Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = Takeda G protein-coupled receptor 5 (TGR5)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1383 KiB  
Review
The Critical Role of the Bile Acid Receptor TGR5 in Energy Homeostasis: Insights into Physiology and Therapeutic Potential
by Lucas Zangerolamo, Marina Carvalho and Helena C. L. Barbosa
Int. J. Mol. Sci. 2025, 26(14), 6547; https://doi.org/10.3390/ijms26146547 - 8 Jul 2025
Viewed by 719
Abstract
Over the past decades, bile acids have been recognized as important signaling molecules with significant roles in metabolic health and disease. Many of their beneficial effects are mediated through the activation of the Takeda G protein-coupled receptor 5 (TGR5), a G protein-coupled receptor [...] Read more.
Over the past decades, bile acids have been recognized as important signaling molecules with significant roles in metabolic health and disease. Many of their beneficial effects are mediated through the activation of the Takeda G protein-coupled receptor 5 (TGR5), a G protein-coupled receptor ubiquitously expressed in both humans and animals. Upon activation, TGR5 stimulates adenylate cyclase, leading to increased cyclic adenosine monophosphate (cAMP) levels and subsequent activation of protein kinase A (PKA). PKA then phosphorylates and activates several downstream signaling pathways, including exchange protein directly activated by cAMP (EPAC), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein kinase B (AKT). Through these pathways, TGR5 acts as a key molecular link between bile acid signaling and the regulation of energy metabolism. TGR5 activation has been associated with body weight loss in obese models, primarily by reducing food intake, enhancing thermogenesis in adipose tissue and muscle to increase energy expenditure, and improving insulin secretion. This review highlights recent advances in our understanding of TGR5 biology and critically examines its therapeutic potential, limitations, and controversies in the context of energy metabolism, offering new perspectives and opportunities for treating metabolic disorders. Full article
Show Figures

Figure 1

20 pages, 3210 KiB  
Article
Significant Reduction of Chenodeoxycholic Acid and Glycochenodeoxycholic Acid in the Elderly with Severe COVID-19
by Shiyang Liu, Wen Xu, Bo Tu, Zhiqing Xiao, Xue Li, Lei Huang, Xin Yuan, Shengdong Luo, Juanjuan Zhou, Xinxin Yang, Junlian Yang, De Chang, Weiwei Chen and Fu-Sheng Wang
Biomolecules 2025, 15(7), 943; https://doi.org/10.3390/biom15070943 - 28 Jun 2025
Viewed by 510
Abstract
Elderly individuals infected with SARS-CoV-2 are at higher risk of developing cytokine storms and severe outcomes, yet specific biomarkers remain unclear. In this study, we investigated the alteration of primary bile acid metabolism in elderly patients with severe COVID-19 using untargeted metabolomics ( [...] Read more.
Elderly individuals infected with SARS-CoV-2 are at higher risk of developing cytokine storms and severe outcomes, yet specific biomarkers remain unclear. In this study, we investigated the alteration of primary bile acid metabolism in elderly patients with severe COVID-19 using untargeted metabolomics (n = 31), followed by targeted metabolomics to compare patients with disease progression (n = 16) to those without (n = 48). Significant reductions in chenodeoxycholic acid (CDCA) and glycochenodeoxycholic acid (GCDCA) levels were identified in severe cases, with GCDCA levels at admission correlating strongly with peak inflammatory markers. In vitro, CDCA, GCDCA, and their receptors, Farnesoid X Receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5), effectively inhibited the inflammatory response induced by SARS-CoV-2. NOD-like receptor pathway, activated by SARS-CoV-2, may modulate inflammatory cytokines under the treatment of CDCA, GCDCA, and TGR5. CDCA and GCDCA levels at admission predicted disease progression, suggesting their potential as biomarkers for severe COVID-19 in the elderly and highlighting their regulatory role in inflammation, pointing to new therapeutic avenues. Full article
Show Figures

Figure 1

17 pages, 1524 KiB  
Review
Research Progress on the Mechanism of Bile Acids and Their Receptors in Depression
by Xue Zhao, Iin Zheng, Wenjing Huang, Dongning Tang, Meidan Zhao, Ruiling Hou, Ying Huang, Yun Shi, Weili Zhu and Shenjun Wang
Int. J. Mol. Sci. 2025, 26(9), 4023; https://doi.org/10.3390/ijms26094023 - 24 Apr 2025
Viewed by 1407
Abstract
Depression, a highly prevalent mental disorder worldwide, arises from multifaceted interactions involving neurotransmitter imbalances, inflammatory responses, and gut–brain axis dysregulation. Emerging evidence highlights the pivotal role of bile acids (BAs) and their receptors, including farnesoid X receptor (FXR), Takeda G protein-coupled receptor 5 [...] Read more.
Depression, a highly prevalent mental disorder worldwide, arises from multifaceted interactions involving neurotransmitter imbalances, inflammatory responses, and gut–brain axis dysregulation. Emerging evidence highlights the pivotal role of bile acids (BAs) and their receptors, including farnesoid X receptor (FXR), Takeda G protein-coupled receptor 5 (TGR5), and liver X receptors (LXRs) in depression pathogenesis through modulation of neuroinflammation, gut microbiota homeostasis, and neural plasticity. Clinical investigations demonstrated altered BA profiles in depressed patients, characterized by decreased primary BAs (e.g., chenodeoxycholic acid (CDCA)) and elevated secondary BAs (e.g., lithocholic acid (LCA)), correlating with symptom severity. Preclinical studies revealed that BAs ameliorate depressive-like behaviors via dual mechanisms: direct CNS receptor activation and indirect gut–brain signaling, regulating neuroinflammation, oxidative stress, and BDNF/CREB pathways. However, clinical translation faces challenges including species-specific BA metabolism, receptor signaling complexity, and pharmacological barriers (e.g., limited blood–brain barrier permeability). While FXR/TGR5 agonists exhibit neuroprotective and anti-inflammatory potential, their adverse effects (pruritus, dyslipidemia) require thorough safety evaluation. Future research should integrate multiomics approaches and interdisciplinary strategies to develop personalized BA-targeted therapies, advancing novel treatment paradigms for depression. Full article
Show Figures

Figure 1

20 pages, 3326 KiB  
Review
Targeting Bile-Acid Metabolism: Nutritional and Microbial Approaches to Alleviate Ulcerative Colitis
by Xiaoxin Jiang, Jingyi Ren, Gejun Yu, Wentao Wu, Mengyuan Chen, Yun Zhao and Canxia He
Nutrients 2025, 17(7), 1174; https://doi.org/10.3390/nu17071174 - 28 Mar 2025
Viewed by 1827
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease affecting the colorectum, posing a significant global health burden. Recent studies highlight the critical role of gut microbiota and its metabolites, particularly bile acids (BAs), in UC’s pathogenesis. The relationship between BAs and gut microbiota [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory disease affecting the colorectum, posing a significant global health burden. Recent studies highlight the critical role of gut microbiota and its metabolites, particularly bile acids (BAs), in UC’s pathogenesis. The relationship between BAs and gut microbiota is bidirectional: microbiota influence BA composition, while BAs regulate microbiota diversity and activity through receptors like Farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Targeting bile-acid metabolism to reshape gut microbiota presents a promising therapeutic strategy for UC. This review examines the classification and synthesis of BAs, their interactions with gut microbiota, and the potential of nutritional and microbial interventions. By focusing on these therapies, we aim to offer innovative approaches for effective UC management. Full article
Show Figures

Figure 1

22 pages, 3606 KiB  
Article
The Potential Role of Intestinal Microbiota on the Intestine-Protective and Lipid-Lowering Effects of Berberine in Zebrafish (Danio rerio) Under High-Lipid Stress
by Chang Gao, Heng Wang, Xuan Xue, Lishun Qi, Yanfeng Lin and Lei Wang
Metabolites 2025, 15(2), 118; https://doi.org/10.3390/metabo15020118 - 11 Feb 2025
Viewed by 1176
Abstract
Background: Berberine has extremely low oral bioavailability, but shows a potent lipid-lowering effect, indicating its potential role in regulating intestinal microbiota, which has not been investigated. Methods: In the present study, five experimental diets, a control diet (Con), a high-lipid diet (HL), and [...] Read more.
Background: Berberine has extremely low oral bioavailability, but shows a potent lipid-lowering effect, indicating its potential role in regulating intestinal microbiota, which has not been investigated. Methods: In the present study, five experimental diets, a control diet (Con), a high-lipid diet (HL), and high-lipid·diets·supplemented with an antibiotic cocktail (HLA), berberine (HLB), or both (HLAB) were fed to zebrafish (Danio rerio) for 30 days. Results: The HLB group showed significantly greater weight gain and feed intake than the HLA and other groups, respectively (p < 0.05). Hepatic triglyceride (TG) and total cholesterol (TC) levels, lipogenesis, and proinflammatory cytokine gene expression were significantly upregulated by the high-lipid diet, but significantly downregulated by berberine supplementation. Conversely, the expression levels of intestinal and/or hepatic farnesoid X receptor (fxr), Takeda G protein-coupled receptor 5 (tgr5), lipolysis genes, and zonula occludens 1 (zo1) exhibited the opposite trend. Compared with the HLB group, the HLAB group displayed significantly greater hepatic TG content and proinflammatory cytokine expression, but significantly lower intestinal bile salt hydrolase (BSH) activity and intestinal and/or hepatic fxr and tgr5 expression levels. The HL treatment decreased the abundance of certain probiotic bacteria (e.g., Microbacterium, Cetobacterium, and Gemmobacter) and significantly increased the pathways involved in cytochrome P450, p53 signaling, and ATP-binding cassette (ABC) transporters. The HLB group increased some probiotic bacteria abundance, particularly BSH-producing bacteria (e.g., Escherichia Shigella). Compared with the HLB group, the abundance of BSH-producing bacteria (e.g., Bifidobacterium and Enterococcus) and pathways related to Notch signaling and Wnt signaling were reduced in the HLAB group. Conclusions: This study revealed that berberine’s lipid-lowering and intestine-protective effects are closely related to the intestinal microbiota, especially BSH-producing bacteria. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

15 pages, 588 KiB  
Review
Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways
by Ciprian Pușcașu, Corina Andrei, Octavian Tudorel Olaru and Anca Zanfirescu
Curr. Issues Mol. Biol. 2025, 47(1), 63; https://doi.org/10.3390/cimb47010063 - 17 Jan 2025
Cited by 2 | Viewed by 1726
Abstract
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with [...] Read more.
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes. Receptors such as free fatty acid receptor 1 (FFAR1/GPR40), free fatty acid receptor 4 (FFAR4/GPR120), free fatty acid receptor 2 (FFAR2/GPR43), and Takeda G protein-coupled receptor 5 (TGR5/GPR131/GPBAR1) are key modulators of nociceptive signaling. GPR40, activated by long-chain fatty acids, exhibits strong anti-inflammatory effects by reducing cytokine expression. Butyrate-activated GPR43 inhibits inflammatory mediators like nitric oxide synthase-2 and cyclooxygenase-2, mitigating inflammation. TGR5, activated by bile acids, regulates inflammation and cellular senescence through pathways like NF-κB and p38. These receptors are promising therapeutic targets in chronic pain, addressing the metabolic and inflammatory factors underlying nociceptive sensitization and tissue degeneration. This review explores the molecular mechanisms of metabolite-sensing receptors in chronic pain, their therapeutic potential, and challenges in clinical application. By uncovering these mechanisms, metabolite-sensing receptors could lead to safer, more effective pain management strategies. Full article
Show Figures

Figure 1

26 pages, 3741 KiB  
Review
Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications
by Lorenzo Romero-Ramírez and Jörg Mey
Int. J. Mol. Sci. 2024, 25(17), 9279; https://doi.org/10.3390/ijms25179279 - 27 Aug 2024
Cited by 7 | Viewed by 3829
Abstract
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and released into the digestive tract to facilitate lipid uptake during the digestion process. Most of these BAs are reabsorbed and recycled back to the liver. Some of these BAs progress to other [...] Read more.
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and released into the digestive tract to facilitate lipid uptake during the digestion process. Most of these BAs are reabsorbed and recycled back to the liver. Some of these BAs progress to other tissues through the bloodstream. The presence of BAs in the central nervous system (CNS) has been related to their capacity to cross the blood–brain barrier (BBB) from the systemic circulation. However, the expression of enzymes and receptors involved in their synthesis and signaling, respectively, support the hypothesis that there is an endogenous source of BAs with a specific function in the CNS. Over the last decades, BAs have been tested as treatments for many CNS pathologies, with beneficial effects. Although they were initially reported as neuroprotective substances, they are also known to reduce inflammatory processes. Most of these effects have been related to the activation of the Takeda G protein-coupled receptor 5 (TGR5). This review addresses the new challenges that face BA research for neuroscience, focusing on their molecular functions. We discuss their endogenous and exogenous sources in the CNS, their signaling through the TGR5 receptor, and their mechanisms of action as potential therapeutics for neuropathologies. Full article
(This article belongs to the Special Issue Neuroinflammation: Advancements in Pathophysiology and Therapies)
Show Figures

Figure 1

20 pages, 7499 KiB  
Article
Bacteroides uniformis Ameliorates Carbohydrate and Lipid Metabolism Disorders in Diabetic Mice by Regulating Bile Acid Metabolism via the Gut–Liver Axis
by Xue-Xue Zhu, Chen-Yang Zhao, Xin-Yu Meng, Xiao-Yi Yu, Lin-Chun Ma, Tian-Xiao Chen, Chang Chang, Xin-Yu Chen, Yuan Zhang, Bao Hou, Wei-Wei Cai, Bin Du, Zhi-Jun Han, Li-Ying Qiu and Hai-Jian Sun
Pharmaceuticals 2024, 17(8), 1015; https://doi.org/10.3390/ph17081015 - 1 Aug 2024
Cited by 4 | Viewed by 2680
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous [...] Read more.
Background: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. Methods: The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography–tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). Results: We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product—vaccarin (VAC)—that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. Conclusions: These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

14 pages, 1058 KiB  
Review
Bile Acid Diarrhea: From Molecular Mechanisms to Clinical Diagnosis and Treatment in the Era of Precision Medicine
by Daiyu Yang, Chengzhen Lyu, Kun He, Ke Pang, Ziqi Guo and Dong Wu
Int. J. Mol. Sci. 2024, 25(3), 1544; https://doi.org/10.3390/ijms25031544 - 26 Jan 2024
Cited by 8 | Viewed by 4746
Abstract
Bile acid diarrhea (BAD) is a multifaceted intestinal disorder involving intricate molecular mechanisms, including farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and Takeda G protein–coupled receptor 5 (TGR5). Current diagnostic methods encompass bile acid sequestrants (BAS), 48-h fecal bile acid [...] Read more.
Bile acid diarrhea (BAD) is a multifaceted intestinal disorder involving intricate molecular mechanisms, including farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and Takeda G protein–coupled receptor 5 (TGR5). Current diagnostic methods encompass bile acid sequestrants (BAS), 48-h fecal bile acid tests, serum 7α-hydroxy-4-cholesten-3-one (C4), fibroblast growth factor 19 (FGF19) testing, and 75Selenium HomotauroCholic acid test (75SeHCAT). Treatment primarily involves BAS and FXR agonists. However, due to the limited sensitivity and specificity of current diagnostic methods, as well as suboptimal treatment efficacy and the presence of side effects, there is an urgent need to establish new diagnostic and treatment methods. While prior literature has summarized various diagnostic and treatment methods and the pathogenesis of BAD, no previous work has linked the two. This review offers a molecular perspective on the clinical diagnosis and treatment of BAD, with a focus on FXR, FGFR4, and TGR5, emphasizing the potential for identifying additional molecular mechanisms as treatment targets and bridging the gap between diagnostic and treatment methods and molecular mechanisms for a novel approach to the clinical management of BAD. Full article
(This article belongs to the Special Issue Study on Lipid Metabolism and Lipoprotein Application)
Show Figures

Figure 1

14 pages, 1771 KiB  
Article
Bile Acid Metabolic Profiles and Their Correlation with Intestinal Epithelial Cell Proliferation and Barrier Integrity in Suckling Piglets
by Min Zhu, Chong Lin, Kaimin Niu, Yichun Liu, Weirong Zeng, Ruxia Wang, Xiongchang Guo and Zhenya Zhai
Animals 2024, 14(2), 287; https://doi.org/10.3390/ani14020287 - 17 Jan 2024
Cited by 1 | Viewed by 1916
Abstract
Bile acids (BAs) are crucial for maintaining intestinal epithelial homeostasis. However, the metabolic changes in BAs and the communication between intestinal epithelial cells (IECs) in infants after birth remain unclear. This study aims to elucidate the BA profiles of newborn piglets (NPs) and [...] Read more.
Bile acids (BAs) are crucial for maintaining intestinal epithelial homeostasis. However, the metabolic changes in BAs and the communication between intestinal epithelial cells (IECs) in infants after birth remain unclear. This study aims to elucidate the BA profiles of newborn piglets (NPs) and suckling piglets (SPs), and to investigate their regulatory effects on IEC proliferation and barrier integrity, as well as the potential underlying mechanisms. In this study, compared with NPs, there were significant increases in serum triglycerides, total cholesterol, glucose, and albumin levels for SPs. The total serum BA content in SPs exhibited an obvious increase. Moreover, the expression of BA synthase cytochrome P450 27A1 (CYP27A1) was increased, and the ileal BA receptor Takeda G-coupled protein receptor 5 (TGR5) and proliferation marker Ki-67 were upregulated and showed a strong positive correlation through a Spearman correlation analysis, whereas the expression of farnesoid X receptor (FXR) and occludin was markedly downregulated in SPs and also revealed a strong positive correlation. These findings indicate that the increased synthesis and metabolism of BAs may upregulate TGR5 and downregulate FXR to promote IEC proliferation and influence barrier function; this offers a fresh perspective and evidence for the role of BAs and BA receptors in regulating intestinal development in neonatal pigs. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

28 pages, 2751 KiB  
Review
Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy
by Miljana Nenkov, Yihui Shi, Yunxia Ma, Nikolaus Gaßler and Yuan Chen
Int. J. Mol. Sci. 2024, 25(1), 6; https://doi.org/10.3390/ijms25010006 - 19 Dec 2023
Cited by 9 | Viewed by 4060
Abstract
The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in [...] Read more.
The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells. The dysregulation of FXR is associated with a wide range of diseases including metabolic disorders, inflammatory diseases, immune disorders, and malignant neoplasm. Recent studies have demonstrated that FXR influences tumor cell progression and development through regulating oncogenic and tumor-suppressive pathways, and, moreover, it affects the tumor microenvironment (TME) by modulating TME components. These characteristics provide a new perspective on the FXR-targeted therapeutic strategy in cancer. In this review, we have summarized the recent research data on the functions of FXR in solid tumors and its influence on the TME, and discussed the mechanisms underlying the distinct function of FXR in various types of tumors. Additionally, the impacts on the TME by other BA receptors such as takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic receptors (CHRM2 and CHRM3), have been depicted. Finally, the effects of FXR agonists/antagonists in a combination therapy with PD1/PD-L1 immune checkpoint inhibitors and other anti-cancer drugs have been addressed. Full article
(This article belongs to the Special Issue New Targeted Therapies in Cancer-2024)
Show Figures

Figure 1

17 pages, 2605 KiB  
Article
INT-767—A Dual Farnesoid-X Receptor (FXR) and Takeda G Protein-Coupled Receptor-5 (TGR5) Agonist Improves Survival in Rats and Attenuates Intestinal Ischemia Reperfusion Injury
by Emilio Canovai, Ricard Farré, Alison Accarie, Mara Lauriola, Gert De Hertogh, Tim Vanuytsel, Jacques Pirenne and Laurens J. Ceulemans
Int. J. Mol. Sci. 2023, 24(19), 14881; https://doi.org/10.3390/ijms241914881 - 4 Oct 2023
Cited by 4 | Viewed by 2404
Abstract
Intestinal ischemia is a potentially catastrophic emergency, with a high rate of morbidity and mortality. Currently, no specific pharmacological treatments are available. Previous work demonstrated that pre-treatment with obeticholic acid (OCA) protected against ischemia reperfusion injury (IRI). Recently, a more potent and water-soluble [...] Read more.
Intestinal ischemia is a potentially catastrophic emergency, with a high rate of morbidity and mortality. Currently, no specific pharmacological treatments are available. Previous work demonstrated that pre-treatment with obeticholic acid (OCA) protected against ischemia reperfusion injury (IRI). Recently, a more potent and water-soluble version has been synthesized: Intercept 767 (INT-767). The aim of this study was to investigate if intravenous treatment with INT-767 can improve outcomes after IRI. In a validated rat model of IRI (60 min ischemia + 60 min reperfusion), three groups were investigated (n = 6/group): (i) sham: surgery without ischemia; (ii) IRI + vehicle; and (iii) IRI + INT-767. The vehicle (0.9% NaCl) or INT-767 (10 mg/kg) were administered intravenously 15 min after start of ischemia. Endpoints were 7-day survival, serum injury markers (L-lactate and I-FABP), histology (Park–Chiu and villus length), permeability (transepithelial electrical resistance and endotoxin translocation), and cytokine expression. Untreated, IRI was uniformly lethal by provoking severe inflammation and structural damage, leading to translocation and sepsis. INT-767 treatment significantly improved survival by reducing inflammation and preserving intestinal structural integrity. This study demonstrates that treatment with INT-767 15 min after onset of intestinal ischemia significantly decreases IRI and improves survival. The ability to administer INT-767 intravenously greatly enhances its clinical potential. Full article
Show Figures

Figure 1

18 pages, 1295 KiB  
Review
The Crosstalk between Gut Microbiota and Bile Acids Promotes the Development of Non-Alcoholic Fatty Liver Disease
by Zhonglin Li, Hang Yuan, Huikuan Chu and Ling Yang
Microorganisms 2023, 11(8), 2059; https://doi.org/10.3390/microorganisms11082059 - 11 Aug 2023
Cited by 18 | Viewed by 5128
Abstract
Recently the roles of gut microbiota are highly regarded in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). The intestinal bacteria regulate the metabolism of bile acids depending on bile salt hydrolase (BSH), 7-dehydroxylation, hydroxysteroid dehydrogenase (HSDH), or amide conjugation reaction, thus exerting [...] Read more.
Recently the roles of gut microbiota are highly regarded in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). The intestinal bacteria regulate the metabolism of bile acids depending on bile salt hydrolase (BSH), 7-dehydroxylation, hydroxysteroid dehydrogenase (HSDH), or amide conjugation reaction, thus exerting effects on NAFLD development through bile acid receptors such as farnesoid X receptor (FXR), Takeda G-protein-coupled bile acid protein 5 (TGR5), and vitamin D receptor (VDR), which modulate nutrient metabolism and insulin sensitivity via interacting with downstream molecules. Reversely, the composition of gut microbiota is also affected by the level of bile acids in turn. We summarize the mutual regulation between the specific bacteria and bile acids in NAFLD and the latest clinical research based on microbiota and bile acids, which facilitate the development of novel treatment modalities in NAFLD. Full article
(This article belongs to the Special Issue Microbial Impact on Cholesterol and Bile Acid Metabolism 2.0)
Show Figures

Figure 1

15 pages, 2557 KiB  
Review
Research Progress of Takeda G Protein-Coupled Receptor 5 in Metabolic Syndrome
by Xianmei Gou, Lin Qin, Di Wu, Jian Xie, Yanliu Lu, Qianru Zhang and Yuqi He
Molecules 2023, 28(15), 5870; https://doi.org/10.3390/molecules28155870 - 4 Aug 2023
Cited by 16 | Viewed by 4321
Abstract
Bile acids are acknowledged as signaling molecules involved in metabolic syndrome. The Takeda G protein-coupled receptor 5 (TGR5) functions as a significant bile acid receptor. The accumulated evidence suggests that TGR5 involves lipid homeostasis, glucose metabolism, and inflammation regulation. In line with this, [...] Read more.
Bile acids are acknowledged as signaling molecules involved in metabolic syndrome. The Takeda G protein-coupled receptor 5 (TGR5) functions as a significant bile acid receptor. The accumulated evidence suggests that TGR5 involves lipid homeostasis, glucose metabolism, and inflammation regulation. In line with this, recent preclinical studies also demonstrate that TGR5 plays a significant role in the generation and progression of metabolic syndrome, encompassing type 2 diabetes mellitus, obesity, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). In this review, we discuss the role of TGR5 in metabolic syndrome, illustrating the underlying mechanisms and therapeutic targets. Full article
Show Figures

Graphical abstract

16 pages, 3119 KiB  
Article
Design, Synthesis, Computational and Biological Evaluation of Novel Structure Fragments Based on Lithocholic Acid (LCA)
by Jiangling Peng, Mingjie Fan, Kelly X. Huang, Lina A. Huang, Yangmeng Wang, Runkai Yin, Hanyi Zhao, Senlin Xu, Hongzhi Li, Alon Agua, Jun Xie, David A. Horne, Fouad Kandeel, Wendong Huang and Junfeng Li
Molecules 2023, 28(14), 5332; https://doi.org/10.3390/molecules28145332 - 11 Jul 2023
Cited by 4 | Viewed by 2323
Abstract
The regulation of bile acid pathways has become a particularly promising therapeutic strategy for a variety of metabolic disorders, cancers, and diseases. However, the hydrophobicity of bile acids has been an obstacle to clinical efficacy due to off-target effects from rapid drug absorption. [...] Read more.
The regulation of bile acid pathways has become a particularly promising therapeutic strategy for a variety of metabolic disorders, cancers, and diseases. However, the hydrophobicity of bile acids has been an obstacle to clinical efficacy due to off-target effects from rapid drug absorption. In this report, we explored a novel strategy to design new structure fragments based on lithocholic acid (LCA) with improved hydrophilicity by introducing a polar “oxygen atom” into the side chain of LCA, then (i) either retaining the carboxylic acid group or replacing the carboxylic acid group with (ii) a diol group or (iii) a vinyl group. These novel fragments were evaluated using luciferase-based reporter assays and the MTS assay. Compared to LCA, the result revealed that the two lead compounds 1a1b were well tolerated in vitro, maintaining similar potency and efficacy to LCA. The MTS assay results indicated that cell viability was not affected by dose dependence (under 25 µM). Additionally, computational model analysis demonstrated that compounds 1a1b formed more extensive hydrogen bond networks with Takeda G protein-coupled receptor 5 (TGR5) than LCA. This strategy displayed a potential approach to explore the development of novel endogenous bile acids fragments. Further evaluation on the biological activities of the two lead compounds is ongoing. Full article
Show Figures

Graphical abstract

Back to TopTop