Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = Ti-in-zircon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 18316 KB  
Article
Chemistry of Zircon and Its Implication on the Petrogenesis of Cretaceous Volcanic Rocks from the Southeastern Coast of Zhejiang Province, South China
by Zhijie Zeng, Zengcai Tang, Uzair Siddique, Yifan Wang, Jian Liu, Bingzhen Fu and Zilong Li
Minerals 2025, 15(11), 1147; https://doi.org/10.3390/min15111147 (registering DOI) - 31 Oct 2025
Abstract
The Cretaceous marks the peak of magmatic activity in southeastern (SE) China, which is attributed to the subduction of the paleo-Pacific plate beneath the South China Block. This region constitutes a significant igneous belt along the active continental margin of the western Pacific. [...] Read more.
The Cretaceous marks the peak of magmatic activity in southeastern (SE) China, which is attributed to the subduction of the paleo-Pacific plate beneath the South China Block. This region constitutes a significant igneous belt along the active continental margin of the western Pacific. Despite extensive research, the origin and evolution of Cretaceous felsic volcanic rocks are still debated. This study investigates the characteristics of zircon U-Pb-Hf isotopes and trace elements, and whole-rock geochemistry of Cretaceous volcanic rocks from the Wenzhou–Taizhou region in SE Zhejiang, and discusses their spatio-temporal patterns and petrogenesis. The results indicate that rhyolitic volcanic rocks formed during the period ca. 114 Ma and 95 Ma, representing two distinct magmatic episodes spanning the transition from the late Early to early Late Cretaceous. The late Early Cretaceous and early Late Cretaceous volcanic rocks are of a hybrid crust–mantle origin, as evidenced by their distinct Nb/Ta ratios, zircon εHf(t) values, and variable trace element enrichments (Ti, Hf, U, Nb, and Yb). These compositional signatures suggest partial melting of late Paleoproterozoic to early Mesoproterozoic basement materials, with increasing mantle contributions over time. Both volcanic phases exhibit elevated Nb/Yb, Th/Nb, and U/Yb ratios, indicating a subduction-modified source akin to arc magmas. Together with calculated initial melt temperatures (<800 °C for Early Cretaceous, >800 °C for Late Cretaceous) and whole-rock rare-earth elements (REEs) distribution patterns (U-shaped with δEu = 0.37–0.65, seagull-shaped with δEu = 0.19–0.62, respectively), it is suggested that both phases of the volcanic magmas were generated through water-assisted (hydrous) melting, whereas the later phase formed at relatively higher temperatures and with a diminished water contribution via dehydration melting under extensional conditions. The generation of voluminous high-silica magmas in the SE China coastal region is probably linked to the rollback and retreat of the paleo-Pacific plate. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

30 pages, 9920 KB  
Article
Genesis of Early Cretaceous Magmatism in the Western Gangdese Belt, Southern Tibet: Implications for Neo-Tethyan Oceanic Slab Subduction
by Jiqing Lin, Ke Gao, Zizheng Wang, Zhongbiao Xu and Yongping Pan
Minerals 2025, 15(11), 1143; https://doi.org/10.3390/min15111143 (registering DOI) - 30 Oct 2025
Abstract
Research on the Mesozoic–Cenozoic magmatism and the tectonic framework within the Lhasa Terrane is voluminous. However, the sparse documentation of Early Cretaceous magmatism in this region fuels ongoing debate over the prevailing tectonic regime during this time period (i.e., normal subduction vs. flat [...] Read more.
Research on the Mesozoic–Cenozoic magmatism and the tectonic framework within the Lhasa Terrane is voluminous. However, the sparse documentation of Early Cretaceous magmatism in this region fuels ongoing debate over the prevailing tectonic regime during this time period (i.e., normal subduction vs. flat subduction). The present study investigates the Luerma pyroxenite and Boyun granitoid in the Western Lhasa Terrane through zircon U-Pb dating, whole-rock geochemistry, mineral chemistry, and Sr-Nd-Hf isotopes. The findings date the formation of Luerma pyroxenite at 115 Ma and Boyun granites at 113 Ma to the Early Cretaceous period (115–113 Ma). SiO2 content of pyroxenite is relatively low (34.27–44.16 wt.%), characterized by an enrichment in large ion lithophile elements (LILEs), light rare earth elements (LREEs), and a depletion in heavy field strength elements (HSFEs), indicative of a metasomatic origin. The εNd (t) and εHf (t) values of the Early Cretaceous ultrabasic rocks range from +2.1 to +2.7 and −0.8 to +10.1, respectively, suggesting their derivation from an enriched mantle source with asthenospheric material incorporation. The Early Cretaceous granodiorites and their mafic enclaves belong to the high-K calc-alkaline series, and show enrichment in LILEs (e.g., Rb, Ba, U, and Th) and depletion in HFSEs (e.g., Nb, Ta, Ti, and Zr). The acidic rocks and their developed mafic enclaves exhibit the geochemical characteristics of trace elements found in island arc magmas. Their εNd (t) values are (−6.0–−5.0), while their εHf (t) values are (−11.7–−1.8); the MMEs εHf (t) values are (−4.1–+0.9). In summary, the Early Cretaceous pyroxenite in the Gangdese Belt originated from a combination of asthenospheric and enriched lithospheric mantle melts, while the granitoids were generated by partial melting of the mantle wedge, a process driven by metasomatism resulting from the slab-derived fluids. At the same time, heat from upwelling mantle-derived melts induced the partial melting of lower crustal materials, leading to the formation of acidic magmas through varying degrees of mixing with basic magmas. This study suggests that Early Cretaceous magmatic activity occurred within a northward subduction setting, characterized by the rotation and fragmentation of the Neo-Tethys oceanic crust. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

31 pages, 20520 KB  
Article
Genesis of the Baijianshan Skarn-Type Zn-Cu Polymetallic Deposit, Chinese Eastern Tianshan: Constraints from Geology, Geochronology and Geochemistry
by Fenwei Cheng, Shuai Zhang, Jianxin Wu, Baofeng Huang and Di Zhang
Minerals 2025, 15(11), 1107; https://doi.org/10.3390/min15111107 - 24 Oct 2025
Viewed by 211
Abstract
The Baijianshan deposit is the sole skarn Zn-Cu polymetallic deposit in the Xiaoshitouquan ore field, Xinjiang, China. Its ore genesis remains controversial, which hinders understanding of the relationship between skarn-type Zn-Cu and adjacent epithermal Ag-Cu-Pb-Zn mineralization and consequently impedes further regional exploration. LA-ICP-MS [...] Read more.
The Baijianshan deposit is the sole skarn Zn-Cu polymetallic deposit in the Xiaoshitouquan ore field, Xinjiang, China. Its ore genesis remains controversial, which hinders understanding of the relationship between skarn-type Zn-Cu and adjacent epithermal Ag-Cu-Pb-Zn mineralization and consequently impedes further regional exploration. LA-ICP-MS U-Pb dating on zircons from the granite and granite porphyry from the mining area yielded ages of 311 ± 1.7 Ma and 312 ± 1.6 Ma, respectively. The corresponding zircon εHf(t) values and TDM ages are 8.7–9.9 and 624–555 Ma for the granite, and 7.2–9.9 and 673–552 Ma for the granite porphyry. These granites are metaluminous, high-K calc-alkaline I-type granites, with high LREE/HREE ratios (4.92–9.03) and pronounced negative Eu anomalies. They are enriched in K, Th, U, Zr, and Hf, with significant depletions in Sr, P, and Ti. Combined geological and geochemical evidence indicate that these Late Carboniferous granites were derived from the juvenile crustal and formed in subduction-related back basin. Two-phase aqueous inclusions in the ore-bearing quartz and calcite have homogenization temperatures ranging from 117 to 207 °C and 112 to 160 °C, respectively, with the salinities in the ranges of 0.18~7.17 and 0.53~5.26 wt% NaCl eq. The S and Pb isotopic compositions of sulfides in the ores indicate that the ore-forming metals were sourced from the medium-acidic magmatite. The δ18OH2O and δDH2O values of hydrothermal fluids range from −6.97% to −5.84% and −106.8% to −99.6%, respectively, suggesting that the ore-forming fluids originated from the mixing of magmatic and meteoric water. Fluid mixing and corresponding conductive cooling were identified as the principal mechanism triggering the metallic mineral precipitation. The Baijianshan skarn Zn-Cu polymetallic deposit shares contemporaneous magmatic-mineralization ages and analogous material sources with the epithermal polymetallic deposits in the Xiaoshitouquan ore field, collectively constituting a unified skarn-epithermal metallogenic system. This hypothesis indicates that the deep parts of the epithermal deposits within the Yamansu volcanic rocks possess potential for exploring the porphyry-skarn-type deposits. Full article
Show Figures

Figure 1

24 pages, 12580 KB  
Article
The Early Cretaceous High-Nb Basalt and Arc Andesite Association in the Eastern Segment of the Altyn Tagh Fault: Petrological Records of Intracontinental Extension
by Lu-Qing Qin, Yong Bai, Yu An, Jin-Lin Wang, Ying-Ying Ma, Hai-Xin Lu and Yu-Hang Luo
Minerals 2025, 15(11), 1103; https://doi.org/10.3390/min15111103 - 23 Oct 2025
Viewed by 262
Abstract
The Altyn Tagh Fault plays a critical role in understanding the tectonic evolution of the northern margin of the Tibetan Plateau. However, considerable debate persists regarding its activity and deformation history. This study investigates volcanic rocks from the Beidayao-Jianquanzi-Hanxia-Hongliuxia area in the eastern [...] Read more.
The Altyn Tagh Fault plays a critical role in understanding the tectonic evolution of the northern margin of the Tibetan Plateau. However, considerable debate persists regarding its activity and deformation history. This study investigates volcanic rocks from the Beidayao-Jianquanzi-Hanxia-Hongliuxia area in the eastern segment of the fault. By employing zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd isotope analysis, we aim to elucidate their petrogenesis and tectonic setting, thereby providing new insights into the crustal evolution of the eastern Altyn Tagh Fault. Zircon U-Pb dating of the Hongliuxia rhyolite yields a weighted mean 206Pb/238U age of 106.6 ± 0.6 Ma, indicating an Early Cretaceous eruption. Geochemically, the western part of the study area (Beidayao and Jianquanzi) is dominated by basalts that exhibit significant enrichment in large ion lithophile elements and light rare earth elements, together with high Nb concentrations (>20 ppm), as well as high Nb/La (0.64–1.12) and Nb/U (29.8–35.42) ratios, consistent with the characteristics of high-Nb basalt. In contrast, the eastern area (Hanxia and Hongliuxia) is characterized by andesitic rocks that display typical continental arc affinities, marked by enrichment in Th, U, and Pb and depletion in Nb, Ta, and Ti. Isotopically, the basalts show initial 87Sr/86Sr ratios of 0.706–0.707 and εNd (t) values ranging from −3.2 to 0.8, whereas the andesites possess more radiogenic Sr isotopic compositions, with (87Sr/86Sr)i ratios of 0.710–0.717, and more negative εNd (t) values from −11.4 to −1.5, suggesting derivation from an enriched mantle source. Integrating geochemical data with regional geological records, we propose that the eastern part of the Altyn Fault experienced a significant intracontinental extensional setting during the Early Cretaceous, where asthenospheric mantle upwelling played a key role in the generation of the volcanic rocks. This study provides key petrological and geochemical constraints on Early Cretaceous deformation and activity along the Altyn Tagh Fault, and also offers a valuable reference for understanding the evolution of similar fault systems. Full article
Show Figures

Figure 1

20 pages, 31550 KB  
Article
Report of CA. 760 Ma Mafic Rocks in the Eastern Himalayan Orogen: Petrogenesis and Geodynamic Implications
by Yi Yang, Zhi Zhang, Guotao Ma and Suiliang Dong
Minerals 2025, 15(10), 1090; https://doi.org/10.3390/min15101090 - 20 Oct 2025
Viewed by 275
Abstract
Constraints on the Neoproterozoic evolution of the Himalayan terrane remain poorly understood due to the scarcity of Neoproterozoic magmatic rocks. In this study, we report for the first time Middle Neoproterozoic mafic rocks from the eastern Himalayan orogen. Zircon U–Pb dating indicates that [...] Read more.
Constraints on the Neoproterozoic evolution of the Himalayan terrane remain poorly understood due to the scarcity of Neoproterozoic magmatic rocks. In this study, we report for the first time Middle Neoproterozoic mafic rocks from the eastern Himalayan orogen. Zircon U–Pb dating indicates that these rocks crystallized at approximately 760 Ma and can be divided into two distinct groups. Group 1 mafic rocks have E-MORB-like compositions and are enriched in incompatible elements and exhibit relatively higher initial (87Sr/86Sr)i ratios (0.7053–0.7063), lower positive whole-rock εNd(t) values (3.0 to 3.4), and zircon εHf(t) values ranging from 4.9 to 10.4. They also show low Nb/Th ratios and high Th/Yb, Nb/Yb, and (La/Sm)N ratios, suggesting a lithospheric mantle source. In contrast, Group 2 mafic rocks have N-MORB-like compositions and are characterized by light rare earth element (LREE)-depleted patterns, lower initial (87Sr/86Sr)i ratios (0.7033–0.7040), and higher positive whole-rock εNd(t) (4.8 to 6.0) and zircon εHf(t) values (4.6 to 10.9). Their high Nb/Th ratios and low Th/Yb, Nb/Yb, and (La/Sm)N ratios indicate an origin involving interaction between the lithospheric mantle and depleted asthenospheric mantle. The absence of coeval volcanic and sedimentary records, combined with high La/Y and Ti/V ratios, suggests that these mafic rocks differ from typical arc or back-arc basin suites but are consistent with an intraplate setting. Integrating previous studies on multistage Neoproterozoic magmatism in India and the Himalayas, we propose that the ca. 760 Ma mafic rocks in the eastern Himalaya were likely formed within an intraplate continental rift system. Full article
Show Figures

Figure 1

25 pages, 9280 KB  
Article
Petrogenesis of the Chamuhan Intrusion in the Southern Great Xing’an Range: Constraints from Zircon U-Pb Dating and Petrogeochemistry
by Yutong Song, Gongzheng Chen, Guang Wu, Tiegang Li, Tong Zhang, Jinfang Wang, Yingjie Li, Chenyu Liu, Yuze Li and Yinlong Wang
Minerals 2025, 15(10), 1085; https://doi.org/10.3390/min15101085 - 18 Oct 2025
Viewed by 187
Abstract
The Southern Great Xing’an Range (SGXR), an important W–Sn polymetallic metallogenic belt in northern China, hosts multiphase magmatism and has witnessed recent discoveries of multiple tungsten–tin polymetallic deposits. The W–Sn mineralization in this area is intimately associated with Early Cretaceous highly fractionated granites. [...] Read more.
The Southern Great Xing’an Range (SGXR), an important W–Sn polymetallic metallogenic belt in northern China, hosts multiphase magmatism and has witnessed recent discoveries of multiple tungsten–tin polymetallic deposits. The W–Sn mineralization in this area is intimately associated with Early Cretaceous highly fractionated granites. The Chamuhan deposit, a small-sized W–Mo polymetallic deposit in SGXR, is genetically linked to a concealed fine-grained porphyritic alkali feldspar granite intrusion. In this study, we present the LA-ICP-MS zircon U-Pb ages, whole-rock geochemical, and electron probe microanalysis (EPMA) mineral chemistry to constrain the petrogenesis and metallogenic implications of this granite. Zircon U–Pb dating yields a crystallization age of 141.3 ± 1.2 Ma, consistent with molybdenite Re–Os ages. The granite is characterized by elevated SiO2 (76.9–79.1 wt%) and total alkalis (7.3–8.5 wt%), and exhibits peraluminous high-K calc-alkaline affinity (A/CNK = 1.37–1.57). Geochemical signatures reveal enrichment in large ion lithophile elements (LILEs, e.g., Rb, Th, U) coupled with depletion in high-field strength elements (HFSEs, e.g., Ba, Sr, P, Eu, Ti, Nb, Ta), and are accompanied by right-sloping REE patterns with LREE enrichment and HREE depletion. EPMA data indicate that the mica in the intrusion is primarily zinnwaldite and Li-rich phengite, whereas the plagioclase occurs as albite. The feldspar thermobarometry yields crystallization temperatures of 689–778 °C and 313 MPa–454 MPa, while the melt H2O content and oxygen fugacity are 8.61–11.1 wt% and −22.58–−14.48, respectively. These geochemical signatures indicate that the granites are highly fractionated I-type granites with extensive fractional crystallization of various minerals like plagioclase, K-feldspar, and apatite, etc. From the Late Jurassic to the Early Cretaceous, the subduction and rollback of the Paleo-Pacific Ocean plate resulted in extensional tectonic environments in eastern China. Asthenospheric upwelling and lower crustal melting generated parental magmas, wherein progressive fractional crystallization during ascent concentrated ore-forming elements and volatiles within residual melts. This process played a key role in the formation of the Chamuhan deposit, exemplifying the metallogenic potential of highly evolved granitic systems in the SGXR. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

17 pages, 91562 KB  
Article
Mineralogy and Critical Metal Distribution in Upper Carboniferous Aluminum-Bearing Strata from the Yangquan Mining Area, Northeastern Qinshui Basin: Insights from TIMA
by Ning Wang, Yingxia Xu, Jun Zhao, Shangqing Zhang, Zhiyi Liu and Menghuai Hou
Minerals 2025, 15(10), 1069; https://doi.org/10.3390/min15101069 - 12 Oct 2025
Viewed by 278
Abstract
Critical metals associated with aluminum-bearing strata have garnered increasing attention due to their considerable economic potential. Recent investigations have identified notable enrichment of Li, Ga, Zr, Nb, REEs (rare earth elements), etc., within the Upper Carboniferous Benxi Formation in the Yangquan mining area, [...] Read more.
Critical metals associated with aluminum-bearing strata have garnered increasing attention due to their considerable economic potential. Recent investigations have identified notable enrichment of Li, Ga, Zr, Nb, REEs (rare earth elements), etc., within the Upper Carboniferous Benxi Formation in the Yangquan mining area, the Northeastern Qinshui Basin, Northern China. However, their mineralogical characteristics and micro-scale modes of occurrence remain insufficiently constrained. In this study, we employed the TESCAN Integrated Mineral Analyzer (TIMA) in combination with X-ray diffraction (XRD) and clay-separation experiments to provide direct mineralogical evidence for the occurrence of Ti, Li, Ga, Zr, and REEs in claystone and aluminous claystone from the Benxi Formation, Yangquan mining area, Northeastern Qinshui Basin. Our results indicate that both lithologies are primarily composed of kaolinite and diaspore, with minor amounts of anatase and cookeite; illite is additionally present in the claystone. Titanium predominantly occurs as anatase in both lithologies, though a portion in aluminous claystone may be incorporated into kaolinite and other Ti-bearing minerals such as rutile and leucoxene. Lithium is primarily hosted by cookeite in both rock types. Mineral assemblage variations further suggest that kaolinite may have partially transformed into Li-rich chlorite (i.e., cookeite) during the transformation from aluminous claystone to claystone. Gallium is chiefly associated with diaspore and kaolinite, with a stronger correlation with diaspore in the aluminous claystone. Zircon is the sole carrier of Zr in both lithologies. Importantly, La and Ce show a consistent spatial association with O–Al–Si–Ti–P mixed aggregates in TIMA maps, particularly in aluminous claystone. Based on these spatial patterns, textural relationships, and comparisons with previous studies, phosphate minerals are inferred to be the dominant REE hosts, although minor contributions from other phases cannot be completely excluded. These findings highlight a previously underexplored mode of critical-metal enrichment in Northern Chinese bauxite-bearing strata and provide a mineralogical basis for future extraction and utilization. Full article
Show Figures

Figure 1

23 pages, 13715 KB  
Article
Sedimentary Environment, Tectonic Setting, and Paleogeographic Reconstruction of the Late Jurassic Weimei Formation in Dingri, Southern Tibet
by Jie Wang, Songtao Yan, Hao Huang, Tao Liu, Chongyang Xin and Song Chen
Minerals 2025, 15(10), 1040; https://doi.org/10.3390/min15101040 - 30 Sep 2025
Viewed by 420
Abstract
The Weimei Formation, the most complete Upper Jurassic sedimentary sequence in the Tethyan Himalaya, is crucial for understanding the tectono-sedimentary evolution of the northern Indian margin. However, its depositional environment remains debated, with conflicting shallow- and deep-water interpretations. This study integrates sedimentary facies, [...] Read more.
The Weimei Formation, the most complete Upper Jurassic sedimentary sequence in the Tethyan Himalaya, is crucial for understanding the tectono-sedimentary evolution of the northern Indian margin. However, its depositional environment remains debated, with conflicting shallow- and deep-water interpretations. This study integrates sedimentary facies, petrography, zircon geochronology, and geochemical analyses to constrain the provenance, depositional environment, and tectonic setting of the Weimei Formation. The results reveal that the sedimentary system primarily consists of shoreface, delta, and shelf facies, with locally developed slope-incised valleys. Detrital zircon ages are concentrated at ~468 Ma and ~964 Ma, indicating a provenance mainly derived from the Indian continent. Geochemical characteristics, such as high SiO2, low Na2O–CaO–TiO2 contents, right-leaning REE patterns, and significant negative Eu anomalies, suggest the derivation of sediments from felsic upper crustal recycling within a passive continental margin. Stratigraphic comparison between southern and northern Tethyan Himalayan sub-zones reveals a paleogeographic “uplift–depression” pattern, characterized by the coexistence of shoreface–shelf deposits and slope-incised valleys. This study provides key evidence for reconstructing the Late Jurassic paleogeography of the northern Indian margin and the tectonic evolution of the Neo-Tethys Ocean. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

11 pages, 18277 KB  
Article
Experimental Study on Electric Separation of Ti/Zr-Bearing Minerals in Gravity Separation Concentrate After Thermal Activation Roasting
by Yang Wang, Yongxing Zheng, Hua Zhang, Xiang Huang, Xiangding Wang and Zhenxing Wang
Metals 2025, 15(10), 1072; https://doi.org/10.3390/met15101072 - 25 Sep 2025
Viewed by 265
Abstract
To solve the problem of purifying concentrates of rutile and zircon, a new method of electric separation after thermal activation roasting at 800 °C was proposed to strengthen the separation of Ti/Zr-bearing minerals. The results showed that the grade of TiO2 in [...] Read more.
To solve the problem of purifying concentrates of rutile and zircon, a new method of electric separation after thermal activation roasting at 800 °C was proposed to strengthen the separation of Ti/Zr-bearing minerals. The results showed that the grade of TiO2 in the conductor increased by 2.55~6.45% and the content of ZrO2 decreased by 0.83~2.60% after thermal activation roasting and electronic separation, in contrast with electronic separation without roasting. To further explore the mechanism of activation roasting, the electrical conductivity, the phase evolution, and the microstructure of the gravity separation concentrate (GSC), pure rutile and pure zircon before and after roasting were investigated. The results of conductivity testing showed that the roasting pretreatment significantly improved the conductive difference between rutile and zircon, thus strengthening their separation performance. The XRD results revealed that the thermal activation roasting made the anatase in the GSC transform into rutile, thus enhancing the conductivity. Meanwhile, the crystallinity of both of the pure minerals was improved. The SEM results showed that the GSC particles formed loose and porous sinters, suggesting the reconstruction of the unstable anatase into rutile. Small amounts of cracks and protrusions occurred on the surface of both pure minerals, ascribed to the dehydration and deoxygenation at a high temperature. Full article
(This article belongs to the Special Issue Advances in Sustainable Utilization of Metals: Recovery and Recycling)
Show Figures

Figure 1

25 pages, 46515 KB  
Article
Parental Affinities and Environments of Bauxite Genesis in the Salt Range, Northwestern Himalayas, Pakistan
by Muhammad Khubab, Michael Wagreich, Andrea Mindszenty, Shahid Iqbal, Katerina Schöpfer and Matee Ullah
Minerals 2025, 15(9), 993; https://doi.org/10.3390/min15090993 - 19 Sep 2025
Viewed by 669
Abstract
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene [...] Read more.
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene bauxite deposits of the Salt Range, Pakistan, provide an opportunity for deciphering their ore genesis and parental affinities. The deposits occur as lenticular bodies and are typically composed of three consecutive stratigraphic facies from base to top: (1) massive dark-red facies (L-1), (2) composite conglomeratic–pisolitic facies (L-2), and (3) Kaolinite-rich clayey facies (L-3). Results from optical microscopy, X-ray powder diffraction (XRPD), and scanning electron microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) reveal that facies L-1 contains kaolinite, hematite, and goethite as major minerals, with minor amounts of muscovite, quartz, anatase, and rutile. In contrast, facies L-2 primarily consists of kaolinite, boehmite, hematite, gibbsite, goethite, alunite/natroalunite, and zaherite, with anatase, rutile, and quartz as minor constituents. L-3 is dominated by kaolinite, quartz, and anatase, while hematite and goethite exist in minor concentrations. Geochemical analysis reveals elevated concentrations of Al2O3, Fe2O3, SiO2, and TiO2. Trace elements, including Th, U, Ga, Y, Zr, Nb, Hf, V, and Cr, exhibit a positive trend across all sections when normalized to Upper Continental Crust (UCC) values. Field observations and analytical data suggest a polygenetic origin of these deposits. L-1 suggests in situ lateritization of some sort of precursor materials, with enrichment in stable and ultra-stable heavy minerals such as zircon, tourmaline, rutile, and monazite. This facies is mineralogically mature with bauxitic components, but lacks the typical bauxitic textures. In contrast, L-2 is texturally and mineralogically mature, characterized by various-sized pisoids and ooids within a microgranular-to-microclastic matrix. The L-3 mineralogy and texture suggest that the conditions were still favorable for bauxite formation. However, the ongoing tectonic activities and wet–dry climate cycles post-depositionally disrupted the bauxitization process. The accumulation of highly stable detrital minerals, such as zircon, rutile, tourmaline, and monazite, indicates prolonged weathering and multiple cycles of sedimentary reworking. These deposits have parental affinity with acidic-to-intermediate/-argillaceous rocks, resulting from the weathering of sediments derived from UCC sources, including cratonic sandstone and shale. Full article
Show Figures

Graphical abstract

22 pages, 4916 KB  
Article
The Genesis and Geological Significance of the Chaluo Granite in Yidun Magmatic Arc, Western Sichuan, China: Constraints from the Zircon U-Pb Chronology, Elemental Geochemistry and S-Pb-Hf Isotope
by Wenjing Yang, Tianshe Cheng, Xuebin Zhang, Lijun Guo, Xujiang Cheng, Xingfang Duo, Hangyu Fan, Hongsheng Gao, Lipeng Tu, Meng Zhao and Weihong Dong
Minerals 2025, 15(9), 916; https://doi.org/10.3390/min15090916 - 28 Aug 2025
Viewed by 665
Abstract
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, [...] Read more.
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, quartz, and biotite, with a small amount of apatite. LA-ICP-MS zircon U-Pb dating yielded crystallization ages of (87 ± 3) Ma for the Chaluo granite, indicating its formation in the Late Cretaceous. Elemental geochemical testing results showed that the Chaluo granite exhibits I-type granite characteristics. It has undergone significant fractional crystallization processes, with high SiO2 contents (72.83–76.63 wt%), K (K2O/Na2O = 1.33–1.53), Al2O3 (Al2O3 = 12.24–13.56 wt%, A/CNK = 0.91–1.08), and a high differentiation index (DI = 88.91–92.49). Notably, the MgO contents were low (0.10–0.26 wt%), and there were significant depletions of Nb, Sr, Ti, and Eu, while Rb, Pb, Th, U, Zr, and Hf were significantly enriched. The total rare earth element (REE) contents were relatively low (211–383 ppm), showing significant light REE (LREE) enrichment (LREE/HREE = 4.46–5.57) and a pronounced negative Eu anomaly (δEu = 0.09–0.17). In situ zircon Hf analyses, combined with 206Pb/238U ages, gave εHf(t) values ranging from −3.8 to 1.72 and two-stage Hf ages (tDM2) of 875–1160 Ma. Together with the S and Pb isotope compositions of the Chaluo granite, its magma likely originated from the partial melting of Middle–Neoproterozoic sedimentary rocks enriched in biogenic S. The tectonic-setting analysis indicates that the Chaluo granite formed in a post-orogenic intracontinental extensional environment. This environment was triggered by the northward subduction-collision of the Lhasa block, followed by slab break-off and the upwelling of the asthenosphere in the Neo-Tethys orogenic belt. We propose that the Paleo-Tethys tectonic belt was influenced by the Neo-Tethys tectonic activity, at least in the Yidun magmatic arc region during the Late Cretaceous. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 7924 KB  
Article
Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit
by Wencheng Liu, Fanqi Kong, Haibo Ding, Jing Zhang and Mingtian Zhu
Minerals 2025, 15(9), 905; https://doi.org/10.3390/min15090905 - 26 Aug 2025
Viewed by 727
Abstract
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the [...] Read more.
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the largest and most representative, characterized by typical banded iron–silica layers. Detailed fieldwork identified a tuff layer conformably contacting the IFs at the roof rocks of IFs and a ferruginous mudstone layer at the floor rocks of IFs in drill core ZK4312. Geochemical and zircon U-Pb-Hf isotopic analyses were performed. The tuff has a typical tuff structure, mostly made of quartz, and contains a significant amount of natural sulfur. It also has high SiO2 content (77.90%–80.49%) and sulfur content (0.78%–3.06%). The ferruginous mudstone has a volcanic clastic structure and is mainly composed of quartz and chlorite, with abundant coeval pyrite. It shows lower SiO2 content (53.83%–60.32%) and higher TFe2O3 content (10.29%–16.24%). Both layers share similar rare earth element (REE) distribution patterns and trace element compositions, with light REE enrichment and negative Eu, Nb, and Ti anomalies, consistent with arc volcanic geochemistry. Zircon U-Pb ages indicate crystallization of the tuff at 1102 ± 13 Ma and maximum deposition of the mudstone at 1110 ± 41 Ma. These data suggest formation during different stages of the same volcanic–sedimentary process. The εHf(t) values (3.60–12.35 for tuff, 2.92–8.19 for mudstone) resemble those of Algoma-type IF host rocks, implying derivation from re-melted new crust. The Dimunalike IFs likely formed in a submarine volcanic–sedimentary environment. In conclusion, although the Mesoproterozoic ocean was generally in a low-oxygen state, which was not conducive to large-scale IF deposition, localized submarine volcanic–hydrothermal activity could still lead to IF formation. Full article
(This article belongs to the Special Issue Geochemical, Isotopic, and Biotic Records of Banded Iron Formations)
Show Figures

Graphical abstract

34 pages, 17975 KB  
Article
Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt
by Heba S. Mubarak, Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Paul D. Asimow and Mona Kabesh
Minerals 2025, 15(9), 898; https://doi.org/10.3390/min15090898 - 24 Aug 2025
Viewed by 706
Abstract
The Gabal Um Samra (GUS) compound intrusion in the Eastern Desert of Egypt consists of a co-magmatic series of syenogranite and alkali feldspar granite. Accessory minerals (e.g., zircon, monazite, allanite) are abundant. Geochemically, the GUS intrusion is a classic A-type granite. It is [...] Read more.
The Gabal Um Samra (GUS) compound intrusion in the Eastern Desert of Egypt consists of a co-magmatic series of syenogranite and alkali feldspar granite. Accessory minerals (e.g., zircon, monazite, allanite) are abundant. Geochemically, the GUS intrusion is a classic A-type granite. It is extensively fractionated, enriched in large ion lithophile elements and high field strength elements, and depleted in Ba, Sr, K, and Ti. Normalized rare earth element patterns are nearly flat, without any lanthanide tetrad anomalies, but with distinct negative Eu anomalies (Eu/Eu* = 0.14–0.22) due to feldspar fractionation. Paired Zr-Hf and Y-Ho element systematics indicate igneous rather than hydrothermal processes. The petrogenesis of the comparatively unaltered GUS intrusion offers an opportunity to refine the standard model for post-collisional felsic magmatism in the Neoproterozoic Arabian–Nubian Shield. It is explained by the partial melting of juvenile crust induced by lithospheric delamination, followed by extensive fractional crystallization. A quantitative mass-balance model shows that the granite varieties of the GUS intrusion plausibly represent liquids along a single liquid line of descent; but, if so, the more evolved, later pulses display anomalous enrichment in Rb, Nb, Ta, U, and REE. The most plausible source for this enrichment is the extraction of small-degree residual melts from earlier pulses and the mixing of the melts into the later pulses, an energetically favorable process we call “auto-assimilation”. A quantitative model shows that the residual liquid after 97.5% crystallization of the syenogranite can fit the major oxide and trace element data in the alkali feldspar granite if 0.07% by mass of this melt is added to the evolving system for each 1% crystal fractionation by mass. The GUS intrusion represents an example of moderate rare metal enrichment and concentration to sub-economic grade by auto-assimilation. Similar processes may affect intrusions that feature higher grade mineralization, but the evidence is often obscured by the extensive alteration of those deposits. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 9686 KB  
Article
The Petrogenesis of Early Permian Granodiorites in the Northern Segment of the Changning-Menglian Suture Zone, Western Yunnan, and Their Tectonic Implications
by Jiajia Liu, Zhen Jia, Jiyuan Wang, Feng Zhao, Junbao Luo, Feiyang Xu and Fuchuan Chen
Minerals 2025, 15(9), 894; https://doi.org/10.3390/min15090894 - 23 Aug 2025
Viewed by 765
Abstract
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 [...] Read more.
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 Ma) Wayao granodiorite in the northern segment remain unclear, hindering our understanding of the timing of subduction initiation and processes of the Paleo-Tethyan Ocean in the Changning-Menglian suture zone. This study presents systematic petrographic, zircon U-Pb geochronological, whole-rock major and trace element geochemical, and Sr-Nd-Hf isotopic analyses on the newly discovered Early Permian granodiorite in the Wayao area, northern segment of the Changning-Menglian suture zone, western Yunnan. Zircon U-Pb dating yields a crystallization age of ca. 280 Ma, confirming its emplacement during the Early Permian. The petrogeochemical characteristics indicate that it belongs to the metaluminous, calc-alkaline series of I-type granite. It is enriched in large-ion lithophile elements (LILEs; e.g., Rb, Th, U, La, Pb) and depleted in high-field-strength elements (HFSEs; e.g., Ba, Nb, Sr, Ti), exhibiting a pronounced negative Eu anomaly. Whole-rock Sr-Nd isotopes (εNd(t) = −5.6–−6.1) and zircon Hf isotopes (εHf(t) = −1.34–−10.01) suggest that the magma was predominantly derived from the partial melting of ancient crustal material (primarily metamorphosed basic rocks, such as amphibolite), with a minor addition of mantle-derived components (magma mixing). Combined with petrogeochemical discriminant diagrams (e.g., Sr/Y vs. Y, Rb vs. Yb + Ta) and the regional geological context, this granodiorite is interpreted to have formed in an active continental margin tectonic setting associated with the eastward subduction of the Paleo-Tethys Ocean (represented by the Changning-Menglian Ocean). This discovery fills the gap in the record of Early Permian subduction-related magmatic rocks in the northern segment of the Changning-Menglian suture zone. It provides crucial petrological evidence constraining that the eastward subduction and consumption of the northern Paleo-Tethys Ocean had already commenced by the Early Permian. Full article
Show Figures

Figure 1

43 pages, 20293 KB  
Article
Volcanic Stratigraphy, Petrology, Geochemistry and Precise U-Pb Zircon Geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental Felsic Super-Eruptions in Association with Continental Flood Basalt Magmatism on the West African Craton (Saghro Massif, Anti-Atlas)
by Rachid Oukhro, Nasrrddine Youbi, Boriana Kalderon-Asael, David A. D. Evans, James Pierce, Jörn-Frederik Wotzlaw, Maria Ovtcharova, João Mata, Mohamed Achraf Mediany, Jihane Ounar, Warda El Moume, Ismail Hadimi, Oussama Moutbir, Moulay Ahmed Boumehdi, Abdelmalek Ouadjou and Andrey Bekker
Minerals 2025, 15(8), 776; https://doi.org/10.3390/min15080776 - 24 Jul 2025
Viewed by 1342
Abstract
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. [...] Read more.
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. Zircon U-Pb dating and geochemical analyses of the Oued Dar’a Caldera (ODC) volcanic succession in the Saghro Massif reveal two major eruptive cycles corresponding to the lower and upper Ouarzazate Group. The 1st cycle (588–563 Ma) includes pre- and syn-caldera volcanic succession characterized by basaltic andesite to rhyolitic rocks, formed in a volcanic arc setting through lithospheric mantle-derived mafic magmatism and crustal melting. A major caldera-forming eruption occurred approximately 571–562 Ma, with associated rhyolitic dyke swarms indicating a larger caldera extent than previously known. The 2nd cycle (561–543 Ma) features post-caldera bimodal volcanism, with tholeiitic basalts and intraplate felsic magmas, signaling a shift to continental flood basalts and silicic volcanic systems. The entire volcanic activity spans approximately 23–40 million years. This succession is linked to late Ediacaran intracontinental super-eruptions tied to orogenic collapse and continental extension, likely in association with the Central Iapetus Magmatic Province (CIMP), marking a significant transition in the geodynamic evolution of the WAC. Full article
Show Figures

Figure 1

Back to TopTop