) emulsified asphalt. The basic properties of modified emulsified asphalt before and after aging were analyzed, and the dosage range of TiO2/g-C3N4 (TCN) was determined. The environmentally friendly micro-surfacing of degradable automobile exhaust was prepared. Based on 1 h and 6 d wet wheel wear test, rutting deformation test, surface structure depth test, and pendulum friction coefficient test, the road performance of TCN environmentally friendly micro-surfacing mixture with different contents was analyzed and evaluated, and the effect of environmentally friendly degradation of automobile exhaust was studied by a self-made degradation device. The results show that when the mass ratio of TiO2 and melamine was 1:4, the TCN composite photocatalyst had strong photocatalytic activity. The crystal structure of TiO2 and g-C3N4 was not damaged during the synthesis process. The g-C3N4 inhibited the agglomeration of TiO2. The introduction of N-Ti bond changed the electronic structure of TiO2, narrowed the band gap and broadened the visible light response range. When the TCN content was in the range of 1~7%, the softening point of SBR- modified emulsified asphalt increased with the increase in TCN content, the penetration decreased, the ductility decreased gradually, and the storage stability increased gradually. The penetration ratio and ductility ratio of the composite-modified emulsified asphalt after aging increased with the increase in TCN content, and the increment of the softening point decreased. This shows that the TCN content is beneficial to the high-temperature performance and anti-aging performance of SBR-modified emulsified asphalt, and has an adverse effect on low temperature performance and storage stability. The addition of TCN can improve the wear resistance and rutting resistance of the micro-surfacing mixture, and has no effect on the water damage resistance and skid resistance. The environment-friendly micro-surfacing asphalt mixture had a significant degradation effect on NO, CO, and HC. With the increase in TCN content, the degradation efficiency of the three gases was on the rise. When the content was 5%, the degradation rates of NO, CO, and HC were 37.16%, 25.72%, and 20.44%, respectively, which are 2.34 times, 2.47, times and 2.30 times that of the 1% content, and the degradation effect was significantly improved. Full article
Show Figures

Figure 1

11 pages, 5898 KiB  
Article
Promoting CO2 Methanation Performance over NiO@TiO2 Nanoparticles via Oxygen Vacancies Enriched Fe-Oxide Modifiers Assisted Surface and Interface Engineering
by Dinesh Bhalothia, Amisha Beniwal, Ashima Bagaria and Tsan-Yao Chen
Processes 2025, 13(3), 834; https://doi.org/10.3390/pr13030834 - 12 Mar 2025
Cited by 1 | Viewed by 1031
Abstract
Surface and interface engineering play a crucial role in enhancing the CO2 methanation performance of heterogeneous catalysts. In this study, we present NiO-TiO2 nanoparticles modified with oxygen vacancy-rich Fe3O4 clusters, significantly improving CO2 methanation performance. The as-prepared [...] Read more.
Surface and interface engineering play a crucial role in enhancing the CO2 methanation performance of heterogeneous catalysts. In this study, we present NiO-TiO2 nanoparticles modified with oxygen vacancy-rich Fe3O4 clusters, significantly improving CO2 methanation performance. The as-prepared catalyst (referred to as NiO@Fe3O4) achieves an impressive CH4 selectivity of 91.2% and a methane production yield of 6400.50 μmol/g at 573 K, an approximately 83% increase compared to unmodified NiO nanoparticles (3154.2 μmol/g). The results of physical characterizations and gas chromatography confirm that the outstanding activity and selectivity of the NiO@Fe3O4 catalyst arise from the synergistic interaction between its surface-active sites. Notably, the high concentration of oxygen vacancies within Fe3O4 enhances CO2 activation, while adjacent NiO sites efficiently promote H2 dissociation. These findings provide valuable insights into the rational design of heterogeneous catalysts, highlighting the advantages of Fe3O4 as an efficient promoter over conventional metal oxides for catalytic applications. Additionally, we envision that the obtained results will help to design transition metal-based industry viable catalysts for a diverse range of applications. Full article
(This article belongs to the Special Issue Synthesis, Application and Structural Analysis of Composite Materials)
Show Figures

Figure 1

19 pages, 2712 KiB  
Article
Implementing an Analytical Model to Elucidate the Impacts of Nanostructure Size and Topology of Morphologically Diverse Zinc Oxide on Gas Sensing
by Sanju Gupta and Haiyang Zou
Chemosensors 2025, 13(2), 38; https://doi.org/10.3390/chemosensors13020038 - 26 Jan 2025
Cited by 3 | Viewed by 3011
Abstract
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly [...] Read more.
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly influenced the gas sensors by means of surface catalytic activities. This work examines the impact of morphological and topological networked assembly of zinc oxide (ZnO) nanostructures, including microparticles and nanoparticles (0D), nanowires and nanorods (1D), nanodisks (2D), and hierarchical networks of tetrapods (3D). Gas sensors consisting of vertically aligned ZnO nanorods (ZnO–NR) and topologically interconnected tetrapods (T–ZnO) of varying diameter and arm thickness synthesized using aqueous phase deposition and flame transport method on interdigitated Pt electrodes are evaluated for methane detection. Smaller-diameter nanorods and tetrapod arms (nanowire-like), having higher surface-to-volume ratios with reasonable porosity, exhibit improved sensing behavior. Interestingly, when the nanorods’ diameter and interconnected tetrapod arm thickness were comparable to the width of the depletion layer, a significant increase in sensitivity (from 2 to 30) and reduction in response/recovery time (from 58 s to 5.9 s) resulted, ascribed to rapid desorption of analyte species. Additionally, nanoparticles surface-catalyzed with Pd (~50 nm) accelerated gas sensing and lowered operating temperature (from 200 °C to 50 °C) when combined with UV photoactivation. We modeled the experimental findings using a modified general formula for ZnO methane sensors derived from the catalytic chemical reaction between methane molecules and oxygen ions and considered the structural surface-to-volume ratios (S/V) and electronic depletion region width (Ld) applicable to other gas sensors (e.g., SnO2, TiO2, MoO3, and WO3). Finally, the effects of UV light excitation reducing detection temperature help to break through the bottleneck of ZnO-based materials as energy-saving chemiresistors and promote applications relevant to environmental and industrial harmful gas detection. Full article
Show Figures

Figure 1

17 pages, 4031 KiB  
Article
The Effect of the Metal Oxide as the Support for Silver Nanoparticles on the Catalytic Activity for Ammonia Ozonation
by Razvan-Nicolae State, Maria-Alexandra Morosan, Liubovi Cretu, Alexandru-Ioan Straca, Anca Vasile, Veronica Bratan, Daniela Culita, Irina Atkinson, Ioan Balint and Florica Papa
Catalysts 2025, 15(2), 104; https://doi.org/10.3390/catal15020104 - 22 Jan 2025
Cited by 1 | Viewed by 1406
Abstract
Ammonia is one of the common inorganic pollutants in surface waters. It can come from a wide range of sources through the discharge of wastewater (industry, agriculture, and municipal waters). Catalytic ozonation reaction can efficiently remove ammonia nitrogen without introducing other pollutants and [...] Read more.
Ammonia is one of the common inorganic pollutants in surface waters. It can come from a wide range of sources through the discharge of wastewater (industry, agriculture, and municipal waters). Catalytic ozonation reaction can efficiently remove ammonia nitrogen without introducing other pollutants and improve the nitrogen selectivity of reaction products by controlling the reaction conditions. Catalysts based on silver nanoparticles (Ag NPs) have shown excellent O3 decomposition performance; therefore, they are promising catalysts for catalytic ammonia ozonation due to their high reactivity, stability, and selectivity to N2. In this study, we synthesized well-defined silver nanoparticles (Ag NPs) using a modified alkaline polyol method and then dispersed them on solid oxide supports (Fe3O4, TiO2, and WO3). Before being deposited on the oxide support, the silver nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-VIS spectroscopy. The obtained catalysts, Ag_Fe3O4, Ag_TiO2, and Ag_WO3 were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area analysis, UV-VIS spectroscopy, temperature-programmed reduction (H2-TPR), and temperature-programmed desorption (TPD) of CO2 and NH3. It has been demonstrated that the nature of the support significantly influences the physicochemical properties of the catalysts, as well as their catalytic performance in ammonia ozonation reaction. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 4355 KiB  
Article
The Bi-Modified (BiO)2CO3/TiO2 Heterojunction Enhances the Photocatalytic Degradation of Antibiotics
by Yue Gao, Tieping Cao, Jinfeng Du, Xuan Qi, Hao Yan and Xuefeng Xu
Catalysts 2025, 15(1), 56; https://doi.org/10.3390/catal15010056 - 9 Jan 2025
Cited by 3 | Viewed by 933
Abstract
The increasing concentration of antibiotics in natural water poses a significant threat to society’s sustainable development due to water pollution. Photocatalytic technology is an efficient and environmentally friendly approach to environmental purification, offering great potential for addressing pollution and attracting significant attention from [...] Read more.
The increasing concentration of antibiotics in natural water poses a significant threat to society’s sustainable development due to water pollution. Photocatalytic technology is an efficient and environmentally friendly approach to environmental purification, offering great potential for addressing pollution and attracting significant attention from scholars worldwide. TiO2, as a representative semiconductor photocatalytic material, exhibits strong oxidation ability and excellent biocompatibility. However, its wide band gap and the rapid recombination of photo-generated electron–hole pairs significantly limit its photocatalytic applications. Recent studies indicate that constructing heterojunctions with synergistic plasmonic effects is an effective strategy for developing high-performance photocatalysts. In this study, Bi metal nanoparticles and (BiO)2CO3 nanosheets were simultaneously grown on TiO2 nanofibers via an in situ hydrothermal method, successfully forming a Bi@(BiO)2CO3/TiO2 composite fiber photocatalyst with synergistic plasmonic effects. The surface plasmon resonance (SPR) effect of Bi nanoparticles combined with the (BiO)2CO3/TiO2 heterojunction enhances sunlight absorption, facilitates efficient separation of photo-generated carriers, and significantly strengthens the photo-oxidation and reduction abilities. This system effectively generates abundant hydroxyl (·OH) and superoxide (·O2−) radicals under sunlight excitation. Consequently, Bi@(BiO)2CO3/TiO2 exhibited outstanding photocatalytic performance. Under simulated sunlight for 60 min, the photodegradation efficiencies of the quinolone antibiotics lomefloxacin, ciprofloxacin, and norfloxacin reached 93.2%, 97.5%, and 100%, respectively. Bi@(BiO)2CO3/TiO2 also demonstrates excellent stability and reusability. This study represents a significant step toward the application of TiO2-based photocatalyst materials in environmental purification. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

13 pages, 11740 KiB  
Article
Reinforcement of Polyethylene with Potassium Hexatitanate Whiskers: Importance of Polyvinylpyrrolidone Additive
by Qin Pan, Qinxiang Jia, Jin Xie, Xiaoyong Li, Yong Wu, Yang Sun, Suihong Chu, Bo Yang, Zhexi Chen and Kewei Peng
J. Compos. Sci. 2025, 9(1), 11; https://doi.org/10.3390/jcs9010011 - 2 Jan 2025
Viewed by 849
Abstract
Potassium hexatitanate whiskers are prepared and characterized in this study. The reinforcement of polyethylene with potassium hexatitanate whiskers is also investigated. The potassium hexatitanate whiskers are prepared through the calcination of TiO2 and K2CO3 at 1000 °C. It is [...] Read more.
Potassium hexatitanate whiskers are prepared and characterized in this study. The reinforcement of polyethylene with potassium hexatitanate whiskers is also investigated. The potassium hexatitanate whiskers are prepared through the calcination of TiO2 and K2CO3 at 1000 °C. It is determined that a polyvinylpyrrolidone additive is crucial for the formation of slender rod-like structures with smooth and flat surfaces and a high length-to-diameter ratio. For the surface modification of the whiskers, γ-aminopropyl triethoxysilane has been identified as the most effective coupling agent for enhancing mechanical properties. The whiskers have little change in shape after surface modification, and the majority of the whiskers still retain a considerable length-to-diameter ratio. The results of mechanical tests indicate that the tensile strength and the modulus of elasticity, as well as the shear strength and the shear elasticity, are enhanced to some extent. The tensile strength and the modulus of elasticity increase by 18.6% and 3.6%, respectively. The modified polyethylene composites show enhanced softness and elasticity. The elongation at the break for the prepared PE/PHT-2-1 composites increases significantly to 38.1%, significantly exceeding that of unfilled polyethylene (6.84%). Nevertheless, a suitable method is established for reinforcing thermoplastic polymers using inexpensive potassium hexatitanate whiskers. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Graphical abstract

15 pages, 3762 KiB  
Article
RuNi-Supported TiO2-Modified MgAl2O4 Catalyst for CO Selective Methanation in Hydrogen-Rich Gas
by Qin Su and Xinfa Dong
Catalysts 2025, 15(1), 18; https://doi.org/10.3390/catal15010018 - 29 Dec 2024
Viewed by 1029
Abstract
CO selective methanation is regarded as an efficient technological solution for hydrogen-rich gas purification in fuel cells. In this study, a series of bimetallic catalysts (Ru-Ni/xTiO2-MgAl2O4) were synthesized by impregnation method after surface modification of MgAl2 [...] Read more.
CO selective methanation is regarded as an efficient technological solution for hydrogen-rich gas purification in fuel cells. In this study, a series of bimetallic catalysts (Ru-Ni/xTiO2-MgAl2O4) were synthesized by impregnation method after surface modification of MgAl2O4 supports with different contents of TiO2. The prepared catalysts were characterized by XRD, BET, SEM, TEM, H2-TPR, CO-TPD, NH3-TPD, and XPS. The Ru-Ni/10TiO2-MgAl2O4 exhibited excellent CO-SMET performance, removing the CO in the H2-rich gas to less than 10 ppm with the selectivity above 50% in a temperature window range of 210–280 °C. The results showed that the TiO2-modified MgAl2O4 support not only improved the interaction between metal and support, and promoted the dispersion of active component nanoparticles on the support, but also introduced oxygen vacancies or defects in the catalyst and enhanced the acidity, resulting in better catalytic activity and stability. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

14 pages, 6536 KiB  
Article
Engineering of Metal–Organic Framework-Derived CoTiO3 Micro-Prisms for Lithium-Ion Batteries
by Tao Li, Minghui Song, Qi Zhang, Yifan Li, Gengchen Yu and Xue Bai
Molecules 2025, 30(1), 34; https://doi.org/10.3390/molecules30010034 - 26 Dec 2024
Cited by 2 | Viewed by 684
Abstract
Metal–organic framework (MOF)-derived transition metal compounds and their composites have attracted great interest for applications in energy conversion and storage. In this work, hexagonal micro-prisms of Ni-doped CoTiO3 composited with amorphous carbon (NixCTO/C) were synthesized using Ti-Co-based MOFs as precursors. [...] Read more.
Metal–organic framework (MOF)-derived transition metal compounds and their composites have attracted great interest for applications in energy conversion and storage. In this work, hexagonal micro-prisms of Ni-doped CoTiO3 composited with amorphous carbon (NixCTO/C) were synthesized using Ti-Co-based MOFs as precursors. The experimental results indicate the substitutional doping of Ni2+ for Co2+ in CoTiO3 (CTO), leading to improved conductivity, as further confirmed by density functional theory calculations. Thus, the carbon-free sample of Ni-doped CTO exhibits improved lithium storage properties compared to the pristine one. Furthermore, when coupled with in situ-formed carbon, the dually modified Ni0.05CTO/C micro-prisms demonstrated a significantly increased reversible capacity of 584.8 mA h g−1, excellent rate capability, and superior cycling stability at a high current density of 500 mA g−1. This enhanced electrochemical performance can be attributed to the synergistic effect of Ni doping and carbon coating. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

27 pages, 15561 KiB  
Article
Carbon-Negative Nano-TiO2-Modified Photocatalytic Cementitious Composites: Removal of Airborne Pollutants (NOx and O3) and Its Impact on CO2 Footprint
by Maciej Kalinowski, Karol Chilmon and Wioletta Jackiewicz-Rek
Coatings 2024, 14(12), 1607; https://doi.org/10.3390/coatings14121607 - 23 Dec 2024
Cited by 3 | Viewed by 2431
Abstract
This study explores the development and performance of photocatalytic cementitious composites modified with nano-TiO2 to address urban air quality and sustainability challenges. Nine mortar series were prepared, incorporating binders with varying carbon footprints and mass contents across different series. The interplay between [...] Read more.
This study explores the development and performance of photocatalytic cementitious composites modified with nano-TiO2 to address urban air quality and sustainability challenges. Nine mortar series were prepared, incorporating binders with varying carbon footprints and mass contents across different series. The interplay between the fundamental (abrasion resistance) and functional (air purification efficiency) properties of the composites’ surfaces and interfaces was investigated. The photocatalytic removal of airborne pollutants, specifically nitrogen oxides (NOx) and ozone (O3), was evaluated under simulated environmental conditions. The variations in binder composition influenced the composites’ overall initial carbon footprint and air purification efficiency. The assessment revealed a possible net decrease in carbon emissions over the life cycle of the composite due to the removal of ozone (greenhouse gas) and its precursor—NOx, highlighting the potential of photocatalytic cementitious composites for dual environmental benefits in an urban environment, emphasizing the critical role of surface and interface engineering in achieving carbon-negative composites. Full article
Show Figures

Figure 1

12 pages, 6778 KiB  
Article
Sintering Ag33 Nanoclusters on TiO2 Nanoparticles as an Efficient Catalyst for Nitroarene Reduction
by Weihua Zhang, Wenwen Yang, Jianglu Yuan, Huiping Zhao, Qingwen Han, Wanggang Fang, Defu Nie, Liqing He and Fan Tian
Materials 2024, 17(24), 6120; https://doi.org/10.3390/ma17246120 - 14 Dec 2024
Viewed by 1093
Abstract
Polydispersed Ag species-modified TiO2 samples with abundant oxygen vacancies were successfully prepared through the calcination of atomically precise Ag33 nanocluster-loaded TiO2 at an optimal temperature under a nitrogen atmosphere. The ligands of the Ag33 nanoclusters are removed by extracting [...] Read more.
Polydispersed Ag species-modified TiO2 samples with abundant oxygen vacancies were successfully prepared through the calcination of atomically precise Ag33 nanocluster-loaded TiO2 at an optimal temperature under a nitrogen atmosphere. The ligands of the Ag33 nanoclusters are removed by extracting lattice oxygen from TiO2 during the calcination, leading to the formation of CO2, SO2, and H2O vapor. This process simultaneously induces Ag species sintering on the surface of TiO2. The resulting nanocomposites exhibited excellent catalytic activity for the reduction of nitroarenes with NaBH4 as the reductant. This is attributed to the produced Ag species on the oxygen-deficient TiO2, which act as active centers for the catalytic process. Full article
Show Figures

Figure 1

19 pages, 6754 KiB  
Article
The Corrosion Performance of Hybrid Polyurea Coatings Modified with TiO2 Nanoparticles in a CO2 Environment
by Shanshan Si, Qi Wei, Binzhou Li, Yuanbo Jiang, Dayue Zhang, Yijia Wang, Yu Yang and Bingying Wang
Coatings 2024, 14(12), 1562; https://doi.org/10.3390/coatings14121562 - 13 Dec 2024
Cited by 1 | Viewed by 907
Abstract
To enhance the corrosion resistance of underground pipelines made of low carbon steel, nano-TiO2-modified polyurea was applied to their surface. The anti-corrosion performance of these nano-TiO2-modified coatings was tested by immersing them in a NACE (5 wt.% NaCl + [...] Read more.
To enhance the corrosion resistance of underground pipelines made of low carbon steel, nano-TiO2-modified polyurea was applied to their surface. The anti-corrosion performance of these nano-TiO2-modified coatings was tested by immersing them in a NACE (5 wt.% NaCl + 0.5 wt.% CH3COOH) solution under high temperatures and high CO2 pressures. The mass variation, SEM morphology, and open-circuit potential were determined. EIS tests, neutral salt spray tests, and contact angle measurements were carried out to analyze the effect of nanoparticles on corrosion resistance. Within the same pressure range, the polyurea coating shows the highest corrosion resistance when 5% TiO2 nanoparticles were added compared to that of polyurea coatings with 0%, 10%, and 15% TiO2 added. Coatings with 5% TiO2 nanoparticles showed rapid diffusion after being immersed for 96 h, indicating that the anti-corrosion performance of the coating weakened. Full article
Show Figures

Figure 1

Back to TopTop