Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = TRIM5α

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1132 KiB  
Article
Phylogenetic Reclassification of Metarhizium granulomatis and Metarhizium viride Species Complex
by Johanna Würf and Volker Schmidt
Pathogens 2025, 14(8), 745; https://doi.org/10.3390/pathogens14080745 - 29 Jul 2025
Viewed by 265
Abstract
Metarhizium (M.) granulomatis and M. viride have previously been described as pathogens causing hyalohyphomycosis in various species of captive chameleons and bearded dragons (Pogona vitticeps). Previous studies yielded different genotypes of M. granulomatis and M. viride based on sequencing of the [...] Read more.
Metarhizium (M.) granulomatis and M. viride have previously been described as pathogens causing hyalohyphomycosis in various species of captive chameleons and bearded dragons (Pogona vitticeps). Previous studies yielded different genotypes of M. granulomatis and M. viride based on sequencing of the internal transcribed spacer 1-5.8S rDNA (ITS-1-5.8S) and a fragment of the large subunit of the 28S rDNA (LSU). The aim of this study was to clarify the relationships between these genotypes and obtain a more accurate phylogenetic classification by sequencing two different loci of the RNA polymerase II second largest subunit (NRPB2), referred to as RPB1 and RPB2, and the translation elongation factor 1 alpha (EF1α). A total of 23 frozen isolates from 21 lizards, including the first isolates of M. granulomatis and M. viride from Parson’s chameleons (Calumma parsonii), were available for phylogenetic analysis. A total of 13 isolates belonged to the M. granulomatis complex and 10 isolates belonged to the M. viride complex. Following the amplification and sequencing of the protein-coding genes, the resulting nucleotide sequences were analyzed, trimmed and assembled. These were further analyzed with regard to differences in single-nucleotide polymorphisms (SNPs) and amino acid structure. In consideration of the results of the present analyses, a phylogenetic reclassification is recommended. Three different genotypes of M. granulomatis can be distinguished, which can be phylogenetically addressed as subspecies. Six subspecies can be distinguished regarding M. viride. Full article
(This article belongs to the Special Issue Filamentous Fungal Pathogens: 2nd Edition)
Show Figures

Figure 1

18 pages, 6973 KiB  
Article
TRIM5α/Cyclophilin A-Modified MDBK Cells for Lentiviral-Based Gene Editing
by Lijing Wo, Shuhui Qi, Yongqi Guo, Chao Sun and Xin Yin
Viruses 2025, 17(7), 876; https://doi.org/10.3390/v17070876 - 21 Jun 2025
Viewed by 465
Abstract
The human immunodeficiency virus 1 (HIV-1)-based lentivirus has been widely used for genetic modification. However, the efficiency of lentiviral-based gene modification in Madin–Darby bovine kidney (MDBK) cells is considerably limited. In this study, we have shown that siRNA-mediated depletion of TRIM5α, a [...] Read more.
The human immunodeficiency virus 1 (HIV-1)-based lentivirus has been widely used for genetic modification. However, the efficiency of lentiviral-based gene modification in Madin–Darby bovine kidney (MDBK) cells is considerably limited. In this study, we have shown that siRNA-mediated depletion of TRIM5α, a restriction factor in HIV-1 infection, can dramatically enhance HIV-1 infection in MDBK cells. Furthermore, we generated a doxycycline-inducible Cas9-overexpressing MDBK cell line (MDBK-iCas9) suitable for CRISPR/Cas9-mediated editing. On this basis, we created a TRIM5α knock-out MDBK-iCas9 cell line MDBK-iCas9TRIM5α−/− without additional genome insertions by combining sgRNA transfection and single-cell cloning. We found that MDBK-iCas9TRIM5α−/− displayed greater permissiveness to lentivirus infection compared with MDBK-WT cells. Notably, we found that treatment with the chemical compound cyclosporine A, which directly interacts with cell factor cyclophilin A (CypA), could markedly increase the infectivity of lentivirus in both MDBK-iCas9TRIM5α−/− and MDBK-WT cell lines, suggesting that CypA functions independently with TRIM5α as an inhibitor of the lentivirus in bovine cells. Therefore, combining bovine TRIM5α and CypA targeting could remarkably enhance lentivirus infection. In conclusion, our findings highlight a promising gene engineering strategy for bovine cells that can surmount the significant barriers to investigating the interplay between bovine viruses and their host cells. Full article
(This article belongs to the Special Issue Pestivirus 2025)
Show Figures

Figure 1

13 pages, 1052 KiB  
Article
Molecular and Genetic Analysis of the Increased Number of Genes for Trypanosoma cruzi Microtubule Associated Proteins in the Class Kinetoplastida
by Martin A. Winkler and Alfred A. Pan
Pathogens 2025, 14(5), 476; https://doi.org/10.3390/pathogens14050476 - 14 May 2025
Viewed by 588
Abstract
Trypanosoma cruzi GenBank® M21331 encodes for Antigen 36 (Ag 36), which is a tandemly repeated T. cruzi antigen. GenBank M21331 has a gene sequence similarity to human immune genes IFN-α, IFN-β, and IFN-γ, as well as to human TRIM genes. A BLAST-p [...] Read more.
Trypanosoma cruzi GenBank® M21331 encodes for Antigen 36 (Ag 36), which is a tandemly repeated T. cruzi antigen. GenBank M21331 has a gene sequence similarity to human immune genes IFN-α, IFN-β, and IFN-γ, as well as to human TRIM genes. A BLAST-p search revealed that T. cruzi GenBank M21331 had seven gene sequences homologous to microtubule-associated protein (MAP) genes with a 100% amino acid sequence identity. There are 36 genes in the T. cruzi genome with >94% identity to GenBank M21331, and these genes encode proteins ranging in size from 38 to 2011 amino acids in length, the largest containing 20, 25, and 30 repeats of the Ag 36 thirty-eight-amino-acid-sequence motif. The purpose of this study was to perform a genetic and molecular comparative analysis of T. cruzi GenBank M21331 to determine if this gene sequence is unique to the T. cruzi clade, present in the T. brucei clade, and/or exists in other trypanosomatids. There are seven homologous genes to GenBank M21331 in T. cruzi, but only one homolog found of this gene in T. brucei. The MAP genes in T. cruzi appear to have expanded at least eleven-fold in number compared to similar MAP genes in T. brucei. The DNA sequences and functions of these MAP genes in their respective species and clades will be discussed and are a fascinating area for further scientific study. Full article
(This article belongs to the Special Issue Genetics and Molecular Evolution of Parasitic Protozoa)
Show Figures

Graphical abstract

15 pages, 3977 KiB  
Article
Characterization and Functional Analysis of Trim38 in the Immune Response of the Large Yellow Croaker (Larimichthys crocea) Against Pseudomonas plecoglossicida Infection
by Qiaoying Li, Hongling Wu, Ying Huang, Dinaer Yekefenhazi, Wenzheng Zou and Fang Han
Int. J. Mol. Sci. 2025, 26(9), 4150; https://doi.org/10.3390/ijms26094150 - 27 Apr 2025
Viewed by 476
Abstract
The large yellow croaker (Larimichthys crocea) is a cornerstone species in Chinese marine aquaculture, yet bacterial infections—particularly visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida—severely compromise its production. This study aimed to elucidate the immunoregulatory mechanisms of tripartite motif-containing [...] Read more.
The large yellow croaker (Larimichthys crocea) is a cornerstone species in Chinese marine aquaculture, yet bacterial infections—particularly visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida—severely compromise its production. This study aimed to elucidate the immunoregulatory mechanisms of tripartite motif-containing protein 38 in the large yellow croaker (Lctrim38) during bacterial infections, with an emphasis on host–pathogen interactions involving P. plecoglossicida, to evaluate its potential for disease-resistant breeding applications. The full-length cDNA of Lctrim38 was cloned and characterized, with structural analysis revealing a conserved domain architecture comprising RING, B-box, coiled-coil, and PRY-SPRY motifs. Functional characterization through Lctrim38 overexpression in large yellow croaker kidney cells (PCK cells) demonstrated significant modulation of key immune-related pathways, including TGF-β, PI3K-Akt, IL-17, and PPAR. Notably, Lctrim38-mediated inhibition of NF-κB signaling was shown to downregulate pro-inflammatory cytokines (TNF-α, IL-6, IFN-γ), establishing its role as a negative regulator of inflammatory responses. These findings provide insights into the immune mechanisms of Trim38 in large yellow croakers and highlight its potential as a molecular target for disease resistance breeding. Future research should explore its broader functions, including its antiviral potential. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

28 pages, 1872 KiB  
Systematic Review
Effects of Mind–Body Interventions on Immune and Neuroendocrine Functions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Shih-Ching Lee, Ping-Han Tsai, Kuang-Hui Yu and Tien-Ming Chan
Healthcare 2025, 13(8), 952; https://doi.org/10.3390/healthcare13080952 - 21 Apr 2025
Viewed by 1727
Abstract
Objective: Chronic stress affects the immune system via the hypothalamic–pituitary–adrenal (HPA) axis and autonomic system. Chronic inflammation is a risk factor for cardiovascular diseases, cancer onset and progression, susceptibility to infection, and cognitive impairment. Mind–body interventions (MBIs) could affect the immune and [...] Read more.
Objective: Chronic stress affects the immune system via the hypothalamic–pituitary–adrenal (HPA) axis and autonomic system. Chronic inflammation is a risk factor for cardiovascular diseases, cancer onset and progression, susceptibility to infection, and cognitive impairment. Mind–body interventions (MBIs) could affect the immune and neuroendocrine systems, and we aimed to assess the correlations among these systems through a meta-analysis. Methods: RCTs were identified by searching three databases: PubMed, Embase, and Scopus. Of the 1697 studies identified, 89 were included in this study. Risk of bias was examined using the Cochrane risk-of-bias assessment tool. Data were pooled using a random-effects model, and SMDs were calculated. I2 statistics and Egger’s test were used to assess the significance of the asymmetry. Influence diagnostics were used to assess whether pooled effects were disproportionately dependent on any single study. The trim-and-fill method was applied to all identified asymmetric instances. Meta-regression was used to examine the moderating effect of MBI efficacy on biomarkers. Results: MBIs generally decreased the levels of inflammatory factors, such as the CRP, IL-6, TNF-α, IL-1, IL-8, IL-17, ESR, and cortisol, and increased IL-10, IFN-γ, IL-1ra, BDNF, and secretory IgA. In a subgroup analysis of the CNS and cancer, qigong and yoga showed increased BDNF and IL-6, respectively. Notably, IL-10 was increased in inflammatory diseases, and IFN-γ was increased in viral infections. Conclusions: This study revealed MBIs decrease inflammatory cytokine and increase anti-inflammatory, antiviral, and immune-activating factors. These results suggest the MBIs including gentle physical exercise may be beneficial for neuropsychiatric disorders or tumors. Prospero registration number: CRD42024507646. Full article
Show Figures

Figure 1

15 pages, 4260 KiB  
Article
Investigation of Ultra-Thin Glass Scribing Mechanism
by Dawei Li, Jiahao Li, Huaye Kong, Jinzhu Guo, Liyong Huang and Yao Liu
Coatings 2025, 15(3), 275; https://doi.org/10.3390/coatings15030275 - 26 Feb 2025
Viewed by 986
Abstract
To reveal the scribing mechanism of ultra-thin glass, single-factor scribing tests were carried out. The effects of the scribing wheel angle θ, scribing force F, and scribing speed v on the lateral cracks width w, scribing depth d, median [...] Read more.
To reveal the scribing mechanism of ultra-thin glass, single-factor scribing tests were carried out. The effects of the scribing wheel angle θ, scribing force F, and scribing speed v on the lateral cracks width w, scribing depth d, median cracks size l, and cross-section deflection angle α were analyzed to present the scribing quality. The results show that w increases with an increase in θ and F. Further, l and d increase with an increase in F. However, d shows an increasing trend with the increase in θ, and l shows a decreasing trend. In the range of 120–140°, α shows a trend of increasing first and then decreasing with an increase in F. The 120° scribing wheel angle, 20 N scribing force, and 100–400 mm/s scribing speed show the best scribing quality, which limits micro-cracks at the initiation stage without any damage or chipping. Under this condition, the breaking surface edges were free of debris and cracks. A smooth and trim Wallner ripple was obtained from the median cracks with a minimum deflection angle. Full article
Show Figures

Figure 1

13 pages, 2814 KiB  
Article
Nano-LC with New Hydrophobic Monolith Based on 9-Antracenylmethyl Methacrylate for Biomolecule Separation
by Cemil Aydoğan and Sarah Alharthi
Int. J. Mol. Sci. 2024, 25(24), 13646; https://doi.org/10.3390/ijms252413646 - 20 Dec 2024
Cited by 1 | Viewed by 877
Abstract
In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ [...] Read more.
In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ polymerization of 9-anthracenylmethyl methacrylate (ANM) and trimethylolpropane trimethacrylate (TRIM) in a fused silica capillary column of 100 µm ID. Polymerization solution was optimized in relation to monomer and porogenic solvent. Scanning electron microscopy (SEM) and chromatographic analyses were performed for the characterization studies of ANM monoliths. The ANM monolith produced more than 46.220 plates/m, and the chromatographic evaluation of the optimized ANM monolith was carried out using homologous alkylbenzenes (ABs) and polyaromatic hydrocarbons (PAHs), allowing both strong hydrophobic and π-π interactions. Run-to-run and column-to-column reproducibility values were found as <2.91% and 2.9–3.2%, respectively. The final monolith was used for biomolecule separation, including both three dipeptides, including Alanine-Tyrosine (Ala-Tyr), Glycine-Phenylalanine (Gly-Phe), and L-carnosine and five standard proteins, including ribonuclease A (RNase A), α-chymotrypsinogen (α-chym), lysozyme (Lys), cytochrome C (Cyt C), and myoglobin (Mb) in order to evaluate its potential. Both peptides and proteins were baseline separated using the developed ANM monolith in nano-LC. The ANM monolith was then applied to the protein and peptide profiling of MCF-7 cell line, which allowed a high-resolution analysis of peptides, providing a high peak capacity. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 850 KiB  
Review
Minimally Modified HIV-1 Infection of Macaques: Development, Utility, and Limitations of Current Models
by Manish Sharma, Mukta Nag and Gregory Q. Del Prete
Viruses 2024, 16(10), 1618; https://doi.org/10.3390/v16101618 - 16 Oct 2024
Cited by 1 | Viewed by 2300
Abstract
Nonhuman primate (NHP) studies that utilize simian immunodeficiency virus (SIV) to model human immunodeficiency virus (HIV-1) infection have proven to be powerful, highly informative research tools. However, there are substantial differences between SIV and HIV-1. Accordingly, there are numerous research questions for which [...] Read more.
Nonhuman primate (NHP) studies that utilize simian immunodeficiency virus (SIV) to model human immunodeficiency virus (HIV-1) infection have proven to be powerful, highly informative research tools. However, there are substantial differences between SIV and HIV-1. Accordingly, there are numerous research questions for which SIV-based models are not well suited, including studies of certain aspects of basic HIV-1 biology, and pre-clinical evaluations of many proposed HIV-1 treatment, prevention, and vaccination strategies. To overcome these limitations of NHP models of HIV-1 infection, several groups have pursued the derivation of a minimally modified HIV-1 (mmHIV-1) capable of establishing pathogenic infection in macaques that authentically recapitulates key features of HIV-1 in humans. These efforts have focused on three complementary objectives: (1) engineering HIV-1 to circumvent species-specific cellular restriction factors that otherwise potently inhibit HIV-1 in macaques, (2) introduction of a C chemokine receptor type 5 (CCR5)-tropic envelope, ideally that can efficiently engage macaque CD4, and (3) correction of gene expression defects inadvertently introduced during viral genome manipulations. While some progress has been made toward development of mmHIV-1 variants for use in each of the three macaque species (pigtail, cynomolgus, and rhesus), model development progress has been most promising in pigtail macaques (PTMs), which do not express an HIV-1-restricting tripartite motif-containing protein 5 α (TRIM5α). In our work, we have derived a CCR5-tropic mmHIV-1 clone designated stHIV-A19 that comprises 94% HIV-1 genome sequence and replicates to high acute-phase titers in PTMs. In animals treated with a cell-depleting CD8α antibody at the time of infection, stHIV-A19 maintains chronically elevated plasma viral loads with progressive CD4+ T-cell loss and the development of acquired immune-deficiency syndrome (AIDS)-defining clinical endpoints. However, in the absence of CD8α+ cell depletion, no mmHIV-1 model has yet displayed high levels of chronic viremia or AIDS-like pathogenesis. Here, we review mmHIV-1 development approaches, the phenotypes, features, limitations, and potential utility of currently available mmHIV-1s, and propose future directions to further advance these models. Full article
Show Figures

Figure 1

16 pages, 2018 KiB  
Article
Effect of Isoflavone on Muscle Atrophy in Ovariectomized Mice
by Sayaka Kawai, Takuro Okamura, Chihiro Munekawa, Yuka Hasegawa, Ayaka Kobayashi, Hanako Nakajima, Saori Majima, Naoko Nakanishi, Ryoichi Sasano, Masahide Hamaguchi and Michiaki Fukui
Nutrients 2024, 16(19), 3295; https://doi.org/10.3390/nu16193295 - 28 Sep 2024
Cited by 2 | Viewed by 1907
Abstract
Background: Sarcopenia, characterized by muscle mass decline due to aging or other causes, is exacerbated by decreased estrogen levels after menopause in women. Isoflavones, a class of flavonoids acting on estrogen receptors, may have beneficial effects on metabolic disorders. We examined these effects [...] Read more.
Background: Sarcopenia, characterized by muscle mass decline due to aging or other causes, is exacerbated by decreased estrogen levels after menopause in women. Isoflavones, a class of flavonoids acting on estrogen receptors, may have beneficial effects on metabolic disorders. We examined these effects in ovariectomized mice fed a high-fat, high-sucrose diet (HFHSD). Methods: At 7 weeks old, female C57BL6/J mice (18–20 g, n = 12) underwent bilateral ovariectomy (OVX), and were then fed a high-fat, high-sucrose diet starting at 8 weeks of age. Half of the mice received isoflavone water (0.1%). Metabolic analyses, including glucose and insulin tolerance tests, were conducted. Muscle analysis involved grip strength assays, next-generation sequencing, quantitative RT–PCR, and western blotting of skeletal muscle after euthanizing the mice at 14 weeks old. Additionally, 16S rRNA gene sequence analysis of the gut microbiota was performed. Results: The results demonstrated that isoflavone administration did not affect body weight, glucose tolerance, or lipid metabolism. In contrast, isoflavone-treated mice had higher grip strength. Gene expression analysis of the soleus muscle revealed decreased Trim63 expression, and western blotting showed inactivation of muscle-specific RING finger protein 1 in isoflavone-treated mice. Gut microbiota analysis indicated higher Bacteroidetes and lower Firmicutes abundance in the isoflavone group, along with increased microbiota diversity. Gene sets related to TNF-α signaling via NF-κB and unfolded protein response were negatively associated with isoflavones. Conclusions: Isoflavone intake alters gut microbiota and increases muscle strength, suggesting a potential role in improving sarcopenia in menopausal women. Full article
(This article belongs to the Special Issue Exercise, Diet and Type 2 Diabetes)
Show Figures

Figure 1

27 pages, 1684 KiB  
Article
Protein Hydrolysates from Salmon Heads and Cape Hake By-Products: Comparing Enzymatic Method with Subcritical Water Extraction on Bioactivity Properties
by Carla Pires, Matilde Leitão, Maria Sapatinha, Amparo Gonçalves, Helena Oliveira, Maria Leonor Nunes, Bárbara Teixeira, Rogério Mendes, Carolina Camacho, Manuela Machado, Manuela Pintado, Ana Rita Ribeiro, Elsa F. Vieira, Cristina Delerue-Matos, Helena Maria Lourenço and António Marques
Foods 2024, 13(15), 2418; https://doi.org/10.3390/foods13152418 - 30 Jul 2024
Cited by 11 | Viewed by 2556
Abstract
Fish by-products can be converted into high-value-added products like fish protein hydrolysates (FPHs), which have high nutritional value and are rich in bioactive peptides with health benefits. This study aims to characterise FPHs derived from salmon heads (HPSs) and Cape hake trimmings (HPHs) [...] Read more.
Fish by-products can be converted into high-value-added products like fish protein hydrolysates (FPHs), which have high nutritional value and are rich in bioactive peptides with health benefits. This study aims to characterise FPHs derived from salmon heads (HPSs) and Cape hake trimmings (HPHs) using Alcalase for enzymatic hydrolysis and Subcritical Water Hydrolysis (SWH) as an alternative method. All hydrolysates demonstrated high protein content (70.4–88.7%), with the degree of hydrolysis (DH) ranging from 10.7 to 36.4%. The peptide profile of FPHs indicated the breakdown of proteins into small peptides. HPSs showed higher levels of glycine and proline, while HPHs had higher concentrations of glutamic acid, leucine, threonine, and phenylalanine. Similar elemental profiles were observed in both HPHs and HPSs, and the levels of Cd, Pb, and Hg were well below the legislated limits. Hydrolysates do not have a negative effect on cell metabolism and contribute to cell growth. HPSs and HPHs exhibited high 2,2′–azino-bis(3 ethylbenzthiazoline-6)-sulfonic acid (ABTS) radical scavenging activity, Cu2+ and Fe2+ chelating activities, and angiotensin-converting enzyme (ACE) inhibitory activity, with HPHs generally displaying higher activities. The α-amylase inhibition of both FPHs was relatively low. These results indicate that HPHs are a promising natural source of nutritional compounds and bioactive peptides, making them potential candidates for use as an ingredient in new food products or nutraceuticals. SWH at 250 °C is a viable alternative to enzymatic methods for producing FPHs from salmon heads with high antioxidant and chelating properties. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

14 pages, 2346 KiB  
Review
TRIM5α: A Protean Architect of Viral Recognition and Innate Immunity
by Stephanie J. Spada, Michael E. Grigg, Fadila Bouamr, Sonja M. Best and Peijun Zhang
Viruses 2024, 16(7), 997; https://doi.org/10.3390/v16070997 - 21 Jun 2024
Cited by 2 | Viewed by 2287
Abstract
The evolutionary pressures exerted by viral infections have led to the development of various cellular proteins with potent antiviral activities, some of which are known as antiviral restriction factors. TRIpartite Motif-containing protein 5 alpha (TRIM5α) is a well-studied restriction factor of retroviruses that [...] Read more.
The evolutionary pressures exerted by viral infections have led to the development of various cellular proteins with potent antiviral activities, some of which are known as antiviral restriction factors. TRIpartite Motif-containing protein 5 alpha (TRIM5α) is a well-studied restriction factor of retroviruses that exhibits virus- and host-species-specific functions in protecting against cross-primate transmission of specific lentiviruses. This specificity is achieved at the level of the host gene through positive selection predominantly within its C-terminal B30.2/PRYSPRY domain, which is responsible for the highly specific recognition of retroviral capsids. However, more recent work has challenged this paradigm, demonstrating TRIM5α as a restriction factor for retroelements as well as phylogenetically distinct viral families, acting similarly through the recognition of viral gene products via B30.2/PRYSPRY. This spectrum of antiviral activity raises questions regarding the genetic and structural plasticity of this protein as a mediator of the recognition of a potentially diverse array of viral molecular patterns. This review highlights the dynamic evolutionary footprint of the B30.2/PRYSPRY domain in response to retroviruses while exploring the guided ‘specificity’ conferred by the totality of TRIM5α’s additional domains that may account for its recently identified promiscuity. Full article
(This article belongs to the Special Issue Cellular Restriction Factors against Viral Infection)
Show Figures

Figure 1

20 pages, 3807 KiB  
Article
Tripartite Motif-Containing Protein 65 (TRIM65) Inhibits Hepatitis B Virus Transcription
by Sheng Shen, Ran Yan, Zhanglian Xie, Xiaoyang Yu, Hongyan Liang, Qiuhong You, Hu Zhang, Jinlin Hou, Xiaoyong Zhang, Yuanjie Liu, Jian Sun and Haitao Guo
Viruses 2024, 16(6), 890; https://doi.org/10.3390/v16060890 - 31 May 2024
Cited by 1 | Viewed by 2050
Abstract
Tripartite motif (TRIM) proteins, comprising a family of over 100 members with conserved motifs, exhibit diverse biological functions. Several TRIM proteins influence viral infections through direct antiviral mechanisms or by regulating host antiviral innate immune responses. To identify TRIM proteins modulating hepatitis B [...] Read more.
Tripartite motif (TRIM) proteins, comprising a family of over 100 members with conserved motifs, exhibit diverse biological functions. Several TRIM proteins influence viral infections through direct antiviral mechanisms or by regulating host antiviral innate immune responses. To identify TRIM proteins modulating hepatitis B virus (HBV) replication, we assessed 45 human TRIMs in HBV-transfected HepG2 cells. Our study revealed that ectopic expression of 12 TRIM proteins significantly reduced HBV RNA and subsequent capsid-associated DNA levels. Notably, TRIM65 uniquely downregulated viral pregenomic (pg) RNA in an HBV-promoter-specific manner, suggesting a targeted antiviral effect. Mechanistically, TRIM65 inhibited HBV replication primarily at the transcriptional level via its E3 ubiquitin ligase activity and intact B-box domain. Though HNF4α emerged as a potential TRIM65 substrate, disrupting its binding site on the HBV genome did not completely abolish TRIM65’s antiviral effect. In addition, neither HBx expression nor cellular MAVS signaling was essential to TRIM65-mediated regulation of HBV transcription. Furthermore, CRISPR-mediated knock-out of TRIM65 in the HepG2-NTCP cells boosted HBV infection, validating its endogenous role. These findings underscore TRIM proteins’ capacity to inhibit HBV transcription and highlight TRIM65’s pivotal role in this process. Full article
(This article belongs to the Special Issue HBV Transcriptional and Post-transcriptional Regulation)
Show Figures

Figure 1

26 pages, 10602 KiB  
Article
Curculigoside Attenuates Endoplasmic Reticulum Stress-Induced Epithelial Cell and Fibroblast Senescence by Regulating the SIRT1-P300 Signaling Pathway
by Weixi Xie, Lang Deng, Rui Qian, Xiaoting Huang, Wei Liu and Siyuan Tang
Antioxidants 2024, 13(4), 420; https://doi.org/10.3390/antiox13040420 - 29 Mar 2024
Cited by 3 | Viewed by 2234
Abstract
The senescence of alveolar epithelial cells (AECs) and fibroblasts plays a pivotal role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a condition lacking specific therapeutic interventions. Curculigoside (CCG), a prominent bioactive constituent of Curculigo, exhibits anti-osteoporotic and antioxidant activities. Our investigation [...] Read more.
The senescence of alveolar epithelial cells (AECs) and fibroblasts plays a pivotal role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a condition lacking specific therapeutic interventions. Curculigoside (CCG), a prominent bioactive constituent of Curculigo, exhibits anti-osteoporotic and antioxidant activities. Our investigation aimed to elucidate the anti-senescence and anti-fibrotic effects of CCG in experimental pulmonary fibrosis and delineate its underlying molecular mechanisms. Our findings demonstrate that CCG attenuates bleomycin-induced pulmonary fibrosis and lung senescence in murine models, concomitantly ameliorating lung function impairment. Immunofluorescence staining for senescence marker p21, alongside SPC or α-SMA, suggested that CCG’s mitigation of lung senescence correlates closely with the deceleration of senescence in AECs and fibroblasts. In vitro, CCG mitigated H2O2-induced senescence in AECs and the natural senescence of primary mouse fibroblasts. Mechanistically, CCG can upregulate SIRT1 expression, downregulating P300 expression, enhancing Trim72 expression to facilitate P300 ubiquitination and degradation, reducing the acetylation levels of antioxidant enzymes, and upregulating their expression levels. These actions collectively inhibited endoplasmic reticulum stress (ERS) and alleviated senescence. Furthermore, the anti-senescence effects and mechanisms of CCG were validated in a D-galactose (D-gal)-induced progeroid model. This study provides novel insights into the mechanisms underlying the action of CCG in cellular senescence and chronic diseases, offering potential avenues for the development of innovative drugs or therapeutic strategies. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Graphical abstract

17 pages, 994 KiB  
Article
A Preliminary Evaluation of Morphing Horizontal Tail Design for UAVs
by Fernando Montano, Ignazio Dimino and Alberto Milazzo
Aerospace 2024, 11(4), 266; https://doi.org/10.3390/aerospace11040266 - 29 Mar 2024
Cited by 3 | Viewed by 1857
Abstract
Morphing structures are a relatively new aircraft technology currently being investigated for a variety of applications, from civil to military. Despite the lack of literature maturity and its complexity, morphing wings offer significant aerodynamic benefits over a wide range of flight conditions, enabling [...] Read more.
Morphing structures are a relatively new aircraft technology currently being investigated for a variety of applications, from civil to military. Despite the lack of literature maturity and its complexity, morphing wings offer significant aerodynamic benefits over a wide range of flight conditions, enabling reduced aircraft fuel consumption and airframe noise, longer range and higher efficiency. The aim of this study is to investigate the impact of morphing horizontal tail design on aircraft performance and flight mechanics. This study is conducted on a 1:5 scale model of a Preceptor N-3 Pup at its trim condition, of which the longitudinal dynamics is implemented in MATLAB release 2022. Starting from the original horizontal tail airfoil NACA 0012 with the elevator deflected at the trim value, this is modified by using the X-Foil tool to obtain a smooth morphing airfoil trailing edge shape with the same CLα. By comparing both configurations and their influence on the whole aircraft, the resulting improvements are evaluated in terms of stability in the short-period mode, reduction in the parasitic drag coefficient CD0, and increased endurance at various altitudes. Full article
Show Figures

Figure 1

16 pages, 4318 KiB  
Article
TRIM2 Selectively Regulates Inflammation-Driven Pathological Angiogenesis without Affecting Physiological Hypoxia-Mediated Angiogenesis
by Nathan K. P. Wong, Emma L. Solly, Richard Le, Victoria A. Nankivell, Jocelyne Mulangala, Peter J. Psaltis, Stephen J. Nicholls, Martin K. C. Ng, Christina A. Bursill and Joanne T. M. Tan
Int. J. Mol. Sci. 2024, 25(6), 3343; https://doi.org/10.3390/ijms25063343 - 15 Mar 2024
Viewed by 2050
Abstract
Angiogenesis is a critical physiological response to ischemia but becomes pathological when dysregulated and driven excessively by inflammation. We recently identified a novel angiogenic role for tripartite-motif-containing protein 2 (TRIM2) whereby lentiviral shRNA-mediated TRIM2 knockdown impaired endothelial angiogenic functions in vitro. This study [...] Read more.
Angiogenesis is a critical physiological response to ischemia but becomes pathological when dysregulated and driven excessively by inflammation. We recently identified a novel angiogenic role for tripartite-motif-containing protein 2 (TRIM2) whereby lentiviral shRNA-mediated TRIM2 knockdown impaired endothelial angiogenic functions in vitro. This study sought to determine whether these effects could be translated in vivo and to determine the molecular mechanisms involved. CRISPR/Cas9-generated Trim2−/− mice that underwent a periarterial collar model of inflammation-induced angiogenesis exhibited significantly less adventitial macrophage infiltration relative to wildtype (WT) littermates, concomitant with decreased mRNA expression of macrophage marker Cd68 and reduced adventitial proliferating neovessels. Mechanistically, TRIM2 knockdown in endothelial cells in vitro attenuated inflammation-driven induction of critical angiogenic mediators, including nuclear HIF-1α, and curbed the phosphorylation of downstream effector eNOS. Conversely, in a hindlimb ischemia model of hypoxia-mediated angiogenesis, there were no differences in blood flow reperfusion to the ischemic hindlimbs of Trim2−/− and WT mice despite a decrease in proliferating neovessels and arterioles. TRIM2 knockdown in vitro attenuated hypoxia-driven induction of nuclear HIF-1α but had no further downstream effects on other angiogenic proteins. Our study has implications for understanding the role of TRIM2 in the regulation of angiogenesis in both pathophysiological contexts. Full article
(This article belongs to the Special Issue Arteriogenesis, Angiogenesis and Vascular Remodeling)
Show Figures

Graphical abstract

Back to TopTop