Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = TEMPO-mediated oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2926 KiB  
Article
Efficient Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by the Magnetic Laccase Nanoflowers-2,2,6,6-Tetramethylpiperidin-1-Oxyl System
by Lei Yang, Anbang Duan, Zhanyin Liu, Tingying Wei and Chunzhao Liu
Materials 2025, 18(16), 3780; https://doi.org/10.3390/ma18163780 - 12 Aug 2025
Viewed by 250
Abstract
Aiming to address the key challenges of poor enzyme stability, difficult recovery, and difficult synergistic optimization of catalytic efficiency in high-value conversion of biomass, this study utilizes mineralization self-assembly technology to combine laccase with Fe3O4@SiO2-PMIDA-Cu2+ composite, [...] Read more.
Aiming to address the key challenges of poor enzyme stability, difficult recovery, and difficult synergistic optimization of catalytic efficiency in high-value conversion of biomass, this study utilizes mineralization self-assembly technology to combine laccase with Fe3O4@SiO2-PMIDA-Cu2+ composite, constructing magnetic laccase nanoflower (MLac-NFs) materials with a porous structure and superparamagnetism. This synthetic material can efficiently catalyze the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). The characterization results indicated that MLac-NFs exhibit optimal catalytic activity (63.4 U mg−1) under conditions of pH 6.0 and 40 °C, with significantly enhanced storage stability (retaining 94.26% of activity after 30 days of storage at 4 °C). Apparent kinetic analysis reveals that the substrate affinity and maximum reaction rate of MLac-NFs were increased by 38.3% and 439.6%, respectively. In the laccase–mediator system (LMS), MLac-NFs mediated by 30 mM TEMPO could achieve complete conversion of HMF to FDCA within 24 h. Moreover, due to the introduction of magnetic nanoparticles, the MLac-NFs could be recovered and reused via an external magnetic field, maintaining 53.26% of the initial FDCA yield after six cycles. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 2384 KiB  
Article
Optimization of TEMPO-Mediated Oxidation of Chitosan to Enhance Its Antibacterial and Antioxidant Activities
by Abdellah Mourak, Aziz Ait-Karra, Mourad Ouhammou, Abdoussadeq Ouamnina, Abderrahim Boutasknit, Mohamed El Hassan Bouchari, Najat Elhadiri and Abdelhakim Alagui
Polysaccharides 2025, 6(3), 65; https://doi.org/10.3390/polysaccharides6030065 - 28 Jul 2025
Viewed by 277
Abstract
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing [...] Read more.
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing the efficiency of the reaction. The structural modifications to the chitosan following oxidation were confirmed using Fourier-transform infrared spectroscopy (FTIR), alongside additional analytical techniques, which validated the successful introduction of carbonyl and carboxyl functional groups. Solvent-cast films were prepared from both native and oxidized chitosan in order to evaluate their functional performance. The antibacterial activity of these films was assessed against Gram-negative (Salmonella) and Gram-positive (Streptococcus faecalis) bacterial strains. The oxidized chitosan films exhibited significantly enhanced antibacterial effects, particularly at shorter incubation periods. In addition, antioxidant activity was evaluated using DPPH radical scavenging and ferrous ion chelation assays, which both revealed a marked improvement in radical scavenging ability and metal ion binding capacity in oxidized chitosan. These findings confirm that TEMPO-mediated oxidation effectively enhances the physicochemical and bioactive properties of chitosan, highlighting its potential for biomedical and environmental applications. Full article
Show Figures

Figure 1

13 pages, 2631 KiB  
Article
TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction
by Yangyang Zhang, Yuanyuan Li and Xuejun Yu
Gels 2025, 11(7), 512; https://doi.org/10.3390/gels11070512 - 1 Jul 2025
Viewed by 371
Abstract
To successfully prepare cellulose hydrogels through a dissolution–regeneration process, 60 wt% LiBr aqueous solution was used as a green solvent. Carboxyl groups were precisely introduced onto the surface of the cellulose hydrogels through a TEMPO-mediated oxidation reaction, while the three-dimensional network structure and [...] Read more.
To successfully prepare cellulose hydrogels through a dissolution–regeneration process, 60 wt% LiBr aqueous solution was used as a green solvent. Carboxyl groups were precisely introduced onto the surface of the cellulose hydrogels through a TEMPO-mediated oxidation reaction, while the three-dimensional network structure and open pore morphology were completely retained. This modification strategy significantly enhanced the loading capacity of the hydrogels with copper nanoparticles (Cu NPs). The experimental results show that the LiBr aqueous solution can efficiently dissolve cellulose, and the TEMPO oxidation introduces carboxyl groups without destroying the stability of the hydrogels. Cu NPs are uniformly dispersed and highly loaded on the surface of the hydrogel because of the anchoring effect of the carboxyl groups. Cu NP-loaded hydrogels exhibit excellent catalytic activity in the NaBH4 reduction of 4-nitrophenol (4-NP). Cu NP-loaded hydrogels maintain their complete structure and good catalytic performance after five consecutive cycles. Moreover, Cu NP-loaded hydrogels demonstrate high efficiency in degrading organic dyes such as methyl orange and Congo red. This study successfully developed efficient, low-cost, and environmentally friendly Cu NP-loaded hydrogel catalysts through the synergistic effect of LiBr green solvent and TEMPO oxidation modification, providing a feasible alternative to noble metal catalysts. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Figure 1

21 pages, 7756 KiB  
Article
The Role of Hydroxyl Modification of Peptidoglycan to Reduce the TTX Toxicity via Superior Absorption
by Chang’e Wang, Yi Guo, Lili Zhang, Junjian Miao and Ying Lu
Foods 2025, 14(12), 2145; https://doi.org/10.3390/foods14122145 - 19 Jun 2025
Viewed by 2690
Abstract
The by-products that may contain tetrodotoxin (TTX) produced during the processing of farmed pufferfish have caused food safety risks and environmental pollution. Peptidoglycan (PG) of lactic acid bacteria could adsorb TTX; however, its complex structure and poor solubility limited adsorption efficiency. In this [...] Read more.
The by-products that may contain tetrodotoxin (TTX) produced during the processing of farmed pufferfish have caused food safety risks and environmental pollution. Peptidoglycan (PG) of lactic acid bacteria could adsorb TTX; however, its complex structure and poor solubility limited adsorption efficiency. In this study, hydroxyl modifications of three PGs (A3α, A1γ and A4α) were realized via TEMPO-mediated selective oxidation of the primary hydroxyl group. Compared with PGs, it was found that the carboxyl density of hydroxyl-modified PGs (HM-PGs) increased from 1.66 mmol/g to 3.33 mmol/g and the surface electronegativity increased from −36 mV to −59 mV. The adsorption capacity of HM-PGs to TTX reached 1.48 μg/mg, which was comparable to the adsorption of the conventional adsorbent chitosan for aflatoxin B1 (1.39 μg/mg). Moreover, HM-PGs decreased the toxicity of TTX from strong toxic to nearly non-toxic, with the toxicity reduction rate reached 99.85%. After treatment with HM-PGs, the mouse hippocampus and neuronal cell model confirmed that lower neural injury and sodium channel blocking effects were observed in the residual TTX, whose neurotoxicity was lower. Molecular docking simulation and physicochemical analysis revealed that the adsorption of TTX by HM-PGs was a complex adsorption mode driven by the synergy of physicochemical interaction. There were both physical adsorptions based on electrostatic and hydrophobic interactions and chemical binding with strong hydrogen bonding (1.46 Å) and Mayer bond order (0.1229). This study not only developed a new, efficient and safe tool for TTX removal, but also provided a theoretical basis for the development of biological toxin removal material. Full article
Show Figures

Figure 1

14 pages, 4426 KiB  
Article
Preparation of Alumina Oxo-Cluster/Cellulose Polymers and Dye Adsorption Application
by Henglong Tang, Simeng Yao, Zhu Long, Xuefei Yang, Pengxiang Si, Chang Sun and Dan Zhang
Materials 2024, 17(23), 6023; https://doi.org/10.3390/ma17236023 - 9 Dec 2024
Viewed by 983
Abstract
Aluminum oxide clusters (AlOCs) possess high surface areas and customizable pore structures, making them applicable in the field of environmental remediation. However, their practical use is hindered by stability issues, aggregation tendencies, and recycling challenges. This study presents an in -situ synthesis of [...] Read more.
Aluminum oxide clusters (AlOCs) possess high surface areas and customizable pore structures, making them applicable in the field of environmental remediation. However, their practical use is hindered by stability issues, aggregation tendencies, and recycling challenges. This study presents an in -situ synthesis of AlOCs on cellulose using a solvent thermal method. The resulting adsorbent’s structural and property profiles were thoroughly characterized using multiple analytical techniques. Batch adsorption experiments were performed to assess the adsorbent’s capacity and kinetics in removing selected dyes from aqueous solutions. Additionally, both real-environment simulation and regeneration experiments have been conducted to thoroughly assess the adsorbent’s reliability, stability, and practical applicability. The aim was to engineer an effective and recyclable adsorbent specifically tailored for dye-contaminated wastewater treatment. Full article
(This article belongs to the Special Issue Construction and Applications in Functional Polymers)
Show Figures

Figure 1

13 pages, 1893 KiB  
Article
Cellulose Nanofibers as Rheological Modifiers to Improve Biomass Slurry Processing and Fermentation
by Zachary Jamieson, Jordi Francis Clar and Troy Runge
Fermentation 2024, 10(12), 626; https://doi.org/10.3390/fermentation10120626 - 8 Dec 2024
Viewed by 1132
Abstract
This study investigates the enhancement of biomass slurry processability through the addition of rheological modifiers, focusing on carboxymethyl cellulose (CMC) and TEMPO-mediated oxidized cellulose nanofibrils (TCNF). Three sets of experiments were conducted to assess the effects of these additives on slurry processing and [...] Read more.
This study investigates the enhancement of biomass slurry processability through the addition of rheological modifiers, focusing on carboxymethyl cellulose (CMC) and TEMPO-mediated oxidized cellulose nanofibrils (TCNF). Three sets of experiments were conducted to assess the effects of these additives on slurry processing and fermentation. Initial experiments evaluated the slurry extrudability, concluding that TCNF aids extrusion similarly to CMC. Subsequent experiments explored slurry viscosity reduction mechanisms, revealing that while CMC significantly reduced the viscosity, TCNF’s impact is negligible. Additionally, TCNF performed comparably to CMC in water retention tests across different conditions, which suggests that TCNF have potential as an effective additive for maintaining slurry fluidity at high solid concentrations through enhanced water retention. Lastly, both additives were investigated to ensure that they did not impact hydrolyzed biomass fermentation. The findings suggest that TCNF’s mechanisms differ from those of traditional water-soluble polymers like CMC, offering insights into novel approaches to improve the biomass processing efficiency and subsequent fermentation. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorization)
Show Figures

Figure 1

12 pages, 9479 KiB  
Article
An Efficient and Economic Approach for Producing Nanocellulose-Based Aerogel from Kapok Fiber
by Minjie Hou, Qi Wang, Shunyu Wang, Zeze Yang, Xuefeng Deng and Hailong Zhao
Gels 2024, 10(8), 490; https://doi.org/10.3390/gels10080490 - 25 Jul 2024
Cited by 3 | Viewed by 1717
Abstract
Cellulose nanofibers (NF) were extracted from kapok fibers using TEMPO oxidation, followed by a combination of mechanical grinding and ultrasonic processing. The TEMPO-mediated oxidation significantly impacted the mechanical disintegration behavior of the kapok fibers, resulting in a high NF yield of 98%. This [...] Read more.
Cellulose nanofibers (NF) were extracted from kapok fibers using TEMPO oxidation, followed by a combination of mechanical grinding and ultrasonic processing. The TEMPO-mediated oxidation significantly impacted the mechanical disintegration behavior of the kapok fibers, resulting in a high NF yield of 98%. This strategy not only improved the fibrillation efficiency but also reduced overall energy consumption during NF preparation. An ultralight and highly porous NF-based aerogel was successfully prepared using a simple ice-templating technique. It had a low density in the range of 3.5–11.2 mg cm−3, high compressional strength (160 kPa), and excellent thermal insulation performance (0.024 W m−1 K−1). After silane modification, the aerogel displayed an ultralow density of 7.9 mg cm−3, good hydrophobicity with a water contact angle of 128°, and excellent mechanical compressibility with a high recovery of 92% at 50% strain. Benefiting from the silene support structure, it showed a high oil absorptive capacity (up to 71.4 g/g for vacuum pump oil) and a remarkable oil recovery efficiency of 93% after being reused for 10 cycles. These results demonstrate that our strategy endows nanocellulose-based aerogels with rapid shape recovery and high liquid absorption capabilities. Full article
(This article belongs to the Special Issue Preparation and Characteristics of Aerogel-Based Materials)
Show Figures

Figure 1

23 pages, 6231 KiB  
Article
Cyclic Nitroxide 4-Methoxy-Tempo May Decrease Serum Amyloid A-Mediated Renal Fibrosis and Reorganise Collagen Networks in Aortic Plaque
by Antony Gao, Kangzhe Xie, Sameesh Gupta, Gulfam Ahmad and Paul K. Witting
Int. J. Mol. Sci. 2024, 25(14), 7863; https://doi.org/10.3390/ijms25147863 - 18 Jul 2024
Viewed by 1430
Abstract
Acute-phase serum amyloid A (SAA) can disrupt vascular homeostasis and is elevated in subjects with diabetes, cardiovascular disease, and rheumatoid arthritis. Cyclic nitroxides (e.g., Tempo) are a class of piperidines that inhibit oxidative stress and inflammation. This study examined whether 4-methoxy-Tempo (4-MetT) inhibits [...] Read more.
Acute-phase serum amyloid A (SAA) can disrupt vascular homeostasis and is elevated in subjects with diabetes, cardiovascular disease, and rheumatoid arthritis. Cyclic nitroxides (e.g., Tempo) are a class of piperidines that inhibit oxidative stress and inflammation. This study examined whether 4-methoxy-Tempo (4-MetT) inhibits SAA-mediated vascular and renal dysfunction. Acetylcholine-mediated vascular relaxation and aortic guanosine-3′,5′-cyclic monophosphate (cGMP) levels both diminished in the presence of SAA. 4-MetT dose-dependently restored vascular function with corresponding increases in cGMP. Next, male ApoE-deficient mice were administered a vehicle (control, 100 µL PBS) or recombinant SAA (100 µL, 120 µg/mL) ± 4-MetT (at 15 mg/kg body weight via i.p. injection) with the nitroxide administered before (prophylaxis) or after (therapeutic) SAA. Kidney and hearts were harvested at 4 or 16 weeks post SAA administration. Renal inflammation increased 4 weeks after SAA treatment, as judged by the upregulation of IFN-γ and concomitant increases in iNOS, p38MAPK, and matrix metalloproteinase (MMP) activities and increased renal fibrosis (Picrosirius red staining) in the same kidneys. Aortic root lesions assessed at 16 weeks revealed that SAA enhanced lesion size (vs. control; p < 0.05), with plaque presenting with a diffuse fibrous cap (compared to the corresponding aortic root from control and 4-MetT groups). The extent of renal dysfunction and aortic lesion size was largely unchanged in 4-MetT-supplemented mice, although renal fibrosis diminished at 16 weeks, and aortic lesions presented with redistributed collagen networks. These outcomes indicate that SAA stimulates renal dysfunction through promoting the IFN-γ–iNOS–p38MAPK axis, manifesting as renal damage and enhanced atherosclerotic lesions, while supplementation with 4-MetT only affected some of these pathological changes. Full article
Show Figures

Figure 1

19 pages, 7894 KiB  
Article
Lysyl Oxidase in Ectopic Cardiovascular Calcification: Role of Oxidative Stress
by Carme Ballester-Servera, Judith Alonso, Laia Cañes, Paula Vázquez-Sufuentes, Ana B. García-Redondo, Cristina Rodríguez and José Martínez-González
Antioxidants 2024, 13(5), 523; https://doi.org/10.3390/antiox13050523 - 26 Apr 2024
Cited by 4 | Viewed by 3675
Abstract
Lysyl oxidase (LOX)-mediated extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease; however, this enzyme also induces oxidative stress. We addressed the contribution of LOX-dependent oxidative stress to cardiovascular calcification. LOX is upregulated in human-calcified atherosclerotic lesions and atheromas from atherosclerosis-challenged [...] Read more.
Lysyl oxidase (LOX)-mediated extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease; however, this enzyme also induces oxidative stress. We addressed the contribution of LOX-dependent oxidative stress to cardiovascular calcification. LOX is upregulated in human-calcified atherosclerotic lesions and atheromas from atherosclerosis-challenged LOX transgenic mice (TgLOXVSMC) and colocalized with a marker of oxidative stress (8-oxo-deoxyguanosine) in vascular smooth muscle cells (VSMCs). Similarly, in calcific aortic valves, high LOX expression was detected in valvular interstitial cells (VICs) positive for 8-oxo-deoxyguanosine, while LOX and LOXL2 expression correlated with osteogenic markers (SPP1 and RUNX2) and NOX2. In human VICs, mito-TEMPO and TEMPOL attenuated the increase in superoxide anion levels and the mineralization induced by osteogenic media (OM). Likewise, in OM-exposed VICs, β-aminopropionitrile (a LOX inhibitor) ameliorated both oxidative stress and calcification. Gain- and loss-of-function approaches in VICs demonstrated that while LOX silencing negatively modulates oxidative stress and calcification induced by OM, lentiviral LOX overexpression exacerbated oxidative stress and VIC calcification, effects that were prevented by mito-TEMPO, TEMPOL, and β-aminopropionitrile. Our data indicate that LOX-induced oxidative stress participates in the procalcifying effects of LOX activity in ectopic cardiovascular calcification, and highlight the multifaceted role played by LOX isoenzymes in cardiovascular diseases. Full article
(This article belongs to the Special Issue Oxidative Stress and Atherosclerosis)
Show Figures

Figure 1

14 pages, 3820 KiB  
Article
Regioselectively Carboxylated Cellulose Nanofibril Models from Dissolving Pulp: C6 via TEMPO Oxidation and C2,C3 via Periodate–Chlorite Oxidation
by Mengzhe Guo, James D. Ede, Christie M. Sayes, Jo Anne Shatkin, Nicole Stark and You-Lo Hsieh
Nanomaterials 2024, 14(5), 479; https://doi.org/10.3390/nano14050479 - 6 Mar 2024
Cited by 7 | Viewed by 2404
Abstract
Regioselective C6 and C2,C3 carboxylated cellulose nanofibrils (CNFs) have been robustly generated from dissolving pulp, a readily available source of unmodified cellulose, via stoichiometrically optimized 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO)-mediated and sequential sodium periodate-sodium chlorite (PC) oxidation coupled with high-speed blending. Both regioselectively optimized carboxylated CNF [...] Read more.
Regioselective C6 and C2,C3 carboxylated cellulose nanofibrils (CNFs) have been robustly generated from dissolving pulp, a readily available source of unmodified cellulose, via stoichiometrically optimized 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO)-mediated and sequential sodium periodate-sodium chlorite (PC) oxidation coupled with high-speed blending. Both regioselectively optimized carboxylated CNF series possess the widest ranges of comparable charges (0.72–1.48 mmol/g for T-CNFs vs. 0.72–1.10 mmol/g for PC-CNFs), but similar ranges of thickness (1.3–2.4 nm for T-CNF, 1.8–2.7 nm PC-CNF), widths (4.6–6.6 nm T-CNF, 5.5–5.9 nm PC-CNF), and lengths (254–481 nm T-CNF, 247–442 nm PC-CNF). TEMPO-mediated oxidation is milder and one-pot, thus more time and process efficient, whereas the sequential periodate–chlorite oxidation produces C2,C3 dialdehyde intermediates that are amenable to further chemical functionalization or post-reactions. These two well-characterized regioselectively carboxylated CNF series represent coherent cellulose nanomaterial models from a single woody source and have served as references for their safety study toward the development of a safer-by-design substance evaluation tool. Full article
(This article belongs to the Special Issue From Biomass to Nanomaterials)
Show Figures

Graphical abstract

18 pages, 3970 KiB  
Article
Mito-TEMPO Improves the Meiosis Resumption and Mitochondrial Function of Vitrified Sheep Oocytes via the Recovery of Respiratory Chain Activity
by Xi Zhao, Airixiati Dilixiati, Luyao Zhang, Aikebaier Aihemaiti, Yukun Song, Guodong Zhao, Xiangwei Fu, Xuguang Wang and Abulizi Wusiman
Animals 2024, 14(1), 152; https://doi.org/10.3390/ani14010152 - 2 Jan 2024
Cited by 2 | Viewed by 2297
Abstract
Vitrification is a crucial method for preserving animal germ cells. Considering the increased oxidative stress and organelle damage incurred, it is still necessary to make the process more efficient for oocytes. As the energy source of oocytes, mitochondria are the most abundant organelle [...] Read more.
Vitrification is a crucial method for preserving animal germ cells. Considering the increased oxidative stress and organelle damage incurred, it is still necessary to make the process more efficient for oocytes. As the energy source of oocytes, mitochondria are the most abundant organelle in oocytes and play a crucial role in their maturation. Here, we found that Mito-TEMPO, a mitochondria-targeted antioxidant, could efficaciously improve the oxidative stress injury of vitrified oocytes by recovering mitochondrial function via the mitochondrial respiratory chain. It was observed that Mito-TEMPO not only improves oocyte viability and meiosis but also maintains spindle structure. A subsequent study indicated that Mito-TEMPO effectively rescued mitochondrial dysfunction and attenuated vitrification-induced oxidative stress. Further investigation revealed that Mito-TEMPO regulates vitrified oocytes’ intracellular Ca2+ homeostasis and ATP content and provides strong antioxidant properties. Additionally, an analysis of the transcriptome at the single-cell level revealed that the respiratory chain mediates the beneficial effect of Mito-TEMPO on vitrified oocytes. Overall, our findings indicate that supplementing oocytes with Mito-TEMPO is an effective method to shield them from the damage caused by vitrification. In addition, the beneficial effects of Mito-TEMPO on vitrified sheep oocytes could inspire further investigations of the principles underlying oocyte cryobiology in other animals. Full article
(This article belongs to the Special Issue Advances in In Vitro Oocyte Development in Domestic Animals)
Show Figures

Figure 1

21 pages, 4217 KiB  
Article
Nanostructured Cellulose-Based Aerogels: Influence of Chemical/Mechanical Cascade Processes on Quality Index for Benchmarking Dye Pollutant Adsorbents in Wastewater Treatment
by Annachiara Pirozzi, Esther Rincón, Eduardo Espinosa, Francesco Donsì and Luis Serrano
Gels 2023, 9(12), 958; https://doi.org/10.3390/gels9120958 - 6 Dec 2023
Cited by 4 | Viewed by 2129
Abstract
(1) Background: Nanostructured cellulose has emerged as an efficient bio-adsorbent aerogel material, offering biocompatibility and renewable sourcing advantages. This study focuses on isolating (ligno)cellulose nanofibers ((L)CNFs) from barley straw and producing aerogels to develop sustainable and highly efficient decontamination systems. (2) Methods: (Ligno)cellulose [...] Read more.
(1) Background: Nanostructured cellulose has emerged as an efficient bio-adsorbent aerogel material, offering biocompatibility and renewable sourcing advantages. This study focuses on isolating (ligno)cellulose nanofibers ((L)CNFs) from barley straw and producing aerogels to develop sustainable and highly efficient decontamination systems. (2) Methods: (Ligno)cellulose pulp has been isolated from barley straw through a pulping process, and was subsequently deconstructed into nanofibers employing various pre-treatment methods (TEMPO-mediated oxidation process or PFI beater mechanical treatment) followed by the high-pressure homogenization (HPH) process. (3) Results: The aerogels made by (L)CNFs, with a higher crystallinity degree, larger aspect ratio, lower shrinkage rate, and higher Young’s modulus than cellulose aerogels, successfully adsorb and remove organic dye pollutants from wastewater. (L)CNF-based aerogels, with a quality index (determined using four characterization parameters) above 70%, exhibited outstanding contaminant removal capacity over 80%. The high specific surface area of nanocellulose isolated using the TEMPO oxidation process significantly enhanced the affinity and interactions between hydroxyl and carboxyl groups of nanofibers and cationic groups of contaminants. The efficacy in adsorbing cationic dyes in wastewater onto the aerogels was verified by the Langmuir adsorption isotherm model. (4) Conclusions: This study offers insights into designing and applying advanced (L)CNF-based aerogels as efficient wastewater decontamination and environmental remediation platforms. Full article
(This article belongs to the Special Issue Cellulose- and Nanocellulose-Based Gels: Design and Applications)
Show Figures

Graphical abstract

16 pages, 3233 KiB  
Article
Chemistry of Hydroxypropyl Cellulose Oxidized by Two Selective Oxidants
by Raluca Ioana Baron, Gabriela Biliuta, Ana-Maria Macsim, Maria Valentina Dinu and Sergiu Coseri
Polymers 2023, 15(19), 3930; https://doi.org/10.3390/polym15193930 - 28 Sep 2023
Cited by 5 | Viewed by 3655
Abstract
Along with the increased usage of cellulose in the manufacture of novel materials, those of its derivatives that have good solubility in water or organic solvents have become increasingly important. In this study, hydroxypropyl cellulose (HPC), a cellulosic derivative with distinct features, was [...] Read more.
Along with the increased usage of cellulose in the manufacture of novel materials, those of its derivatives that have good solubility in water or organic solvents have become increasingly important. In this study, hydroxypropyl cellulose (HPC), a cellulosic derivative with distinct features, was utilized to investigate how two of the most-selective oxidation methods currently available in the literature act on the constituent OH groups of both the side chain and the anhydroglycosidic unit in HPC. The oxidation reactions were carried out first using TEMPO, sodium hypochlorite, and sodium bromide, then sodium periodate (NaIO4), for 5 h. A combination of these two protocols was applied. The amount of aldehyde and number of carboxylic groups introduced after oxidation was determined, while the changes in the morphological features of oxidized HPC were, additionally, assessed. Furthermore, utilizing Fourier-transform infrared spectra, X-ray diffraction, and thermogravimetric studies, the chemical structure, crystallinity, and thermal stability of the oxidized HPC samples were examined and compared. Full article
(This article belongs to the Collection Biopolymers: Synthesis and Properties)
Show Figures

Graphical abstract

13 pages, 2381 KiB  
Article
ClO2-Mediated Oxidation of the TEMPO Radical: Fundamental Considerations of the Catalytic System for the Oxidation of Cellulose Fibers
by Laura Giraldo Isaza, Gérard Mortha, Nathalie Marlin, Florian Molton and Carole Duboc
Molecules 2023, 28(18), 6631; https://doi.org/10.3390/molecules28186631 - 15 Sep 2023
Cited by 4 | Viewed by 2670
Abstract
The reaction mechanism of ClO2-mediated TEMPO oxidation was investigated by EPR spectroscopy and UV–Vis spectroscopy in the context of an alternative TEMPO sequence for cellulose fiber oxidation. Without the presence of a cellulosic substrate, a reversibility between TEMPO and its oxidation [...] Read more.
The reaction mechanism of ClO2-mediated TEMPO oxidation was investigated by EPR spectroscopy and UV–Vis spectroscopy in the context of an alternative TEMPO sequence for cellulose fiber oxidation. Without the presence of a cellulosic substrate, a reversibility between TEMPO and its oxidation product, TEMPO+, was displayed, with an effect of the pH and reagent molar ratios. The involvement of HOCl and Cl, formed as byproducts in the oxidation mechanism, was also evidenced. Trapping HOCl partly inhibits the reaction, whereas adding methylglucoside, a cellulose model compound, inhibits the reversibility of the reaction to TEMPO. Full article
(This article belongs to the Topic Advances in Chemistry and Chemical Engineering)
Show Figures

Figure 1

17 pages, 9453 KiB  
Article
Fit-for-Use Nanofibrillated Cellulose from Recovered Paper
by Ana Balea, M. Concepcion Monte, Elena Fuente, Jose Luis Sanchez-Salvador, Quim Tarrés, Pere Mutjé, Marc Delgado-Aguilar and Carlos Negro
Nanomaterials 2023, 13(18), 2536; https://doi.org/10.3390/nano13182536 - 11 Sep 2023
Cited by 5 | Viewed by 1779
Abstract
The cost-effective implementation of nanofibrillated cellulose (CNF) at industrial scale requires optimizing the quality of the nanofibers according to their final application. Therefore, a portfolio of CNFs with different qualities is necessary, as well as further knowledge about how to obtain each of [...] Read more.
The cost-effective implementation of nanofibrillated cellulose (CNF) at industrial scale requires optimizing the quality of the nanofibers according to their final application. Therefore, a portfolio of CNFs with different qualities is necessary, as well as further knowledge about how to obtain each of the main qualities. This paper presents the influence of various production techniques on the morphological characteristics and properties of CNFs produced from a mixture of recycled fibers. Five different pretreatments have been investigated: a mechanical pretreatment (PFI refining), two enzymatic hydrolysis strategies, and TEMPO-mediated oxidation under two different NaClO concentrations. For each pretreatment, five high-pressure homogenization (HPH) conditions have been considered. Our results show that the pretreatment determines the yield and the potential of HPH to enhance fibrillation and, therefore, the final CNF properties. These results enable one to select the most effective production method with the highest yield of produced CNFs from recovered paper for the desired CNF quality in diverse applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

Back to TopTop