Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Temporin-L

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1212 KiB  
Article
New Temporin A Analogues Modified in Positions 1 and 10—Synthesis and Biological Studies
by Dilyana Dimitrova, Veronica Nemska, Ivan Iliev, Stoyko Petrin, Nelly Georgieva and Dancho Danalev
Pharmaceutics 2025, 17(4), 396; https://doi.org/10.3390/pharmaceutics17040396 - 21 Mar 2025
Viewed by 585
Abstract
Background/Objectives: With growing antimicrobial resistance, the overuse of antibiotics, and stagnation in the discovery of new antibiotics, a novel alternative is required to overcome hard-to-treat infections. Antimicrobial peptides (AMPs) show great potential as a possible alternative to standard chemotherapeutics. Temporins are a [...] Read more.
Background/Objectives: With growing antimicrobial resistance, the overuse of antibiotics, and stagnation in the discovery of new antibiotics, a novel alternative is required to overcome hard-to-treat infections. Antimicrobial peptides (AMPs) show great potential as a possible alternative to standard chemotherapeutics. Temporins are a group of AMPs that have been under the spotlight in numerous studies. Herein, we report the design and synthesis of Temporin A modified in position 1, where the proteinogenic amino acid Phe is replaced by Tyr or fluorinated Phe. In addition, in other analogues, in position 10, the Ser residue is replaced by Tyr or Thr. The aim of all modifications in the primary structure of the native Temporin A is to study the influence of the changes made on the antibacterial properties, antiproliferative activity, and hydrolytic stability of the newly synthesized molecules. Methods: The Fmoc/OBut SPPS strategy was employed for the synthesis of the novel-designed analogues. The antibacterial activity was evaluated with both disk diffusion and broth microdilution methods. The BALB 3T3 NRU test and MTT dye reduction assay were used to determine safety and antiproliferative activity. Results: The investigated analogues have low toxicity and are photosafe. The greatest selectivity was shown by DTTyr10 towards MCF-7 cells. DT4F, containing fluorinated Phe in position 1, was the most effective antibacterial agent among the new compounds. The incorporation of Thr in position 10, in comparison with the natural Ser residue, led to an increase in the antiproliferative effect of the new peptide. Conclusions: The obtained structure–activity relationship data show that the most promising compound in the tested series is FLPLIGRVL-Y-GILNH2, where the Ser residue in position 10 is replaced by a more hydrophobic OH-containing Tyr residue. The analogue containing fluorinated Phe in position 1, DT4F, has the highest antiproliferative effect against both tested tumor cell lines, combined with good antibacterial properties at the lowest MIC (80 µg/mL), but it is more cyto- and phototoxic than the parent DTA molecule and is not stable at pH 9 for a 24 h period. Full article
Show Figures

Figure 1

21 pages, 3864 KiB  
Article
Antibiofilm Activity and Biocompatibility of Temporin-SHa: A Promising Antimicrobial Peptide for Control of Fluconazole-Resistant Candida albicans
by Luana Mendonça Dias, Eduardo Maffud Cilli, Karine Sousa Medeiros, Maria Carolina Oliveira de Arruda Brasil, Lina Maria Marin, Walter L. Siqueira and Ana Claudia Pavarina
Microorganisms 2024, 12(1), 99; https://doi.org/10.3390/microorganisms12010099 - 4 Jan 2024
Cited by 2 | Viewed by 1890
Abstract
The aim of the study was to investigate the effect of antimicrobial peptides (AMPs) Hylin−a1, KR−12-a5, and Temporin-SHa in Candida albicans as well as the biocompatibility of keratinocytes spontaneously immortalized (NOK-si) and human gingival fibroblasts (FGH) cells. Initially, the susceptible (CaS—ATCC 90028) and [...] Read more.
The aim of the study was to investigate the effect of antimicrobial peptides (AMPs) Hylin−a1, KR−12-a5, and Temporin-SHa in Candida albicans as well as the biocompatibility of keratinocytes spontaneously immortalized (NOK-si) and human gingival fibroblasts (FGH) cells. Initially, the susceptible (CaS—ATCC 90028) and fluconazole-resistant (CaR—ATCC 96901) C. albicans strains were grown to evaluate the effect of each AMP in planktonic culture, biofilm, and biocompatibility on oral cells. Among the AMPs evaluated, temporin−SHa showed the most promising results. After 24 h of Temporin-SHa exposure, the survival curve results showed that CaS and CaR suspensions reduced 72% and 70% of cell viability compared to the control group. The minimum inhibitory/fungicide concentrations (MIC and MFC) showed that Temporin−SHa was able to reduce ≥50% at ≥256 µg/mL for both strains. The inhibition of biofilm formation, efficacy against biofilm formation, and total biomass assays were performed until 48 h of biofilm maturation, and Temporin-SHa was able to reduce ≥50% of CaS and CaR growth. Furthermore, Temporin−SHa (512 µg/mL) was classified as non-cytotoxic and slightly cytotoxic for NOK-si and FGH, respectively. Temporin−SHa demonstrated an anti-biofilm effect against CaS and CaR and was biocompatible with NOK-si and FGH oral cells in monolayer. Full article
(This article belongs to the Special Issue Antimicrobial Peptides: Therapeutic Potentials 2.0)
Show Figures

Figure 1

18 pages, 2013 KiB  
Article
Synthetic Amphipathic β-Sheet Temporin-Derived Peptide with Dual Antibacterial and Anti-Inflammatory Activities
by Rosa Bellavita, Elisabetta Buommino, Bruno Casciaro, Francesco Merlino, Floriana Cappiello, Noemi Marigliano, Anella Saviano, Francesco Maione, Rosaria Santangelo, Maria Luisa Mangoni, Stefania Galdiero, Paolo Grieco and Annarita Falanga
Antibiotics 2022, 11(10), 1285; https://doi.org/10.3390/antibiotics11101285 - 21 Sep 2022
Cited by 15 | Viewed by 2494
Abstract
Temporin family is one of the largest among antimicrobial peptides (AMPs), which act mainly by penetrating and disrupting the bacterial membranes. To further understand the relationship between the physical-chemical properties and their antimicrobial activity and selectivity, an analogue of Temporin L, [Nle1 [...] Read more.
Temporin family is one of the largest among antimicrobial peptides (AMPs), which act mainly by penetrating and disrupting the bacterial membranes. To further understand the relationship between the physical-chemical properties and their antimicrobial activity and selectivity, an analogue of Temporin L, [Nle1, dLeu9, dLys10]TL (Nle-Phe-Val-Pro-Trp-Phe-Lys-Phe-dLeu-dLys-Arg-Ile-Leu-CONH2) has been developed in the present work. The design strategy consisted of the addition of a norleucine residue at the N-terminus of the lead peptide sequence, [dLeu9, dLys10]TL, previously developed by our group. This modification promoted an increase of peptide hydrophobicity and, interestingly, more efficient activity against both Gram-positive and Gram-negative strains, without affecting human keratinocytes and red blood cells survival compared to the lead peptide. Thus, this novel compound was subjected to biophysical studies, which showed that the peptide [Nle1, dLeu9, dLys10]TL is unstructured in water, while it adopts β-type conformation in liposomes mimicking bacterial membranes, in contrast to its lead peptide forming α-helical aggregates. After its aggregation in the bacterial membrane, [Nle1, dLeu9, dLys10]TL induced membrane destabilization and deformation. In addition, the increase of peptide hydrophobicity did not cause a loss of anti-inflammatory activity of the peptide [Nle1, dLeu9, dLys10]TL in comparison with its lead peptide. In this study, our results demonstrated that positive net charge, optimum hydrophobic−hydrophilic balance, and chain length remain the most important parameters to be addressed while designing small cationic AMPs. Full article
Show Figures

Figure 1

13 pages, 793 KiB  
Article
Selected Antimicrobial Peptides Inhibit In Vitro Growth of Campylobacter spp.
by John Eric Line, Bruce S. Seal and Johnna K. Garrish
Appl. Microbiol. 2022, 2(4), 688-700; https://doi.org/10.3390/applmicrobiol2040053 - 21 Sep 2022
Cited by 1 | Viewed by 2668
Abstract
Campylobacter is a major cause of acute human diarrheal illness. Broiler chickens constitute a primary reservoir for C. jejuni leading to human infection. Consequently, there is a need for developing novel intervention methods. Antimicrobial peptides (AMP) are small proteins which have evolved in [...] Read more.
Campylobacter is a major cause of acute human diarrheal illness. Broiler chickens constitute a primary reservoir for C. jejuni leading to human infection. Consequently, there is a need for developing novel intervention methods. Antimicrobial peptides (AMP) are small proteins which have evolved in most lifeforms to provide defense against microbial infections. To date, over 3000 AMP have been discovered; however, few of them have been analyzed specifically for ability to kill campylobacters. We selected and evaluated a set of 11 unique chemically synthesized AMP for ability to inhibit growth of C. jejuni. Six of the AMP we tested produced zones of inhibition on lawns of C. jejuni. These AMP included: NRC-13, RL-37, Temporin L, Cecropin–Magainin, Dermaseptin, and C12K-2β12. In addition, MIC were determined for Cecropin–Magainin, RL-37 and C12K-2β12 against 15 isolates of Campylobacter representing the three most common pathogenic strains. MIC for campylobacters were approximately 3.1 µg/mL for AMP RL-37 and C12K-2β12. MIC were slightly higher for the Cecropin–Magainin AMP in the range of 12.5 to 100 µg/mL. These AMP are attractive subjects for future study and potential in vivo delivery to poultry to reduce Campylobacter spp. populations. Full article
Show Figures

Figure 1

25 pages, 5276 KiB  
Article
Antifungal and Antibiofilm Activity of Cyclic Temporin L Peptide Analogues against Albicans and Non-Albicans Candida Species
by Rosa Bellavita, Angela Maione, Francesco Merlino, Antonietta Siciliano, Principia Dardano, Luca De Stefano, Stefania Galdiero, Emilia Galdiero, Paolo Grieco and Annarita Falanga
Pharmaceutics 2022, 14(2), 454; https://doi.org/10.3390/pharmaceutics14020454 - 21 Feb 2022
Cited by 25 | Viewed by 3621
Abstract
Temporins are one of the largest families of antimicrobial peptides with both anti-inflammatory and antimicrobial activity. Herein, for a panel of cyclic temporin L isoform analogues, the antifungal and antibiofilm activities were determined against representative Candida strains, including C. albicans, C. glabrata [...] Read more.
Temporins are one of the largest families of antimicrobial peptides with both anti-inflammatory and antimicrobial activity. Herein, for a panel of cyclic temporin L isoform analogues, the antifungal and antibiofilm activities were determined against representative Candida strains, including C. albicans, C. glabrata, C. auris, C. parapsilosis and C. tropicalis. The outcomes indicated a significant anti-candida activity against planktonic and biofilm growth for four peptides (3, 7, 15 and 16). The absence of toxicity up to high concentrations and survival after infection were assessed in vivo by using Galleria mellonella larvae, and the correlation between conformation and cytotoxicity was investigated by fluorescence assays and circular dichroism (CD). By combining fluorescence spectroscopy, CD, dynamic light scattering, confocal and atomic force microscopy, the mode of action of four analogues was hypothesized. The results pinpointed that peptide 3 emerged as a non-toxic compound showing a potent antibiofilm activity and represents a promising compound for biomedical applications. Full article
Show Figures

Graphical abstract

23 pages, 1921 KiB  
Article
Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs
by Carla Zannella, Annalisa Chianese, Luciana Palomba, Maria Elena Marcocci, Rosa Bellavita, Francesco Merlino, Paolo Grieco, Veronica Folliero, Anna De Filippis, Marialuisa Mangoni, Lucia Nencioni, Gianluigi Franci and Massimiliano Galdiero
Int. J. Mol. Sci. 2022, 23(4), 2060; https://doi.org/10.3390/ijms23042060 - 13 Feb 2022
Cited by 53 | Viewed by 4625
Abstract
The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug [...] Read more.
The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies. Full article
(This article belongs to the Special Issue Antiviral and Antimicrobial Peptides)
Show Figures

Figure 1

10 pages, 686 KiB  
Article
Antimicrobial Activity of a Lipidated Temporin L Analogue against Carbapenemase-Producing Klebsiella pneumoniae Clinical Isolates
by Emanuela Roscetto, Rosa Bellavita, Rossella Paolillo, Francesco Merlino, Nicola Molfetta, Paolo Grieco, Elisabetta Buommino and Maria Rosaria Catania
Antibiotics 2021, 10(11), 1312; https://doi.org/10.3390/antibiotics10111312 - 28 Oct 2021
Cited by 21 | Viewed by 2224
Abstract
Over the years, the increasing acquisition of antibiotic resistance genes has led to the emergence of highly resistant bacterial strains and the loss of standard antibiotics’ efficacy, including β-lactam/β-lactamase inhibitor combinations and the last line carbapenems. Klebsiella pneumoniae is considered one of the [...] Read more.
Over the years, the increasing acquisition of antibiotic resistance genes has led to the emergence of highly resistant bacterial strains and the loss of standard antibiotics’ efficacy, including β-lactam/β-lactamase inhibitor combinations and the last line carbapenems. Klebsiella pneumoniae is considered one of the major exponents of a group of multidrug-resistant ESKAPE pathogens responsible for serious healthcare-associated infections. In this study, we proved the antimicrobial activity of two analogues of Temporin L against twenty carbapenemase-producing K. pneumoniae clinical isolates. According to the antibiotic susceptibility assay, all the K. pneumoniae strains were resistant to at least one other class of antibiotics, in addition to beta-lactams. Peptides 1B and C showed activity on all test strains, but the lipidated analogue C expressed the greater antimicrobial properties, with MIC values ranging from 6.25 to 25 µM. Furthermore, the peptide C showed bactericidal activity at MIC values. The results clearly highlight the great potential of antimicrobial peptides both as a new treatment option for difficult-to-treat infections and as a new strategy of drug-resistance control. Full article
(This article belongs to the Special Issue Carbapenemase-Producing Enterobacterales)
Show Figures

Figure 1

17 pages, 4975 KiB  
Article
Structure and Formation Mechanism of Antimicrobial Peptides Temporin B- and L-Induced Tubular Membrane Protrusion
by Shan Zhang, Ming Ma, Zhuang Shao, Jincheng Zhang, Lei Fu, Xiangyuan Li, Weihai Fang and Lianghui Gao
Int. J. Mol. Sci. 2021, 22(20), 11015; https://doi.org/10.3390/ijms222011015 - 13 Oct 2021
Cited by 16 | Viewed by 3057
Abstract
Temporins are a family of antimicrobial peptides (AMPs) isolated from frog skin, which are very short, weakly charged, and highly hydrophobic. They execute bactericidal activities in different ways from many other AMPs. This work investigated morphological changes of planar bilayer membranes composed of [...] Read more.
Temporins are a family of antimicrobial peptides (AMPs) isolated from frog skin, which are very short, weakly charged, and highly hydrophobic. They execute bactericidal activities in different ways from many other AMPs. This work investigated morphological changes of planar bilayer membranes composed of mixed zwitterionic and anionic phospholipids induced by temporin B and L (TB and TL) using all-atom and coarse-grained molecular dynamics simulations. We found that TB and TL fold to α-helices at the membrane surface and penetrate shallowly into the bilayer. These short AMPs have low propensity to induce membrane pore formation but possess high ability to extract lipids out. At relatively high peptide concentrations, the strong hydrophobicity of TB and TL promotes them to aggregate into clusters on the membrane surface. These aggregates attract a large amount of lipids out of the membrane to release compression induced by other dispersed peptides binding to the membrane. The extruded lipids mix evenly with the peptides in the cluster and form tubule-like protrusions. Certain water molecules follow the movement of lipids, which not only fill the cavities of the protrusion but also assist in maintaining the tubular structures. In contrast, the peptide-free leaflet remains intact. The present results unravel distinctive antimicrobial mechanisms of temporins disturbing membranes. Full article
(This article belongs to the Special Issue Peptide Antimicrobial Agents 2.0)
Show Figures

Figure 1

16 pages, 7529 KiB  
Article
Interaction of Temporin-L Analogues with the E. coli FtsZ Protein
by Angela Di Somma, Carolina Canè, Antonio Moretta and Angela Duilio
Antibiotics 2021, 10(6), 704; https://doi.org/10.3390/antibiotics10060704 - 11 Jun 2021
Cited by 11 | Viewed by 3104
Abstract
The research of new therapeutic agents to fight bacterial infections has recently focused on the investigation of antimicrobial peptides (AMPs), the most common weapon that all organisms produce to prevent invasion by external pathogens. Among AMPs, the amphibian Temporins constitute a well-known family [...] Read more.
The research of new therapeutic agents to fight bacterial infections has recently focused on the investigation of antimicrobial peptides (AMPs), the most common weapon that all organisms produce to prevent invasion by external pathogens. Among AMPs, the amphibian Temporins constitute a well-known family with high antibacterial properties against Gram-positive and Gram-negative bacteria. In particular, Temporin-L was shown to affect bacterial cell division by inhibiting FtsZ, a tubulin-like protein involved in the crucial step of Z-ring formation at the beginning of the division process. As FtsZ represents a leading target for new antibacterial compounds, in this paper we investigated in detail the interaction of Temporin L with Escherichia coli FtsZ and designed two TL analogues in an attempt to increase peptide-protein interactions and to better understand the structural determinants leading to FtsZ inhibition. The results demonstrated that the TL analogues improved their binding to FtsZ, originating stable protein-peptide complexes. Functional studies showed that both peptides were endowed with a high capability of inhibiting both the enzymatic and polymerization activities of the protein. Moreover, the TL analogues were able to inhibit bacterial growth at low micromolar concentrations. These observations may open up the way to the development of novel peptide or peptidomimetic drugs tailored to bind FtsZ, hampering a crucial process of bacterial life that might be proposed for future pharmaceutical applications. Full article
Show Figures

Figure 1

15 pages, 1041 KiB  
Article
New Perspectives in the Antimicrobial Activity of the Amphibian Temporin B: Peptide Analogs Are Effective Inhibitors of Candida albicans Growth
by Anant Kakar, Jeanett Holzknecht, Sandrine Dubrac, Maria Luisa Gelmi, Alessandra Romanelli and Florentine Marx
J. Fungi 2021, 7(6), 457; https://doi.org/10.3390/jof7060457 - 7 Jun 2021
Cited by 12 | Viewed by 3783
Abstract
Temporin B (TB) is a short, positively charged peptide secreted by the granular glands of the European frog Rana temporaria. While the antibacterial and antiviral efficacy of TB and some of its improved analogs are well documented, nothing is known about their [...] Read more.
Temporin B (TB) is a short, positively charged peptide secreted by the granular glands of the European frog Rana temporaria. While the antibacterial and antiviral efficacy of TB and some of its improved analogs are well documented, nothing is known about their antifungal potency so far. We dedicated this study to characterize the antifungal potential of the TB analog TB_KKG6K and the newly designed D-Lys_TB_KKG6K, the latter having the L-lysines replaced by the chiral counterpart D-lysines to improve its proteolytic stability. Both peptides inhibited the growth of opportunistic human pathogenic yeasts and killed planktonic and sessile cells of the most prevalent human pathogen, Candida albicans. The anti-yeast efficacy of the peptides coincided with the induction of intracellular reactive oxygen species. Their thermal, cation, pH and serum tolerance were similar, while the proteolytic stability of D-Lys_TB_KKG6K was superior to that of its template peptide. Importantly, both peptides lacked hemolytic activity and showed minimal in vitro cytotoxicity in primary human keratinocytes. The tolerance of both peptides in a reconstructed human epidermis model further supports their potential for topical application. Our results open up an exciting field of research for new anti-Candida therapeutic options based on amphibian TB analogs. Full article
(This article belongs to the Special Issue Alternative Therapeutic Approaches of Candida Infections)
Show Figures

Figure 1

17 pages, 3375 KiB  
Article
Antibiofilm Properties of Temporin-L on Pseudomonas fluorescens in Static and In-Flow Conditions
by Angela Di Somma, Federica Recupido, Arianna Cirillo, Alessia Romano, Alessandra Romanelli, Sergio Caserta, Stefano Guido and Angela Duilio
Int. J. Mol. Sci. 2020, 21(22), 8526; https://doi.org/10.3390/ijms21228526 - 12 Nov 2020
Cited by 29 | Viewed by 4790
Abstract
Biofilms consist of a complex microbial community adhering to biotic or abiotic surfaces and enclosed within a protein/polysaccharide self-produced matrix. The formation of this structure represents the most important adaptive mechanism that leads to antibacterial resistance, and therefore, closely connected to pathogenicity. Antimicrobial [...] Read more.
Biofilms consist of a complex microbial community adhering to biotic or abiotic surfaces and enclosed within a protein/polysaccharide self-produced matrix. The formation of this structure represents the most important adaptive mechanism that leads to antibacterial resistance, and therefore, closely connected to pathogenicity. Antimicrobial peptides (AMPs) could represent attractive candidates for the design of new antibiotics because of their specific characteristics. AMPs show a broad activity spectrum, a relative selectivity towards their targets (microbial membranes), the ability to act on both proliferative and quiescent cells, a rapid mechanism of action, and above all, a low propensity for developing resistance. This article investigates the effect at subMIC concentrations of Temporin-L (TL) on biofilm formation in Pseudomonas fluorescens (P. fluorescens) both in static and dynamic conditions, showing that TL displays antibiofilm properties. Biofilm formation in static conditions was analyzed by the Crystal Violet assay. Investigation of biofilms in dynamic conditions was performed in a commercial microfluidic device consisting of a microflow chamber to simulate real flow conditions in the human body. Biofilm morphology was examined using Confocal Laser Scanning Microscopy and quantified via image analysis. The investigation of TL effects on P. fluorescens showed that when subMIC concentrations of this peptide were added during bacterial growth, TL exerted antibiofilm activity, impairing biofilm formation both in static and dynamic conditions. Moreover, TL also affects mature biofilm as confocal microscopy analyses showed that a large portion of preformed biofilm architecture was clearly perturbed by the peptide addition with a significative decrease of all the biofilm surface properties and the overall biomass. Finally, in these conditions, TL did not affect bacterial cells as the live/dead cell ratio remained unchanged without any increase in damaged cells, confirming an actual antibiofilm activity of the peptide. Full article
(This article belongs to the Special Issue Microbial Biofilms and Antibiofilm Agents)
Show Figures

Graphical abstract

12 pages, 1729 KiB  
Article
Novel Antimicrobial Peptide from Temporin L in The Treatment of Staphylococcus pseudintermedius and Malassezia pachydermatis in Polymicrobial Inter-Kingdom Infection
by Rosa Bellavita, Adriana Vollaro, Maria Rosaria Catania, Francesco Merlino, Luisa De Martino, Francesca Paola Nocera, Marina DellaGreca, Francesca Lembo, Paolo Grieco and Elisabetta Buommino
Antibiotics 2020, 9(9), 530; https://doi.org/10.3390/antibiotics9090530 - 22 Aug 2020
Cited by 21 | Viewed by 3500
Abstract
Interkingdom polymicrobial diseases are caused by different microorganisms that colonize the same niche, as in the case of yeast-bacteria coinfections. The latter are difficult to treat due the absence of any common therapeutic target for their elimination, both in animals and humans. Staphylococcus [...] Read more.
Interkingdom polymicrobial diseases are caused by different microorganisms that colonize the same niche, as in the case of yeast-bacteria coinfections. The latter are difficult to treat due the absence of any common therapeutic target for their elimination, both in animals and humans. Staphylococcus pseudintermedius and Malassezia pachydermatis belong to distinct kingdoms. They can colonize the same skin district or apparatus being the causative agents of fastidious pet animals’ pathologies. Here we analysed the antimicrobial properties of a panel of 11 peptides, derived from temporin L, against Malassezia pachydermatis. Only peptide 8 showed the best mycocidal activity at 6.25 μM. Prolonged application of peptide 8 did not cause M. pachydermatis drug-resistance. Peptide 8 was also able to inhibit the growth of Staphylococcus pseudintermedius, regardless of methicillin resistance, at 1.56 μM for methicillin-susceptible S. pseudintermedius (MSSP) and 6.25 μM for methicillin-resistant S. pseudintermedius (MRSP). Of interest, peptide 8 increased the susceptibility of MRSP to oxacillin. Oxacillin MIC value reduction was of about eight times when used in combination with peptide 8. Finally, the compound affected the vitality of bacteria embedded in S. pseudintermedius biofilm. In conclusion, peptide 8 might represent a valid therapeutic alternative in the treatment of interkingdom polymicrobial infections, also in the presence of methicillin-resistant bacteria. Full article
Show Figures

Figure 1

18 pages, 5249 KiB  
Article
Identification, Recombinant Expression, and Characterization of LGH2, a Novel Antimicrobial Peptide of Lactobacillus casei HZ1
by Junfang He, Xuegang Luo, Duxin Jin, Yunyang Wang and Tongcun Zhang
Molecules 2018, 23(9), 2246; https://doi.org/10.3390/molecules23092246 - 3 Sep 2018
Cited by 21 | Viewed by 5184
Abstract
L. casei HZ1 was identified from Chinese traditional fermented milk, and angiotensin converting enzyme inhibitory peptide was separated from its culture in our previous work. Here, LGH2 was a novel AMP, identified from the genome of L. casei HZ1. Altogether, roughly 52.76% of [...] Read more.
L. casei HZ1 was identified from Chinese traditional fermented milk, and angiotensin converting enzyme inhibitory peptide was separated from its culture in our previous work. Here, LGH2 was a novel AMP, identified from the genome of L. casei HZ1. Altogether, roughly 52.76% of LGH2 was α -helical, with the remainder in β -strand and random coil in 50% TFE solution tested by CD. The peptide was also an amphipathic and cationic molecule, which was composed of 20 amino acid residues. The similarity of the amino acid sequence between LGH2 and Temporin-RN3 was highest. Then, the peptide successfully expressed in E. coli Rossetta (DE3) pLysS using the SUMO fusion expression system and purified by chromatography technologies. The molecular weight of the peptide was 2448 Da determined by MALDI-TOF MS. Antimicrobial tests showed that the peptide has strong activities against G+ bacteria, special for S. aureus (MIC = 4 μM). The toxicity assay showed that the peptide exhibits a low hemolytic activity against sheep red blood cells. The antimicrobial mechanisms of LGH2 against pathogens were further investigated by dye leakage, CLSM, SEM, and FCM assays. We found that LGH2 can bind to the cell membrane, and destroy its integrity. These significant results indicate that LGH2 has great potential to treat the infections caused by pathogenic bacteria such as S. aureus, and it provides a new template to improve antimicrobial peptides targeting antibiotic-resistant pathogenic bacteria. Full article
Show Figures

Figure 1

16 pages, 4254 KiB  
Article
Molecular Dynamics Simulations of the Host Defense Peptide Temporin L and Its Q3K Derivative: An Atomic Level View from Aggregation in Water to Bilayer Perturbation
by Andrea Farrotti, Paolo Conflitti, Saurabh Srivastava, Jimut Kanti Ghosh, Antonio Palleschi, Lorenzo Stella and Gianfranco Bocchinfuso
Molecules 2017, 22(7), 1235; https://doi.org/10.3390/molecules22071235 - 22 Jul 2017
Cited by 15 | Viewed by 7363
Abstract
Temporin L (TempL) is a 13 residue Host Defense Peptide (HDP) isolated from the skin of frogs. It has a strong affinity for lipopolysaccharides (LPS), which is related to its high activity against Gram-negative bacteria and also to its strong tendency to neutralize [...] Read more.
Temporin L (TempL) is a 13 residue Host Defense Peptide (HDP) isolated from the skin of frogs. It has a strong affinity for lipopolysaccharides (LPS), which is related to its high activity against Gram-negative bacteria and also to its strong tendency to neutralize the pro-inflammatory response caused by LPS release from inactivated bacteria. A designed analog with the Q3K substitution shows an enhancement in both these activities. In the present paper, Molecular Dynamics (MD) simulations have been used to investigate the origin of these improved properties. To this end, we have studied the behavior of the peptides both in water solution and in the presence of LPS lipid-A bilayers, demonstrating that the main effect through which the Q3K substitution improves the peptide activities is the destabilization of peptide aggregates in water. Full article
(This article belongs to the Special Issue Biomolecular Simulations)
Show Figures

Graphical abstract

11 pages, 2936 KiB  
Article
The Role of Phosphoglycans in the Susceptibility of Leishmania mexicana to the Temporin Family of Anti-Microbial Peptides
by Gabriela A. Eggimann, Kathryn Sweeney, Hannah L. Bolt, Neshat Rozatian, Steven L. Cobb and Paul W. Denny
Molecules 2015, 20(2), 2775-2785; https://doi.org/10.3390/molecules20022775 - 6 Feb 2015
Cited by 27 | Viewed by 8380
Abstract
Natural product antimicrobial peptides (AMPs) have been proposed as promising agents against the Leishmania species, insect vector borne protozoan parasites causing the neglected tropical disease leishmaniasis. However, recent studies have shown that the mammalian pathogenic amastigote form of L. mexicana, a causative [...] Read more.
Natural product antimicrobial peptides (AMPs) have been proposed as promising agents against the Leishmania species, insect vector borne protozoan parasites causing the neglected tropical disease leishmaniasis. However, recent studies have shown that the mammalian pathogenic amastigote form of L. mexicana, a causative agent of cutaneous leishmaniasis, is resistant to the amphibian-derived temporin family of AMPs when compared to the insect stage promastigote form. The mode of resistance is unknown, however the insect and mammalian stages of Leishmania possess radically different cell surface coats, with amastigotes displaying low (or zero) quantities of lipophosphoglycan (LPG) and proteophosphoglycan (PPG), macromolecules which form thick a glycocalyx in promastigotes. It has been predicted that negatively charged LPG and PPG influence the sensitivity/resistance of promastigote forms to cationic temporins. Using LPG and PPG mutant L. mexicana, and an extended range of temporins, in this study we demonstrated that whilst LPG has little role, PPG is a major factor in promastigote sensitivity to the temporin family of AMPs, possibly due to the conferred anionic charge. Therefore, the lack of PPG seen on the surface of pathogenic amastigote L. mexicana may be implicated in their resistance to these peptides. Full article
Show Figures

Figure 1

Back to TopTop