Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Thalassia testudinum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4816 KiB  
Article
Spatio-Temporal Variation in Cyanobacteria and Epiphytic Algae of Thalassia testudinum in Two Localities of Southern Quintana Roo, Mexico
by Rocio Nava-Olvera, Luz Elena Mateo-Cid, Itzel González-Contreras and Ángela Catalina Mendoza-González
Diversity 2024, 16(6), 321; https://doi.org/10.3390/d16060321 - 28 May 2024
Cited by 2 | Viewed by 1333
Abstract
The leaves of Thalassia testudinum provide an ideal substrate for the establishment of small-sized algae with different morphologies that are abundant and diverse. There are few studies on epiphytism in Mexico, and most of them are floristic lists. The objective of this study [...] Read more.
The leaves of Thalassia testudinum provide an ideal substrate for the establishment of small-sized algae with different morphologies that are abundant and diverse. There are few studies on epiphytism in Mexico, and most of them are floristic lists. The objective of this study was to analyze the taxonomic and morphofunctional composition of epiphytes in three climatic seasons, and their relationship with the phorophyte T. testudinum in two localities, El Uvero and Santa Rosa, in the south of Quintana Roo; three transects and fifteen quadrants were set in June and December (2014) and April (2015). A total of 84 epiphytic species were identified: 27 corresponded to Cyanobacteria, 10 to Phaeophyceae, 9 to Chlorophyta, and 38 to Rhodophyta. The highest specific richness was observed in Santa Rosa (73 species). The dry and summer rains seasons share a higher number of species compared to the winter rainy season. The crusty algae Hydrolithon farinosum was the dominant and most persistent species; in addition, filamentous algae presented great specific richness and coverage due to their morphology and reproductive strategies, which allowed them to successfully establish themselves on the phorophyte. This is related to the ecological succession of the epiphytes and seagrass phenology. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

18 pages, 6401 KiB  
Article
Effects of Aquaculture and Thalassia testudinum on Sediment Organic Carbon in Xincun Bay, Hainan Island
by Qiuying Han, Wenxue Che, Hui Zhao, Jiahui Ye, Wenxuan Zeng, Yufeng Luo, Xinzhu Bai, Muqiu Zhao and Yunfeng Shi
Water 2024, 16(2), 338; https://doi.org/10.3390/w16020338 - 19 Jan 2024
Cited by 2 | Viewed by 1908
Abstract
Eutrophication due to aquaculture can cause the decline of seagrasses and impact their carbon storage capacity. This study explored the effects of aquaculture on the sediment organic carbon (SOC) in Thalassia testudinum seagrass beds using enzyme activity and microorganisms as indicators. Our results [...] Read more.
Eutrophication due to aquaculture can cause the decline of seagrasses and impact their carbon storage capacity. This study explored the effects of aquaculture on the sediment organic carbon (SOC) in Thalassia testudinum seagrass beds using enzyme activity and microorganisms as indicators. Our results showed that the distance to aquaculture significantly increased the SOC and TN of sediments; the C/N ratio of sediments was reduced by the distance to aquaculture. Distance to aquaculture and seagrasses significantly impacted the δ13C of sediments, and their significant interactive effects on the δ13C of sediments were found. Distance to aquaculture and seagrasses had significantly interactive effects on the cellulase activity of sediments. Distance to aquaculture and seagrasses separately reduced the invertase activity of sediments. SOC in the seagrass bed was significantly positively impacted by cellulase activity and polyphenol oxidase activity in sediments. Firmicutes, Desulfobacterota and Chloroflexi were the dominant taxa in the S1 and S2 locations. From the S1 location to the S2 location, the relative abundances of Firmicutes and Desulfobacterota increased. The functional profiles of COG were relatively similar between the S1 and S2 locations. BugBase phenotype predictions indicated that the microbial phenotypes of all the seagrass sediment samples were dominated by anaerobic bacteria in terms of oxygen utilizing phenotypes. FAPROTAX functional predictions indicated that aquaculture affects functions associated with seagrass bed sediment bacteria, particularly those related to carbon and nitrogen cycling. This study can provide an important basis for understanding the response mechanism of global carbon sink changes to human activities such as aquaculture and supply more scientific data for promoting the conservation and management of seagrass beds. Full article
(This article belongs to the Special Issue Conservation and Monitoring of Marine Ecosystem)
Show Figures

Figure 1

15 pages, 2828 KiB  
Article
The Epibiotic Microbiota of Wild Caribbean Sea Urchin Spines Is Species Specific
by Ruber Rodríguez-Barreras, Anelisse Dominicci-Maura, Eduardo L. Tosado-Rodríguez and Filipa Godoy-Vitorino
Microorganisms 2023, 11(2), 391; https://doi.org/10.3390/microorganisms11020391 - 3 Feb 2023
Cited by 8 | Viewed by 3145
Abstract
Caribbean sea urchins are marine invertebrates that have experienced a decline over the years. Studies on sea urchins have focused primarily on the microbiome of the coelomic fluid or the gut microbiota. In this study, the epibiota community associated with four wild Caribbean [...] Read more.
Caribbean sea urchins are marine invertebrates that have experienced a decline over the years. Studies on sea urchins have focused primarily on the microbiome of the coelomic fluid or the gut microbiota. In this study, the epibiota community associated with four wild Caribbean sea urchin species, Lytechinus variegatus, Echinometra lucunter, Tripneustes ventricosus, and Diadema antillarum, was characterized for the first time. Using 57 sea urchin animal samples, we evaluated the influence of animal species, trophic niches, and geographical location on the composition of the epibiotic microbiota. We found significant differences in the bacterial biota among species and trophic niches, but not among geographical locations. L. variegatus exhibited the highest alpha diversity with high dominance of Fusobacteria, Planctomycetes, and Cyanobacteria, whereas T. ventricosus and D. antillarum were dominated by Firmicutes. T. ventricosus inhabiting the seagrass biotope dominated by Thalassia testudinum meadows had mostly Endozoicomonas. In contrast, samples located in the reef (dominated by corals and other reef builders) had a higher abundance of Kistimonas and Photobacterium. Our findings confirm that the epibiotic microbiota is species-specific, but also niche-dependent, revealing the trophic networks emerging from the organic matter being recycled in the seagrass and reef niches. As echinoids are important grazers of benthic communities, their microbiota will likely influence ecosystem processes. Full article
(This article belongs to the Special Issue Microbiomes of Aquatic Organisms)
Show Figures

Figure 1

22 pages, 1854 KiB  
Article
The Impact of Sargassum Inundations on the Turks and Caicos Islands
by Debbie Bartlett and Franziska Elmer
Phycology 2021, 1(2), 83-104; https://doi.org/10.3390/phycology1020007 - 2 Nov 2021
Cited by 26 | Viewed by 6436
Abstract
Since 2011, holopelagic Sargassum fluitans and natans have been arriving en masse to the wider Caribbean region and West Africa, impacting near-shore habitats and coastal communities. We examined the impacts of the Sargassum influx on tourism-related businesses through face-to-face interviews and focus groups [...] Read more.
Since 2011, holopelagic Sargassum fluitans and natans have been arriving en masse to the wider Caribbean region and West Africa, impacting near-shore habitats and coastal communities. We examined the impacts of the Sargassum influx on tourism-related businesses through face-to-face interviews and focus groups and on near-shore seagrass beds through in-water surveys in the Turks and Caicos Islands (TCI). Substantial accumulations of sargassum were found on the beaches of South Caicos and Middle Creek Cay in 2018 and 2019, including a Sargassum brown tide in 2018. A variety of different approaches to removing sargassum from the beaches were mentioned and a desire from local businesses as well as local authorities to find a sustainable, cost-effective solution to what is viewed by many as a serious problem. The brown tide and sargassum accumulating as a layer on the benthos inside the seagrass beds caused significant loss of Thalassia testudinum. Halodule wrightii, macroalgae and sand plains were found in the areas lost by T. testudinum. This finding suggests that, if a cost-effective end use for sargassum could be identified, harvesting material in inshore waters rather than when it has arrived on the beach would have dual benefits. Full article
(This article belongs to the Collection Sargassum Golden Tides, a Global Problem)
Show Figures

Figure 1

19 pages, 5636 KiB  
Article
Nitrogen Fixation in Subtropical Seagrass Sediments: Seasonal Patterns in Activity in Santa Rosa Sound, Florida, USA
by Rachel Presley and Jane M. Caffrey
J. Mar. Sci. Eng. 2021, 9(7), 766; https://doi.org/10.3390/jmse9070766 - 14 Jul 2021
Cited by 6 | Viewed by 4068
Abstract
Seagrass beds are important coastal habitats that are diminishing globally. Nitrogen, a key nutrient, often limits seagrass growth. Nitrogen fixation provides new, bioavailable nitrogen to the plants. This study explores its importance and factors controlling rates in sediments colonized by two dominant taxa [...] Read more.
Seagrass beds are important coastal habitats that are diminishing globally. Nitrogen, a key nutrient, often limits seagrass growth. Nitrogen fixation provides new, bioavailable nitrogen to the plants. This study explores its importance and factors controlling rates in sediments colonized by two dominant taxa in Northwest Florida, Thalassia testudinum and Halodule wrightii, compared to unvegetated sediments. We hypothesized that nitrogen fixation rates would be greater in seagrass colonized sediments, particularly during high growth periods. We expected to observe a positive relationship between rates and porewater sulfide concentrations because sulfate reducers were the dominant diazotrophs in similar studies. Rates were higher in vegetated areas. In H. wrightii beds, nitrogen fixation was driven by the decreased availability of porewater ammonium relative to phosphorus. In T. testudinum beds, rates were highest during winter. Organic matter may be a controlling factor in all substrate types albeit the exact mechanism driving nitrogen fixation differs slightly. During the summer and fall, nitrogen fixation provided between 1–15% of T. testudinum nitrogen demand. Annually, nitrogen fixation provided 4% and 1% of T. testudinum and H. wrightii nitrogen demand, respectively. Nitrogen fixation was an important source of nitrogen during periods of senescence and dormancy when organic matter content was high. Full article
Show Figures

Figure 1

17 pages, 6034 KiB  
Article
Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways
by Ivones Hernández-Balmaseda, Idania Rodeiro Guerra, Ken Declerck, José Alfredo Herrera Isidrón, Claudina Pérez-Novo, Guy Van Camp, Olivier De Wever, Kethia González, Mayrel Labrada, Adriana Carr, Geovanni Dantas-Cassali, Diego Carlos dos Reis, Livan Delgado-Roche, Roberto Rafael Nuñez, René Delgado-Hernández, Miguel David Fernández, Miriam T. Paz-Lopes and Wim Vanden Berghe
Mar. Drugs 2021, 19(2), 52; https://doi.org/10.3390/md19020052 - 22 Jan 2021
Cited by 19 | Viewed by 4848
Abstract
Marine plants have become an inexhaustible reservoir of new phytopharmaceuticals for cancer treatment. We demonstrate in vitro/in vivo antitumor efficacy of a standardized polyphenol extract from the marine angiosperm Thalassia testudinum (TTE) in colon tumor cell lines (RKO, SW480, and CT26) and a [...] Read more.
Marine plants have become an inexhaustible reservoir of new phytopharmaceuticals for cancer treatment. We demonstrate in vitro/in vivo antitumor efficacy of a standardized polyphenol extract from the marine angiosperm Thalassia testudinum (TTE) in colon tumor cell lines (RKO, SW480, and CT26) and a syngeneic allograft murine colorectal cancer model. MTT assays revealed a dose-dependent decrease of cell viability of RKO, CT26, and SW480 cells upon TTE treatment with IC50 values of, respectively, 175, 115, and 60 μg/mL. Furthermore, TTE significantly prevented basal and bFGF-induced angiogenesis in the chicken chorioallantoic membrane angiogenesis assay. In addition, TTE suppressed bFGF-induced migration of endothelial cells in a wound closure assay. Finally, TTE treatment abrogated CT26 colorectal cancer growth and increased overall organism survival in a syngeneic murine allograft model. Corresponding transcriptome profiling and pathway analysis allowed for the identification of the mechanism of action for the antitumor effects of TTE. In line with our in vitro/in vivo results, TTE treatment triggers ATF4-P53-NFκB specific gene expression and autophagy stress pathways. This results in suppression of colon cancer cell growth, cell motility, and angiogenesis pathways in vitro and in addition promotes antitumor immunogenic cell death in vivo. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Graphical abstract

15 pages, 1114 KiB  
Article
Interaction of Thalassia testudinum Metabolites with Cytochrome P450 Enzymes and Its Effects on Benzo(a)pyrene-Induced Mutagenicity
by Livan Delgado-Roche, Rebeca Santes-Palacios, José A. Herrera, Sandra L. Hernández, Mario Riera, Miguel D. Fernández, Fernando Mesta, Gabino Garrido, Idania Rodeiro and Jesús Javier Espinosa-Aguirre
Mar. Drugs 2020, 18(11), 566; https://doi.org/10.3390/md18110566 - 19 Nov 2020
Cited by 7 | Viewed by 3319
Abstract
The aim of the present work was to evaluate the effects of Thalassia testudinum hydroethanolic extract, its polyphenolic fraction and thalassiolin B on the activity of phase I metabolizing enzymes as well as their antimutagenic effects. Spectrofluorometric techniques were used to evaluate the [...] Read more.
The aim of the present work was to evaluate the effects of Thalassia testudinum hydroethanolic extract, its polyphenolic fraction and thalassiolin B on the activity of phase I metabolizing enzymes as well as their antimutagenic effects. Spectrofluorometric techniques were used to evaluate the effect of tested products on rat and human CYP1A and CYP2B activity. The antimutagenic effect of tested products was evaluated in benzo[a]pyrene (BP)-induced mutagenicity assay by an Ames test. Finally, the antimutagenic effect of Thalassia testudinum (100 mg/kg) was assessed in BP-induced mutagenesis in mice. The tested products significantly (p < 0.05) inhibit rat CYP1A1 activity, acting as mixed-type inhibitors of rat CYP1A1 (Ki = 54.16 ± 9.09 μg/mL, 5.96 ± 1.55 μg/mL and 3.05 ± 0.89 μg/mL, respectively). Inhibition of human CYP1A1 was also observed (Ki = 197.1 ± 63.40 μg/mL and 203.10 ± 17.29 μg/mL for the polyphenolic fraction and for thalassiolin B, respectively). In addition, the evaluated products significantly inhibit (p < 0.05) BP-induced mutagenicity in vitro. Furthermore, oral doses of Thalassia testudinum (100 mg/kg) significantly reduced (p < 0.05) the BP-induced micronuclei and oxidative damage, together with an increase of reduced glutathione, in mice. In summary, Thalassia testudinum metabolites exhibit antigenotoxic activity mediated, at least, by the inhibition of CYP1A1-mediated BP biotransformation, arresting the oxidative and mutagenic damage. Thus, the metabolites of T. testudinum may represent a potential source of chemopreventive compounds for the adjuvant therapy of cancer. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

17 pages, 1394 KiB  
Article
Diversity of Seagrass-Associated Decapod Crustaceans in a Tropical Reef Lagoon Prior to Large Environmental Changes: A Baseline Study
by Patricia Briones-Fourzán, Luz Verónica Monroy-Velázquez, Jaime Estrada-Olivo and Enrique Lozano-Álvarez
Diversity 2020, 12(5), 205; https://doi.org/10.3390/d12050205 - 23 May 2020
Cited by 5 | Viewed by 5151
Abstract
The community composition of decapods associated with subtidal tropical seagrass meadows was analyzed in a pristine reef lagoon on the Mexican Caribbean coast in the summer of 1995 and winter of 1998. The macrophyte community was dominated by Thalassia testudinum followed by Syringodium [...] Read more.
The community composition of decapods associated with subtidal tropical seagrass meadows was analyzed in a pristine reef lagoon on the Mexican Caribbean coast in the summer of 1995 and winter of 1998. The macrophyte community was dominated by Thalassia testudinum followed by Syringodium filiforme, with interspersed rhyzophytic macroalgae and large patches of drift algae. In each season, 10 one-min trawls were made with an epibenthic sled (mesh aperture 1 mm) during the day and 10 during the night on each of five sites. In all, 53,211 decapods belonging to 119 species were collected. The most diverse taxa were Brachyura and Caridea, but the most abundant were Caridea and Anomura. Dominance was high, with three species (Latreutes fucorum, Cuapetes americanus, and Thor manningi) accounting for almost 50% of individuals, and 10 species accounting for nearly 90% of individuals. There was great similarity in community composition and ecological indices between seasons, but significantly more individuals and species in night versus day samples. In the 20+ years elapsed since the samples were taken, the reef lagoon has undergone substantial environmental changes due to extensive coastal development and, more recently, the decay of massive beachings of floating Sargassum macroalgae. This study constitutes a valuable baseline for future studies investigating the potential impact of these stressors on tropical seagrass-associated communities. Full article
(This article belongs to the Special Issue Biodiversity in Seagrass Ecosystems)
Show Figures

Graphical abstract

20 pages, 2853 KiB  
Article
The Microbial Communities of Leaves and Roots Associated with Turtle Grass (Thalassia testudinum) and Manatee Grass (Syringodium filliforme) are Distinct from Seawater and Sediment Communities, but Are Similar between Species and Sampling Sites
by Kelly Ugarelli, Peeter Laas and Ulrich Stingl
Microorganisms 2019, 7(1), 4; https://doi.org/10.3390/microorganisms7010004 - 26 Dec 2018
Cited by 56 | Viewed by 8336
Abstract
Seagrasses are vital members of coastal systems, which provide several important ecosystem services such as improvement of water quality, shoreline protection, and serving as shelter, food, and nursery to many species, including economically important fish. They also act as a major carbon sink [...] Read more.
Seagrasses are vital members of coastal systems, which provide several important ecosystem services such as improvement of water quality, shoreline protection, and serving as shelter, food, and nursery to many species, including economically important fish. They also act as a major carbon sink and supply copious amounts of oxygen to the ocean. A decline in seagrasses has been observed worldwide, partly due to climate change, direct and indirect human activities, diseases, and increased sulfide concentrations in the coastal porewaters. Several studies have shown a symbiotic relationship between seagrasses and their microbiome. For instance, the sulfur, nitrogen, and carbon cycles are important biochemical pathways that seem to be linked between the plant and its microbiome. The microbiome presumably also plays a key role in the health of the plant, for example in oxidizing phyto-toxic sulfide into non-toxic sulfate, or by providing protection for seagrasses from pathogens. Two of the most abundant seagrasses in Florida include Thalassia testudinum (turtle grass) and Syringodium filliforme (manatee grass), yet there is little data on the composition of the microbiome of these two genera. In this study, the microbial composition of the phyllosphere and rhizosphere of Thalassia testudinum and Syringodium filiforme were compared to water and sediment controls using amplicon sequencing of the V4 region of the 16S rRNA gene. The microbial composition of the leaves, roots, seawater, and sediment differ from one another, but are similar between the two species of seagrasses. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop