Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt
Abstract
1. Introduction
2. Geologic Setting and Field Observations
3. Materials and Methods
4. Petrography
4.1. Syenogranite
4.2. Alkali Feldspar Granite
4.3. Sheared Granite
4.4. Pegmatite and Quartz Vein
5. Whole Rock Geochemistry
5.1. Geochemical Characteristics of the GUS
5.2. Spider Diagrams and REEs
6. Mineral Chemistry
6.1. Feldspars
6.2. Amphibole Minerals
6.3. Micas
6.4. Fe-Ti Oxides
6.5. Other Accessory Minerals
7. Discussion
7.1. Magma Type and Tectonic Setting of the GUS
7.2. Source Rocks (Origin of the Parental Magma)
7.3. Geodynamic Evolution (Lithospheric Delamination)
7.4. Fractional Crystallization and Crustal Contamination
7.5. Relation of the GUS Granites with Other Neoproterozoic Post-Collisional Granites in the ANS
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANS | Arabian–Nubian Shield |
AFC | Assimilation-fractional crystallization |
REEs | Rare earth elements |
GUS | Gabal Um Samra |
MMEs | Microgranular mafic enclaves |
ICP-MS | Inductively coupled plasma-mass spectrometry |
WDS | Wavelength-dispersive X-ray spectrometers |
EDS | Energy-dispersive X-ray spectrometer |
LILEs | Large ion lithosphile elements |
HFSEs | High field strength elements |
LREEs | Light rare earth elements |
HREEs | Heavy rare earth elements |
Apfu | Atoms per formula unit |
WPG | Within-plate granite |
POG | Post-orogenic granites |
RRG | Rift-related granite |
CEUG | Continental epeirogenic uplift granites |
CHARAC | Charge and ionic radius |
References
- Stern, R.J. Arc assembly and continental collision in the Neoproterozoic African Orogen: Implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Patchett, P.J.; Chase, C.G. Role of transform continental margins in major crustal growth episodes. Geology 2002, 30, 39–42. [Google Scholar] [CrossRef]
- Azer, M.K.; El-Ela, F.A.; Ren, M. The petrogenesis of late Neoproterozoic mafic dyke-like intrusion in south Sinai, Egypt. J. Asian Earth Sci. 2012, 54, 91–109. [Google Scholar] [CrossRef]
- Kusky, T.M.; Abdel Salam, M.G.; Stern, R.J.; Tucker, R.D. Evolution of the East African and related orogens, and the assembly of Gondwana. Precamb. Res. 2003, 123, 81–85. [Google Scholar] [CrossRef]
- Johnson, P.R.; Woldehaimanot, B. Development of the Arabian-Nubian Shield: Perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. J. Geol. Soc. Lond. 2003, 206, 289–325. [Google Scholar] [CrossRef]
- Azer, M.K.; Abdelfadil, K.M.; Ramadan, A.A. Geochemistry and petrogenesis of Late Ediacaran rare-metal albite granite of the Nubian Shield: Case study of Nuweibi Intrusion, Eastern Desert, Egypt. J. Geol. 2019, 127, 665–689. [Google Scholar] [CrossRef]
- Abdel-Karim, A.-A.; Azer, M.; Sami, M. Petrogenesis and tectonic implications of the Maladob ring complex in the South Eastern Desert, Egypt: New insights from mineral chemistry and whole-rock geochemistry. Int. J. Earth Sci. 2021, 110, 53–80. [Google Scholar] [CrossRef]
- Azer, M.K. Late Ediacaran (605–580 Ma) post-collisional alkaline magmatism in the Arabian–Nubian Shield: A case study of Serbal ring-shaped intrusion, southern Sinai, Egypt. J. Asian Earth Sci. 2013, 77, 203–223. [Google Scholar] [CrossRef]
- Abuamarah, B.A.; Azer, M.K.; Asimow, P.D.; Ghrefat, H.; Mubarak, H.S. Geochemistry and petrogenesis of late Ediacaran rare-metal albite granites of the Arabian-Nubian Shield. Acta Geol. Sin.-Engl. Ed. 2021, 95, 459–480. [Google Scholar] [CrossRef]
- Moussa, H.E.; Asimow, P.D.; Azer, M.K.; Abou El Maaty, M.A.; Akarish, A.I.; Yanni, N.N.; Mubarak, H.S.; Wilner, O.; Elsagheer, M.A. Magmatic and hydrothermal evolution of highly-fractionated rare-metal granites at Gabal Nuweibi, Eastern Desert, Egypt. Lithos 2021, 400, 106405. [Google Scholar] [CrossRef]
- Surour, A.A.; El-Tohamy, A.M.; Saleh, G.M. Chemistry of Hydrothermally Destabilized Rare-Metal and Radioactive Minerals in Deformed A-Type Granite in the Vicinity of Nugrus Shear Zone, South Eastern Desert, Egypt. Resources 2024, 14, 4. [Google Scholar] [CrossRef]
- Hussein, A.A.A.; Ali, M.M.; El Ramly, M. A proposed new classification of the granites of Egypt. J. Volcanol. Geoth. Res. 1982, 14, 187–198. [Google Scholar] [CrossRef]
- El-Gaby, S.; List, F.; Tehrani, R. Geology, evolution and metallogenesis of the Pan-African belt in Egypt. In Proceedings of the Pan-African belt of Northeast Africa and adjacent areas: Tectonic evolution and economic aspects of a late Proterozoic orogen. Geol. Mag. 1988, 126, 17–68. [Google Scholar]
- Azer, M.K.; Asimow, P.D. Petrogenetic evolution of the Neoproterozoic igneous rocks of Egypt. In The Geology of the Egyptian Nubian Shield; Springer: Berlin/Heidelberg, Germany, 2020; pp. 343–382. [Google Scholar]
- Helba, H.; Trumbull, R.; Morteani, G.; Khalil, S.; Arslan, A. Geochemical and petrographic studies of Ta mineralization in the Nuweibi albite granite complex, Eastern Desert, Egypt. Miner. Depos. 1997, 32, 164–179. [Google Scholar] [CrossRef]
- El Hadek, H.H.; Mohamed, M.A.; El Habaak, G.H.; Bishara, W.W.; Ali, K.A. Geochemical constraints on petrogenesis of Homrit Waggat rare metal granite, Egypt. Int. J. Geophys. Geochem. 2016, 3, 33–48. [Google Scholar]
- Azer, M.K.; Abdelfadil, K.M.; Asimow, P.D.; Khalil, A.E. Tracking the transition from subduction-related to post-collisional magmatism in the north Arabian–Nubian Shield: A case study from the Homrit Waggat area of the Eastern Desert of Egypt. Geol. J. 2020, 55, 4426–4452. [Google Scholar] [CrossRef]
- El-Rus, M.A.A.; Mohamed, M.A.; Lindh, A. Mueilha rare metals granite, Eastern Desert of Egypt: An example of a magmatic-hydrothermal system in the Arabian-Nubian Shield. Lithos 2017, 294, 362–382. [Google Scholar] [CrossRef]
- Heikal, M.T.S.; Khedr, M.Z.; Abd El Monsef, M.; Gomaa, S.R. Petrogenesis and geodynamic evolution of neoproterozoic Abu Dabbab albite granite, central Eastern Desert of Egypt: Petrological and geochemical constraints. J. Afr. Earth Sci. 2019, 158, 103518. [Google Scholar] [CrossRef]
- Seddik, A.M.; Darwish, M.H.; Azer, M.K.; Asimow, P.D. Assessment of magmatic versus post-magmatic processes in the Mueilha rare-metal granite, Eastern Desert of Egypt, Arabian-Nubian Shield. Lithos 2020, 366, 105542. [Google Scholar] [CrossRef]
- Abuamarah, B.A.; Azer, M.K.; Seddik, A.M.; Asimow, P.D.; Guzman, P.; Fultz, B.T.; Wilner, O.; Dalleska, N.; Darwish, M.H. Magmatic and post-magmatic evolution of post-collisional rare-metal bearing granite: The Neoproterozoic Homrit Akarem Granitic Intrusion, south Eastern Desert of Egypt, Arabian-Nubian Shield. Geochemistry 2022, 82, 125840. [Google Scholar] [CrossRef]
- Surour, A.A. Sn-W-Ta-Mo-U-REE mineralizations associated with alkali granite magmatism in Egyptian Nubian Shield. In The Geology of the Egyptian Nubian Shield; Springer: Berlin/Heidelberg, Germany, 2021; pp. 593–604. [Google Scholar]
- Surour, A.A.; Madani, A.A.; El-Sobky, M.A. Mafic and felsic magmatism in the Wadi Kalalat area, South Eastern Desert, Egypt: Mineralogy, geochemistry and geodynamic evolution during the Neoproterozoic in the Nubian Shield. Acta Geochim. 2024, 43, 150–173. [Google Scholar] [CrossRef]
- Černý, P.; Blevin, P.L.; Cuney, M.; London, D. Granite-Related Ore Deposits. Econ. Geol. 2005, 100, 337–370. [Google Scholar]
- Akinin, V.V.; Miller, E.L.; Wooden, J.L. Petrology and geochronology of crustal xenoliths from the Bering Strait region: Linking deep and shallow processes in extending continental crust. In Crustal Cross Sections from the Western North American Cordillera and Elsewhere: Implications for Tectonic and Petrologic Processes: Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2009; Volume 456, pp. 39–68. [Google Scholar]
- Kabesh, M.; Salem, A.; Heikal, M.; Salem, M. Petrochemistry and petrogenesis of the granitic rocks of Um Samra pluton, Eastern Desert, Egypt. J. Geol. 1982, 26, 171–184. [Google Scholar]
- Abdel Monem, A.; Shazly, A.; Salem, I.; Ashmawy, M.; El Shibiny, N. Petrographical and geochemical characteristics of some granitoids associated with rare-metal mineralizations, Central Eastern Desert, Egypt. In Proceedings of the 4th International Conference on Geochemistry, Alexandria, Egypt, 6–7 September 1999; pp. 15–16. [Google Scholar]
- Ibrahim, M.E.; El-Kalioby, B.A.; El Sawey, E.H.; Kamar, M.S.; Abu Zeid, E.K.; Ismail, A.M. Um Samra-Um Bakra shear zone, central Eastern Desert, Egypt: An example of vein type base metal mineralization. Int. J. Min. Sci. 2017, 3, 1–17. [Google Scholar] [CrossRef]
- Kamar, M.; Hassanin, M.; Ismail, A. Recovery of uranium from the Um Samra-Um Bakra shear zone, central Eastern Desert, Egypt. Euro-Mediterr. J. Environ. Integr. 2019, 4, 38. [Google Scholar] [CrossRef]
- DePaolo, D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. 1981, 53, 189–202. [Google Scholar] [CrossRef]
- Beard, J.S.; Ragland, P.C.; Crawford, M.L. Reactive bulk assimilation: A model for crust-mantle mixing in silicic magmas. Geology 2005, 33, 681–684. [Google Scholar] [CrossRef]
- Stern, R.J.; Hedge, C.E. Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Am. J. Sci. 1985, 285, 97–127. [Google Scholar] [CrossRef]
- McClay, K.; Ellis, P. Deformation of pyrite. Econ. Geol. 1984, 79, 400–403. [Google Scholar]
- Vaughan, D.; Craig, J. Ore Microscopy and Ore Petrography, 2nd ed.; John Wiley & Sons Ltd, Wily: Hoboken, NJ, USA, 1994. [Google Scholar]
- De la Roche, H.D.; Leterrier, J.T.; Grandclaude, P.; Marchal, M. A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—Its relationships with current nomenclature. Chem. Geol. 1980, 29, 183–210. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Hanson, G.N. Rare earth elements in petrogenetic studies of igneous systems. Annu. Rev. Earth Planet. Sci. 1980, 8, 371. [Google Scholar] [CrossRef]
- Möller, P.; Muecke, G. Significance of Europium anomalies in silicate melts and crystal-melt equilibria: A re-evaluation. Contrib. Miner. Petrol. 1984, 87, 242–250. [Google Scholar] [CrossRef]
- Lee, S.-G.; Asahara, Y.; Tanaka, T.; Lee, S.R.; Lee, T. Geochemical significance of the Rb–Sr, La–Ce and Sm–Nd isotope systems in A-type rocks with REE tetrad patterns and negative Eu and Ce anomalies: The Cretaceous Muamsa and Weolaksan granites, South Korea. Geochemistry 2013, 73, 75–88. [Google Scholar] [CrossRef]
- Hanson, G.N. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet. Sci. Lett. 1978, 38, 26–43. [Google Scholar] [CrossRef]
- Deer, W.; Howie, R.; Zussman, J. An Introduction to the Rock-Forming Minerals, 2nd ed.; Longman Scientific and Technical: Essex, UK, 1992. [Google Scholar]
- Locock, A.J. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 2014, 62, 1–11. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Miner. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Nachit, H.; Ibhi, A.; Ohoud, M.B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. C. R. Géosci. 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Keeditse, M.; Rajesh, H.; Belyanin, G.; Fukuyama, M.; Tsunogae, T. Primary magmatic amphibole in Archaean meta-pyroxenite from the central zone of the Limpopo Complex, South Africa. S. Afr. J. Geol. 2016, 119, 607–622. [Google Scholar] [CrossRef]
- Hey, M.H. A new review of the chlorites. Mineral. Mag. J. Mineral. Soc. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- El-Gaby, S. Integrated classification and evolution of the Neoproterozoic Pan-African Belt in Egypt. In Proceedings of the Fifth International Conference on the Geology of Africa, Assuit, Egypt, October 2007; pp. 143–154. [Google Scholar]
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abstr. Programs 1979, 11, 468. [Google Scholar]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Liégeois, J.P.; Black, R. Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas. In: Fitton, J.G., Upton, B.G.J., Eds., Alkaline Igneous Rocks. Geol. Soc. 1987, 30, 381–401. [Google Scholar] [CrossRef]
- Liégeois, J.-P.; Navez, J.; Hertogen, J.; Black, R. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 1998, 45, 1–28. [Google Scholar] [CrossRef]
- Nachit, H. Composition chemique des biotites et typologie magmatique des granitoids. C. R. Hebd. L’academie Sci. 1985, 301, 813–818. [Google Scholar]
- Abdel-Rahman, A.-F.M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol. 1994, 35, 525–541. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Miner. Petr. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional alkaline granites. J. Geol. 1989, 97, 261–280. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petr. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Harris, N.B.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Lond. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Hassan, M.A.; Hashad, A.H. Precambrian of Egypt. In The Geology of Egypt; Said, R., Ed.; Balkema Rotterdam: Rotterdam, The Netherlands, 1990; pp. 201–245. [Google Scholar]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Rogers, J.J.; Greenberg, J.K. Trace elements in continental-margin magmatism: Part III. Alkali granites and their relationship to cratonization: Summary. Geol. Soc. Am. Bull. 1981, 92, 6–9. [Google Scholar] [CrossRef]
- Rogers, J.J.; Greenberg, J.K. Trace elements in continental-margin magmatism: Part III. Alkali granites and their relationship to cratonization. Geol. Soc. Am. Bull. 1981, 92, 57–93. [Google Scholar] [CrossRef]
- Azer, M.K.; Obeid, M.A.; Ren, M. Geochemistry and petrogenesis of late Ediacaran (605–580 Ma) post-collisional alkaline rocks from the Katherina ring complex, south Sinai, Egypt. J. Asian Earth Sci. 2014, 93, 229–252. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Laurent, O.; Martin, H.; Moyen, J.-F.; Doucelance, R. The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 2014, 205, 208–235. [Google Scholar] [CrossRef]
- Shaw, D. A review of K-Rb fractionation trends by covariance analysis. Geochim. Cosmochim. Acta 1968, 32, 573–601. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.; Chappell, B. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Miner. Petr. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Sun, D.-Y.; Li, H.; Jahn, B.-M.; Wilde, S. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 187, 143–173. [Google Scholar] [CrossRef]
- Moreno, J.A.; Molina, J.F.; Montero, P.; Anbar, M.A.; Scarrow, J.H.; Cambeses, A.; Bea, F. Unraveling sources of A-type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos 2014, 192, 56–85. [Google Scholar] [CrossRef]
- Creaser, R.A.; Price, R.C.; Wormald, R.J. A-type granites revisited: Assessment of a residual-source model. Geology 1991, 19, 163–166. [Google Scholar] [CrossRef]
- King, P.L.; White, A.; Chappell, B.; Allen, C. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Bonin, B. From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis. Geol. J. 1990, 25, 261–270. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Avigad, D.; Gvirtzman, Z. Late Neoproterozoic rise and fall of the northern Arabian–Nubian Shield: The role of lithospheric mantle delamination and subsequent thermal subsidence. Tectonophysics 2009, 477, 217–228. [Google Scholar] [CrossRef]
- Be’eri-Shlevin, Y.; Samuel, M.; Azer, M.; Rämö, O.T.; Whitehouse, M.; Moussa, H. The Ediacaran Ferani and Rutig volcano-sedimentary successions of the northernmost Arabian-Nubian Shield (ANS): New insights from zircon U–Pb geochronology, geochemistry and O–Nd isotope ratios. Precamb. Res. 2011, 188, 21–44. [Google Scholar] [CrossRef]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Miner. Petr. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu∗, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosm. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosm. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Taylor, S. The application of trace element data to problems in petrology. Phys. Chem. Earth 1965, 6, 133–213. [Google Scholar] [CrossRef]
- Davidson, J.P.; Dungan, M.A.; Ferguson, K.M.; Colucci, M.T. Crust-magma interactions and the evolution of arc magmas: The San Pedro–Pellado volcanic complex, southern Chilean Andes. Geology 1987, 15, 443–446. [Google Scholar] [CrossRef]
- Abuamarah, B.A.; Alzahrani, H.; Matta, M.J.; Azer, M.K.; Asimow, P.D.; Darwish, M.H. Petrological, geochemical and geodynamic evolution of the Wadi Al-Baroud granitoids, north Arabian-Nubian shield, Egypt. J. Afr. Earth Sci. 2023, 207, 105044. [Google Scholar] [CrossRef]
Type | Syenogranite | Alkali Feldspar Granite | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | SM7 | SM8 | SM22 | SM31 | SM34 | SM74 | SM9 | SM33 | SM35 | SM37 | SM43 | SM51 |
SiO2 | 72.38 | 71.43 | 73.47 | 74.03 | 73.68 | 73.16 | 76.27 | 76.47 | 76.89 | 76.07 | 77.17 | 76.78 |
TiO2 | 0.33 | 0.52 | 0.25 | 0.21 | 0.24 | 0.25 | 0.11 | 0.09 | 0.12 | 0.09 | 0.09 | 0.11 |
Al2O3 | 13.00 | 13.98 | 12.73 | 13.12 | 13.20 | 13.67 | 11.48 | 11.31 | 10.96 | 11.68 | 11.70 | 12.37 |
Fe2O3 | 1.58 | 2.42 | 1.13 | 0.94 | 1.29 | 1.36 | 0.47 | 0.69 | 0.49 | 0.50 | 0.43 | 0.35 |
MnO | 0.38 | 0.46 | 0.28 | 0.18 | 0.25 | 0.27 | 0.13 | 0.10 | 0.09 | 0.12 | 0.09 | 0.12 |
MgO | 0.05 | 0.06 | 0.04 | 0.04 | 0.04 | 0.04 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 |
CaO | 1.16 | 1.41 | 0.77 | 0.80 | 0.87 | 0.88 | 0.25 | 0.26 | 0.09 | 0.19 | 0.17 | 0.12 |
Na2O | 4.40 | 4.54 | 4.01 | 4.21 | 4.02 | 4.18 | 3.92 | 3.93 | 3.89 | 4.15 | 4.05 | 3.89 |
K2O | 3.99 | 3.93 | 4.03 | 4.31 | 4.13 | 4.20 | 4.82 | 4.75 | 4.86 | 4.68 | 4.91 | 4.66 |
P2O5 | 0.09 | 0.10 | 0.06 | 0.05 | 0.06 | 0.06 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.04 |
LOI | 2.08 | 1.34 | 2.34 | 1.42 | 2.14 | 1.49 | 1.76 | 2.15 | 2.27 | 1.82 | 0.95 | 0.87 |
Total | 99.46 | 100.18 | 99.11 | 99.30 | 99.91 | 99.54 | 99.26 | 99.80 | 99.70 | 99.35 | 99.59 | 99.32 |
ASI | 0.95 | 0.98 | 1.03 | 1.01 | 1.04 | 1.05 | 0.95 | 0.94 | 0.93 | 0.95 | 0.95 | 1.06 |
AI | 0.89 | 0.84 | 0.86 | 0.88 | 0.84 | 0.83 | 1.02 | 1.03 | 1.06 | 1.02 | 1.02 | 0.92 |
K/Rb | 282 | 327 | 250 | 229 | 267 | 266 | 227 | 226 | 244 | 245 | 222 | 221 |
R1 | 2237 | 2091 | 2462 | 2377 | 2443 | 2332 | 2535 | 2549 | 2576 | 2471 | 2528 | 2623 |
R2 | 382 | 427 | 334 | 345 | 354 | 364 | 253 | 251 | 225 | 251 | 248 | 256 |
CIPW norm | ||||||||||||
Quartz | 28.05 | 24.35 | 32.63 | 30.84 | 31.67 | 29.73 | 35.29 | 35.53 | 37.66 | 31.67 | 35.12 | 36.23 |
Corundum | - | - | 0.52 | 0.2 | 0.69 | 0.8 | - | - | - | 0.69 | - | 0.82 |
Orthoclase | 23.88 | 23 | 24.37 | 25.8 | 24.67 | 25 | 29.08 | 28.6 | 29.36 | 24.67 | 29.29 | 27.88 |
Albite | 37.73 | 38.11 | 34.76 | 36.07 | 34.43 | 35.64 | 32.89 | 32.26 | 29.95 | 34.43 | 33.17 | 33.3 |
Anorthite | 3.97 | 6.09 | 3.5 | 3.71 | 3.95 | 4.02 | - | - | - | 3.95 | - | 0.35 |
Acmite | - | - | - | - | - | - | 0.53 | 0.7 | 0.53 | - | 0.46 | - |
Na-Metasilicate | - | - | - | - | - | - | 0.09 | 0.18 | 0.71 | - | 0.22 | - |
Diopside | 1.15 | 0.15 | - | - | - | - | 0.92 | 1 | 0.23 | - | 0.64 | - |
Hypersthene | 3.49 | 5.81 | 2.95 | 2.35 | 3.29 | 3.47 | 0.9 | 1.47 | 1.25 | 3.29 | 0.88 | 0.92 |
Magnetite | 0.86 | 1.26 | 0.63 | 0.5 | 0.68 | 0.72 | - | - | - | 0.68 | - | 0.21 |
Ilmenite | 0.64 | 0.97 | 0.48 | 0.41 | 0.46 | 0.48 | 0.22 | 0.18 | 0.22 | 0.46 | 0.17 | 0.2 |
Apatite | 0.19 | 0.22 | 0.14 | 0.11 | 0.14 | 0.12 | 0.08 | 0.06 | 0.06 | 0.14 | 0.04 | 0.08 |
C.I. | 6.14 | 8.2 | 4.06 | 3.26 | 4.43 | 4.67 | 2.03 | 2.65 | 1.7 | 4.43 | 1.69 | 1.33 |
D.I. | 89.67 | 85.46 | 91.76 | 92.71 | 90.77 | 90.37 | 97.26 | 96.39 | 96.98 | 90.77 | 97.58 | 97.41 |
Type | Alkali Feldspar Granite | |||||||||||
Sample No. | SM10 | SM12 | SM16 | SM24 | SM28 | SM40 | SM42 | SM52 | SM65 | SM69 | ||
SiO2 | 75.88 | 75.52 | 75.31 | 75.35 | 74.51 | 75.08 | 74.43 | 75.09 | 75.65 | 74.87 | ||
TiO2 | 0.15 | 0.15 | 0.18 | 0.17 | 0.18 | 0.18 | 0.20 | 0.18 | 0.16 | 0.20 | ||
Al2O3 | 11.22 | 12.59 | 12.28 | 12.54 | 13.24 | 12.62 | 12.57 | 11.24 | 11.36 | 12.48 | ||
Fe2O3 | 0.35 | 1.01 | 0.54 | 0.43 | 0.62 | 0.80 | 0.78 | 0.71 | 0.78 | 0.88 | ||
MnO | 0.17 | 0.18 | 0.18 | 0.16 | 0.16 | 0.16 | 0.21 | 0.13 | 0.12 | 0.16 | ||
MgO | 0.03 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.03 | ||
CaO | 0.32 | 0.26 | 0.39 | 0.28 | 0.58 | 0.37 | 0.46 | 0.30 | 0.17 | 0.54 | ||
Na2O | 4.03 | 3.93 | 4.12 | 3.81 | 3.93 | 4.01 | 4.22 | 4.14 | 3.99 | 3.77 | ||
K2O | 4.76 | 4.75 | 4.74 | 4.69 | 4.61 | 4.69 | 4.44 | 4.51 | 4.72 | 4.72 | ||
P2O5 | 0.04 | 0.04 | 0.05 | 0.05 | 0.06 | 0.04 | 0.05 | 0.04 | 0.06 | 0.05 | ||
LOI | 2.01 | 0.65 | 0.84 | 2.09 | 1.54 | 1.36 | 1.63 | 3.99 | 1.65 | 0.97 | ||
Total | 98.97 | 99.09 | 98.66 | 99.58 | 99.47 | 99.33 | 99.00 | 100.34 | 98.66 | 98.67 | ||
ASI | 0.91 | 1.04 | 0.97 | 1.06 | 1.06 | 1.02 | 1.00 | 0.92 | 0.95 | 1.02 | ||
AI | 1.05 | 0.92 | 0.97 | 0.90 | 0.87 | 0.93 | 0.93 | 1.04 | 1.03 | 0.91 | ||
K/Rb | 280 | 231 | 285 | 226 | 280 | 244 | 240 | 257 | 252 | 282 | ||
R1 | 2489 | 2469 | 2414 | 2542 | 2452 | 2433 | 2378 | 2434 | 2475 | 2493 | ||
R2 | 256 | 276 | 284 | 277 | 323 | 288 | 297 | 253 | 241 | 304 | ||
CIPW norm | ||||||||||||
Quartz | 35.94 | 33.11 | 32.59 | 35.04 | 32.74 | 32.66 | 31.81 | 34.72 | 34.75 | 33.38 | ||
Corundum | - | 0.63 | - | 0.8 | 0.89 | 0.37 | 0.12 | - | - | 0.31 | ||
Orthoclase | 28.89 | 28.27 | 28.49 | 28.3 | 27.69 | 28.08 | 26.75 | 27.5 | 28.54 | 28.32 | ||
Albite | 32.09 | 33.45 | 35.46 | 32.96 | 33.78 | 34.43 | 36.38 | 33.71 | 32.9 | 32.44 | ||
Anorthite | - | 1 | 1.03 | 1.13 | 2.49 | 1.56 | 1.96 | - | - | 2.38 | ||
Acmite | 0.47 | - | - | - | - | - | - | 0.78 | 0.82 | - | ||
Na-Metasilicate | 0.57 | - | - | - | - | - | - | 0.37 | 0.17 | - | ||
Diopside | 1.2 | - | 0.54 | - | - | - | - | 1.12 | 0.42 | - | ||
Hypersthene | 0.43 | 2.62 | 1.1 | 1.05 | 1.55 | 2 | 2.01 | 1.35 | 1.94 | 2.2 | ||
Magnetite | - | 0.52 | 0.32 | 0.27 | 0.35 | 0.43 | 0.44 | - | - | 0.47 | ||
Ilmenite | 0.3 | 0.29 | 0.34 | 0.33 | 0.35 | 0.35 | 0.38 | 0.36 | 0.32 | 0.38 | ||
Apatite | 0.09 | 0.09 | 0.11 | 0.1 | 0.14 | 0.09 | 0.12 | 0.08 | 0.12 | 0.11 | ||
C.I. | 1.93 | 3.43 | 2.3 | 1.65 | 2.25 | 2.79 | 2.84 | 2.83 | 2.68 | 3.05 | ||
D.I. | 96.93 | 94.84 | 96.53 | 96.3 | 94.2 | 95.17 | 94.95 | 95.92 | 96.19 | 94.14 |
Type | Syenogranite | Alkali Feldspar Granite | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | SM7 | SM8 | SM22 | SM31 | SM34 | SM74 | SM9 | SM33 | SM35 | SM37 | SM43 | SM51 |
Ni | 5.41 | 6.03 | 5.03 | 3.87 | 4.65 | 4.84 | 1.06 | 1.18 | 1.05 | 0.75 | 0.87 | 0.83 |
Cr | 6.48 | 7.23 | 4.33 | 3.94 | 5.24 | 6.11 | 2.87 | 2.29 | 3.04 | 2.43 | 2.12 | 2.51 |
Co | 4.63 | 5.43 | 3.55 | 2.78 | 2.97 | 2.93 | 1.57 | 0.87 | 1.27 | 1.2 | 0.67 | 1 |
V | 5.21 | 6.67 | 3.67 | 2.17 | 4.08 | 3.33 | 0.88 | 0.96 | 1.02 | 1.12 | 0.56 | 0.76 |
Cu | 6.41 | 7.11 | 4.94 | 3.41 | 3.85 | 5.88 | 1.08 | 0.75 | 0.98 | 2.01 | 1.18 | 1.25 |
Ba | 381 | 418 | 249 | 183 | 248 | 258 | 73.4 | 95.2 | 89.7 | 84.3 | 51.8 | 64.5 |
Rb | 118 | 99.6 | 134 | 156 | 128 | 131 | 176 | 175 | 166 | 159 | 184 | 175 |
Sr | 55.1 | 65.8 | 39.3 | 33.3 | 42.3 | 47.7 | 11.5 | 16.4 | 13.9 | 16.1 | 15.9 | 17.3 |
Zr | 217 | 205 | 254 | 253 | 216 | 206 | 289 | 251 | 244 | 319 | 201 | 268 |
Y | 19.7 | 24.7 | 29.9 | 26.6 | 25.7 | 26.8 | 37.8 | 36.2 | 42.7 | 36.2 | 44.8 | 51.4 |
Nb | 24.2 | 19.6 | 27.1 | 32.5 | 27.3 | 23.7 | 53.0 | 49.5 | 53.4 | 44.7 | 52.7 | 49.3 |
Ga | 18.3 | 17.5 | 18.1 | 19.7 | 18.1 | 17.0 | 23.9 | 25.7 | 24.6 | 22.5 | 27.1 | 23.5 |
Zn | 94.2 | 123 | 115 | 98.6 | 118 | 78.0 | 123 | 112 | 122 | 121 | 94.2 | 125 |
Li | 13.5 | 9.22 | 14.9 | 15.6 | 11.4 | 10.4 | 12.3 | 11.4 | 8.29 | 9.76 | 9.08 | 13.0 |
Be | 2.4 | 2.62 | 4.29 | 3.74 | 3.39 | 2.66 | 3.87 | 3.97 | 4.46 | 3.08 | 3.91 | 4.08 |
Sn | 7.98 | 7.17 | 5.78 | 6.54 | 7.88 | 6.51 | 5.14 | 4.92 | 5.87 | 6.87 | 5.47 | 5.07 |
W | 2.24 | 3.17 | 3.08 | 2.56 | 2 | 2.98 | 4.1 | 3.28 | 3.89 | 2.74 | 3.2 | 4.18 |
Mo | 2.66 | 2.2 | 2.94 | 2.91 | 2.96 | 1.98 | 2.13 | 2.77 | 1.98 | 2.39 | 3.22 | 3.28 |
Cs | 1.57 | 0.81 | 1.36 | 1.22 | 1.22 | 1.15 | 0.89 | 1.27 | 1.02 | 0.91 | 1.65 | 1.24 |
Hf | 7.08 | 5.87 | 7.6 | 7.76 | 6.51 | 6.3 | 11.2 | 10.8 | 12.2 | 11.6 | 12.6 | 12.3 |
Ta | 2.17 | 1.95 | 2.81 | 3.64 | 3.34 | 2.49 | 6.71 | 7.06 | 7.23 | 5.55 | 8.31 | 6.88 |
Pb | 12.7 | 10.1 | 12.7 | 9.69 | 13.7 | 13.9 | 11.8 | 8.7 | 10.6 | 8.36 | 12.2 | 11.5 |
Th | 9.28 | 8.85 | 11.2 | 12.3 | 8.8 | 8.58 | 15.0 | 16.0 | 15.3 | 15.2 | 15.6 | 15.0 |
U | 1.51 | 1.29 | 2.01 | 2.04 | 2.48 | 2.13 | 3.9 | 4.45 | 3.43 | 3.36 | 4.49 | 4.21 |
Ratios | ||||||||||||
Ba/Nb | 15.8 | 21.3 | 9.19 | 5.65 | 9.08 | 10.9 | 1.39 | 1.93 | 1.68 | 1.89 | 0.98 | 1.31 |
Zr/Rb | 1.84 | 2.06 | 1.90 | 1.62 | 1.68 | 1.57 | 1.64 | 1.44 | 1.48 | 2.01 | 1.09 | 1.53 |
Th/Nb | 0.38 | 0.45 | 0.41 | 0.38 | 0.32 | 0.36 | 0.28 | 0.32 | 0.29 | 0.34 | 0.30 | 0.30 |
Zr/Hf | 31 | 35 | 33 | 33 | 33 | 33 | 26 | 23 | 20 | 28 | 16 | 22 |
Y/Ho | 25 | 29 | 29 | 28 | 27 | 26 | 28 | 28 | 28 | 28 | 27 | 29 |
Type | Alkali Feldspar Granite | |||||||||||
Sample No. | SM10 | SM12 | SM16 | SM24 | SM28 | SM40 | SM42 | SM52 | SM65 | SM69 | ||
Ni | 2.14 | 2.36 | 1.99 | 1.84 | 3.27 | 2.36 | 4.16 | 3.19 | 1.45 | 3.94 | ||
Cr | 3.11 | 3.69 | 3.48 | 2.77 | 4.45 | 2.98 | 3.54 | 3.58 | 2.84 | 3.06 | ||
Co | 2.25 | 2.01 | 1.12 | 2.65 | 2.36 | 2.91 | 2.86 | 1.71 | 1.11 | 2.21 | ||
V | 1.96 | 1.74 | 1.14 | 2.41 | 1.94 | 0.94 | 2.32 | 1.66 | 2.01 | 2.74 | ||
Cu | 1.56 | 1.44 | 2.56 | 1.84 | 3.31 | 2.86 | 2.94 | 2.52 | 3.17 | 4.25 | ||
Ba | 114 | 89.9 | 135 | 104 | 129 | 139 | 176 | 131 | 115 | 134 | ||
Rb | 141 | 171 | 138 | 172 | 137 | 159 | 153 | 146 | 156 | 139 | ||
Sr | 19.6 | 21.0 | 21.7 | 18.2 | 32.7 | 19.1 | 28.6 | 24.9 | 17.3 | 30.0 | ||
Zr | 361 | 334 | 337 | 377 | 299 | 320 | 247 | 286 | 293 | 278 | ||
Y | 33.3 | 37.5 | 30.3 | 31.9 | 32.7 | 36.9 | 28.6 | 34.3 | 31.3 | 35.6 | ||
Nb | 44.9 | 44.2 | 38.8 | 46.4 | 41.2 | 44.2 | 35.8 | 41.7 | 51.0 | 36.5 | ||
Ga | 23.3 | 24.2 | 21.9 | 20.9 | 17.7 | 19.0 | 18.2 | 19.2 | 19.9 | 20.2 | ||
Zn | 97.8 | 112 | 134 | 101 | 101 | 122 | 85.0 | 84.0 | 98.7 | 102 | ||
Li | 10.1 | 12.9 | 15.3 | 10.7 | 14.4 | 10.7 | 12.3 | 15.0 | 13.5 | 14.5 | ||
Be | 2.37 | 3.83 | 2.43 | 2.57 | 3.96 | 3.27 | 2.49 | 4.12 | 3.45 | 3.74 | ||
Sn | 6.04 | 4.64 | 5.99 | 4.74 | 5.14 | 4.79 | 6.08 | 5.25 | 4.87 | 5.81 | ||
W | 3.78 | 2.52 | 3.07 | 3.91 | 3.1 | 3.18 | 1.91 | 2.36 | 2.78 | 2.74 | ||
Mo | 2.32 | 3.14 | 2.66 | 2.47 | 2.99 | 2.23 | 2.3 | 2.5 | 2.67 | 2.91 | ||
Cs | 0.75 | 0.76 | 0.95 | 1.01 | 1.59 | 1.22 | 1.28 | 1.23 | 1.21 | 0.88 | ||
Hf | 10.1 | 9.64 | 10.5 | 8.92 | 7.91 | 8.9 | 8.99 | 10.3 | 9.48 | 7.51 | ||
Ta | 5.54 | 4.26 | 4.71 | 5.09 | 4.28 | 4.89 | 3.37 | 4.59 | 4.39 | 4.01 | ||
Pb | 10.7 | 11.9 | 10.4 | 12.2 | 11.4 | 10.9 | 12.9 | 9.75 | 9.42 | 12.5 | ||
Th | 13.5 | 13.6 | 12.6 | 13.9 | 12.8 | 13.0 | 10.5 | 14.0 | 12.2 | 11.0 | ||
U | 3.11 | 3.49 | 2.74 | 3.48 | 2.23 | 2.13 | 2.76 | 3.08 | 2.88 | 2.39 | ||
Ratios | ||||||||||||
Ba/Nb | 2.53 | 2.04 | 3.47 | 2.25 | 3.13 | 3.15 | 4.92 | 3.14 | 2.25 | 3.67 | ||
Zr/Rb | 2.56 | 1.95 | 2.44 | 2.19 | 2.18 | 2.01 | 1.61 | 1.97 | 1.89 | 2.00 | ||
Th/Nb | 0.30 | 0.31 | 0.32 | 0.30 | 0.31 | 0.29 | 0.29 | 0.34 | 0.24 | 0.30 | ||
Zr/Hf | 36 | 35 | 32 | 42 | 38 | 36 | 27 | 28 | 31 | 37 | ||
Y/Ho | 29 | 27 | 26 | 27 | 26 | 28 | 28 | 28 | 27 | 28 |
Type | Syenogranite | Alkali Feldspar Granite | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | SM7 | SM8 | SM22 | SM31 | SM34 | SM74 | SM9 | SM33 | SM35 | SM37 | SM43 | SM51 |
La | 9.15 | 8.41 | 9.58 | 10.9 | 9.88 | 9.50 | 26.8 | 22.2 | 29.2 | 23.5 | 30.2 | 32.0 |
Ce | 22.8 | 21.1 | 25.3 | 27.8 | 25.2 | 24.4 | 58.3 | 47.7 | 66.2 | 52.4 | 66.7 | 69.7 |
Pr | 3.23 | 3.14 | 3.59 | 4.05 | 3.85 | 3.57 | 7.06 | 6.38 | 8.02 | 6.44 | 8.23 | 8.89 |
Nd | 13.8 | 12.9 | 15.6 | 17.6 | 16.4 | 15.6 | 26.9 | 25.3 | 32.4 | 23.9 | 32.3 | 34.7 |
Sm | 3.14 | 3.09 | 3.94 | 4.42 | 3.69 | 3.71 | 5.47 | 5.44 | 6.52 | 4.65 | 6.47 | 6.85 |
Eu | 0.20 | 0.20 | 0.19 | 0.21 | 0.19 | 0.21 | 0.35 | 0.30 | 0.33 | 0.24 | 0.37 | 0.35 |
Gd | 2.58 | 2.96 | 3.57 | 3.23 | 3.28 | 3.36 | 5.76 | 6.13 | 6.37 | 5.30 | 6.85 | 7.27 |
Tb | 0.53 | 0.56 | 0.71 | 0.62 | 0.65 | 0.66 | 1.02 | 0.99 | 1.10 | 0.95 | 1.19 | 1.25 |
Dy | 3.60 | 3.84 | 4.66 | 4.28 | 4.32 | 4.50 | 6.42 | 6.40 | 7.24 | 6.01 | 7.69 | 8.12 |
Ho | 0.80 | 0.86 | 1.04 | 0.94 | 0.96 | 1.01 | 1.36 | 1.31 | 1.54 | 1.29 | 1.65 | 1.76 |
Er | 2.25 | 2.41 | 2.94 | 2.69 | 2.85 | 2.89 | 4.06 | 3.91 | 4.42 | 3.72 | 4.82 | 5.15 |
Tm | 0.34 | 0.37 | 0.43 | 0.39 | 0.42 | 0.43 | 0.63 | 0.62 | 0.69 | 0.58 | 0.75 | 0.81 |
Yb | 2.18 | 2.30 | 2.78 | 2.56 | 2.76 | 2.80 | 4.18 | 3.93 | 4.65 | 3.95 | 5.09 | 5.58 |
Lu | 0.30 | 0.34 | 0.40 | 0.36 | 0.38 | 0.39 | 0.67 | 0.64 | 0.70 | 0.62 | 0.79 | 0.87 |
ΣREE | 65 | 63 | 75 | 80 | 75 | 73 | 149 | 131 | 169 | 134 | 173 | 183 |
Eu/Eu* | 0.21 | 0.20 | 0.16 | 0.17 | 0.17 | 0.19 | 0.19 | 0.16 | 0.16 | 0.15 | 0.17 | 0.15 |
(La/Yb)n | 2.84 | 2.48 | 2.33 | 2.87 | 2.42 | 2.30 | 4.33 | 3.82 | 4.24 | 4.02 | 4.01 | 3.88 |
(La/Sm)n | 1.84 | 1.72 | 1.54 | 1.55 | 1.69 | 1.62 | 3.09 | 2.58 | 2.82 | 3.19 | 2.95 | 2.94 |
(Gd/Lu)n | 1.05 | 1.08 | 1.09 | 1.11 | 1.05 | 1.04 | 1.06 | 1.18 | 1.11 | 1.06 | 1.06 | 1.02 |
(La/Lu)n | 3.11 | 2.57 | 2.44 | 3.13 | 2.64 | 2.47 | 4.10 | 3.56 | 4.26 | 3.92 | 3.90 | 3.75 |
t1 | 1.08 | 1.10 | 1.10 | 1.08 | 1.09 | 1.08 | 1.07 | 1.04 | 1.06 | 1.09 | 1.06 | 1.05 |
t3 | 1.05 | 1.00 | 1.02 | 1.02 | 1.03 | 1.02 | 0.99 | 0.97 | 0.98 | 0.99 | 0.98 | 0.97 |
TE1,3 | 1.06 | 1.05 | 1.06 | 1.05 | 1.06 | 1.05 | 1.03 | 1.00 | 1.02 | 1.04 | 1.02 | 1.01 |
Type | Alkali Feldspar Granite | |||||||||||
Sample No. | SM10 | SM12 | SM16 | SM24 | SM28 | SM40 | SM42 | SM52 | SM65 | SM69 | ||
La | 14.3 | 14.7 | 12.1 | 7.14 | 12.5 | 12.3 | 10.2 | 13.7 | 12.0 | 14.9 | ||
Ce | 36.1 | 38.0 | 29.4 | 18.6 | 32.1 | 33.7 | 26.2 | 36.2 | 31.3 | 35.0 | ||
Pr | 5.29 | 5.59 | 4.45 | 2.65 | 4.70 | 4.77 | 3.64 | 5.29 | 4.63 | 5.28 | ||
Nd | 23.1 | 24.8 | 19.3 | 12.4 | 20.8 | 21.2 | 16.5 | 23.5 | 20.9 | 22.8 | ||
Sm | 5.55 | 5.85 | 4.45 | 3.13 | 4.78 | 5.32 | 3.61 | 5.43 | 4.94 | 5.27 | ||
Eu | 0.28 | 0.26 | 0.22 | 0.24 | 0.24 | 0.28 | 0.23 | 0.29 | 0.27 | 0.26 | ||
Gd | 4.69 | 5.09 | 3.81 | 3.51 | 4.24 | 5.43 | 3.53 | 4.43 | 3.96 | 4.58 | ||
Tb | 0.84 | 0.95 | 0.79 | 0.70 | 0.82 | 0.95 | 0.69 | 0.84 | 0.75 | 0.85 | ||
Dy | 5.48 | 6.29 | 5.08 | 5.03 | 5.62 | 6.16 | 4.81 | 5.58 | 5.12 | 6.01 | ||
Ho | 1.13 | 1.37 | 1.16 | 1.19 | 1.25 | 1.31 | 1.04 | 1.24 | 1.15 | 1.28 | ||
Er | 3.39 | 4.00 | 3.23 | 3.41 | 3.63 | 3.87 | 3.12 | 3.64 | 3.25 | 3.73 | ||
Tm | 0.51 | 0.60 | 0.49 | 0.51 | 0.54 | 0.59 | 0.46 | 0.53 | 0.50 | 0.55 | ||
Yb | 3.51 | 3.93 | 3.23 | 3.40 | 3.49 | 3.89 | 2.98 | 3.48 | 3.11 | 3.58 | ||
Lu | 0.51 | 0.55 | 0.46 | 0.48 | 0.48 | 0.59 | 0.41 | 0.48 | 0.43 | 0.52 | ||
ΣREE | 105 | 112 | 88 | 62 | 95 | 100 | 77 | 105 | 92 | 105 | ||
Eu/Eu* | 0.17 | 0.14 | 0.16 | 0.22 | 0.16 | 0.16 | 0.20 | 0.18 | 0.19 | 0.16 | ||
(La/Yb)n | 2.76 | 2.53 | 2.54 | 1.42 | 2.41 | 2.14 | 2.32 | 2.67 | 2.60 | 2.81 | ||
(La/Sm)n | 1.63 | 1.59 | 1.72 | 1.44 | 1.65 | 1.46 | 1.79 | 1.59 | 1.53 | 1.78 | ||
(Gd/Lu)n | 1.13 | 1.12 | 1.01 | 0.89 | 1.08 | 1.12 | 1.06 | 1.12 | 1.13 | 1.08 | ||
(La/Lu)n | 2.89 | 2.72 | 2.69 | 1.52 | 2.65 | 2.13 | 2.57 | 2.90 | 2.86 | 2.93 | ||
t1 | 1.07 | 1.08 | 1.05 | 1.05 | 1.08 | 1.11 | 1.06 | 1.09 | 1.07 | 1.04 | ||
t3 | 1.01 | 1.01 | 1.04 | 1.00 | 1.02 | 0.99 | 1.03 | 1.01 | 1.00 | 1.01 | ||
TE1,3 | 1.04 | 1.04 | 1.05 | 1.03 | 1.05 | 1.05 | 1.05 | 1.05 | 1.04 | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubarak, H.S.; Azer, M.K.; Surour, A.A.; Moussa, H.E.; Asimow, P.D.; Kabesh, M. Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt. Minerals 2025, 15, 898. https://doi.org/10.3390/min15090898
Mubarak HS, Azer MK, Surour AA, Moussa HE, Asimow PD, Kabesh M. Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt. Minerals. 2025; 15(9):898. https://doi.org/10.3390/min15090898
Chicago/Turabian StyleMubarak, Heba S., Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Paul D. Asimow, and Mona Kabesh. 2025. "Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt" Minerals 15, no. 9: 898. https://doi.org/10.3390/min15090898
APA StyleMubarak, H. S., Azer, M. K., Surour, A. A., Moussa, H. E., Asimow, P. D., & Kabesh, M. (2025). Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt. Minerals, 15(9), 898. https://doi.org/10.3390/min15090898