Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = TCF/LEF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2309 KB  
Article
Endocrine Disruption in Freshwater Cladocerans: Transcriptomic Network Perspectives on TBOEP and PFECHS Impacts in Daphnia magna
by Hyun Woo Kim, Seok-Gyu Yun, Ju Yeon Park, Jun Lee, Jun Pyo Han, Dong Yeop Shin, Jong Hun Lee, Eun-Min Cho and Young Rok Seo
Int. J. Mol. Sci. 2025, 26(24), 12146; https://doi.org/10.3390/ijms262412146 - 17 Dec 2025
Viewed by 412
Abstract
Freshwater cladocerans such as Daphnia magna (D. magna) are keystone grazers whose hormone-regulated life history traits make them sensitive sentinels of endocrine-disrupting chemicals (EDCs). The organophosphate flame-retardant tris(2-butoxyethyl) phosphate (TBOEP) and perfluoroethylcyclohexane sulfonate (PFECHS) now co-occur at ng L−1–µg [...] Read more.
Freshwater cladocerans such as Daphnia magna (D. magna) are keystone grazers whose hormone-regulated life history traits make them sensitive sentinels of endocrine-disrupting chemicals (EDCs). The organophosphate flame-retardant tris(2-butoxyethyl) phosphate (TBOEP) and perfluoroethylcyclohexane sulfonate (PFECHS) now co-occur at ng L−1–µg L−1 in surface waters, yet their chronic sub-lethal impacts on invertebrate endocrine networks remain unclear. We analysed two publicly available 21-day microarray datasets (TBOEP: GSE55132; PFECHS: GSE75607) using gene ontology enrichment, STRING protein interaction networks, Drosophila phenotype mapping, and KEGG (Kyoto Encyclopaedia of Genes and Genomes)-anchored frameworks to build putative adverse outcome pathways (AOPs) for D. magna. Differentially expressed genes were clustered into functional modules and hub nodes were ranked by degree and betweenness. TBOEP suppressed moulting and growth, altering 1157 genes enriched for metabolism and membrane processes; hubs VRK1, MIB2, and adenylosuccinate synthetase formed a muscle anatomical development sub-network. PFECHS down-regulated vitellogenin and shifted 879 genes dominated by oxidative-stress and glutathione-metabolism signatures; central nodes UBC9, eIF4A-III, Tra-2α, and HDAC1 linked meiotic-cycle, oogenesis, and cyclic-compound binding. Despite chemical dissimilarity, both compounds converged on Wnt-signalling nodes—TBOEP via presenilin-1, and PFECHS via CK1ε/CK2—thereby reducing TCF/LEF-dependent transcription. Predicted outcomes include impaired oocyte maturation, reduced fecundity, and stunted body size, consistent with observed decreases in length and vitellogenin protein. Our network analysis, based on high-dose, sub-lethal exposures used in the underlying microarray studies, indicates that TBOEP- and PFECHS-induced perturbations can destabilise endocrine, developmental, and metabolic pathways in D. magna without overt lethality, and highlights Wnt-centred key events and hub genes as candidate biomarkers to be evaluated in future low-dose studies that use environmentally realistic exposure scenarios. Hub genes and Wnt-mediated key events emerge as sensitive biomarkers for monitoring mixed EDC exposure. Full article
(This article belongs to the Special Issue Toxicological Impacts of Emerging Contaminants on Aquatic Organisms)
Show Figures

Figure 1

15 pages, 2983 KB  
Article
Synthetic Derivatives of Vinpocetine as Antiproliferative Agents
by Mihira Gutti, Melanie Tsui, Stella Yang, Selina Xi, Jennifer Luo, Arshia Desarkar, Yining Xie, Mirabelle Feng, Udbhav Avadhani, Shloka Raghavan, Elena Brierley-Green, Erika Yu and Edward Njoo
Drugs Drug Candidates 2025, 4(4), 53; https://doi.org/10.3390/ddc4040053 - 28 Nov 2025
Viewed by 716
Abstract
Background/Objectives: Vincamine is an indole alkaloid initially isolated from plants of the Vinca genus and has previously been demonstrated to have antioxidant, hypoglycemic, and hypolipidemic activities. Vinpocetine, a synthetic derivative of vincamine with an enhanced pharmacological profile, has demonstrated promising antiproliferative properties. While [...] Read more.
Background/Objectives: Vincamine is an indole alkaloid initially isolated from plants of the Vinca genus and has previously been demonstrated to have antioxidant, hypoglycemic, and hypolipidemic activities. Vinpocetine, a synthetic derivative of vincamine with an enhanced pharmacological profile, has demonstrated promising antiproliferative properties. While previously reported vinpocetine derivatives have undergone extensive investigation for their pharmacological properties, the role of the E-ring ethyl ester in the antiproliferative properties of compounds with this scaffold has not yet been fully described. Methods: Here, the antiproliferative activity of two vinpocetine analogs with modifications at the E-ring was evaluated through cell viability and LDH assays, and their mechanism of action was investigated through cell cycle analysis, apoptosis detection, and reporter assays for Wnt-1, NF-κB, and STAT3 signaling. Results: Cell viability assays revealed that reduction of the ethyl ester to an alcohol exhibited strong dose-dependent antiproliferative activity across five mammalian cell lines, but did not induce significant markers of apoptosis or necrotic death as determined by FITC/Annexin V and cell cycle flow cytometry, respectively. Through label-free cell imaging, we found the antiproliferative activity of vinpocetine alcohol to be correlated with a decrease in membrane integrity in treated cells. We further observe that both analogs exhibit dose-dependent modulation of TCF/LEF, NF-kB, and STAT3 reporter cells, which appears to be coupled with trends in antiproliferative activity. Conclusions: Altogether, this work demonstrates the potential for E-ring modifications of vinpocetine as antiproliferative agents. Full article
(This article belongs to the Section Preclinical Research)
Show Figures

Graphical abstract

23 pages, 4999 KB  
Article
Targeted Inhibition of Colorectal Carcinoma Using a Designed CEA-Binding Protein to Deliver p53 Protein and TCF/LEF Transcription Factor Decoy DNA
by Wen Wang, Xuan Sun and Geng Wu
Int. J. Mol. Sci. 2025, 26(20), 9846; https://doi.org/10.3390/ijms26209846 - 10 Oct 2025
Cited by 1 | Viewed by 1011
Abstract
Colorectal carcinoma (CRC) is characterized by mutations in p53 and the Wnt signaling pathway, and immunotherapy has shown limited efficacy in microsatellite-stable CRC. Here, CEABP1, a binding protein for the CRC biomarker carcinoembryonic antigen (CEA), was designed de novo through the AI-based computational [...] Read more.
Colorectal carcinoma (CRC) is characterized by mutations in p53 and the Wnt signaling pathway, and immunotherapy has shown limited efficacy in microsatellite-stable CRC. Here, CEABP1, a binding protein for the CRC biomarker carcinoembryonic antigen (CEA), was designed de novo through the AI-based computational generation methods RFDiffusion/ProteinMPNN and stringent in silico selection, for targeted delivery of purified p53 protein and transcription factor T-cell factor (TCF)/lymphoid enhancer-binding factor (LEF) transcription factor decoy (TFD) DNA into CRC cells. The cell-penetrating peptide (CPP) p28 was employed to deliver the p28-p53-CEABP1 protein, which significantly enhanced p53’s inhibition of CRC cell proliferation and xenograft tumor growth. Codelivery of the p14ARF protein together with p53 prolonged the effective antitumor duration of p53. In addition, the DNA binding domain of Max was fused with CPP and CEABP1 to deliver TCF/LEF TFD DNA, comprising concatenated consensus binding motifs for TCF/LEF and Max, into CRC cells to inhibit Wnt target gene transcription, leading to marked suppression of CRC cell proliferation and xenograft tumor growth. These findings paved the way for the development of precision anticancer therapeutics using designed binding proteins of tumor biomarkers for targeted delivery of tumor suppressor proteins and TFD DNA. Full article
(This article belongs to the Special Issue Protein–Protein Interactions in Human Cancer)
Show Figures

Graphical abstract

17 pages, 1827 KB  
Review
The Role of Cadherin 17 (CDH17) in Cancer Progression via Wnt/β-Catenin Signalling Pathway: A Systematic Review and Meta-Analysis
by Bipusha Tha Shrestha, Yahui Feng, Aaron Lad, Anthony Bates, Jing Chen, Karen Brown, Feier Zeng and Ning Wang
Int. J. Mol. Sci. 2025, 26(20), 9838; https://doi.org/10.3390/ijms26209838 - 10 Oct 2025
Viewed by 3239
Abstract
Cadherin 17 (CDH17) is a cell adhesion glycoprotein essential for epithelial integrity. It is frequently overexpressed in various cancers, where it is associated with aggressive behaviour. While evidence indicates that CDH17 functions as an upstream regulator of Wnt/β-catenin signalling, findings are inconsistent across [...] Read more.
Cadherin 17 (CDH17) is a cell adhesion glycoprotein essential for epithelial integrity. It is frequently overexpressed in various cancers, where it is associated with aggressive behaviour. While evidence indicates that CDH17 functions as an upstream regulator of Wnt/β-catenin signalling, findings are inconsistent across tumour types, limiting the assessment of CDH17 as a biomarker or therapeutic target for Wnt pathway in cancer. In this study, we systematically review and meta-analyse the relationship between CDH17 and Wnt/β-catenin signalling in human cancers and evaluate whether CDH17 modulation affects tumour behaviour through Wnt-related mechanisms. Our search of Medline, Web of Science and Scopus identified five studies examining CDH17 expression in the Wnt/β-catenin pathway in vitro and in vivo. All five studies identified CDH17 as a key driver of canonical Wnt signalling, directly influencing cancer progression in hepatocellular carcinoma (HCC), gastric cancer (GC), and colorectal cancer (CRC). Meta-analysis (MA) showed that CDH17 inhibition consistently reduced Wnt/β-catenin downstream T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcriptional activity (MD = −1.32, 95% CI: −1.64 to −0.99, p < 0.00001). Narrative synthesis found that CDH17 suppression decreased total and nuclear β-catenin, phosphorylated glycogen synthase kinase-3 beta (GSK-3β), and cyclin D1 while increasing tumour suppressors, retinoblastoma (Rb) and p53/p21. These changes were associated with reduced proliferation, colony formation, migration, invasion and cell cycle arrest. In vivo, CDH17 suppression resulted in 80–95% tumour growth suppression (Mean Difference (MD) = −96.67, 95% CI: [−144.35, −48.98], p < 0.0001), with immunohistochemistry confirming cytoplasmic β-catenin sequestration and lower cyclin D1 levels. Collectively, these findings show CDH17 as a critical upstream effector sustaining Wnt/β-catenin signalling, cancer progression, tumour proliferation, stem cell properties, and metastasis, and support CDH17 inhibition as a promising therapeutic target across multiple cancer types. Full article
Show Figures

Figure 1

24 pages, 8968 KB  
Article
Oncogenic Role of SAMD4B in Breast Cancer Progression by Activating Wnt/β-Catenin Pathway
by Jia-Hui Li, Xin-Ya Wang, Huan-Xi Song, Xiao-Fei Nie and Li-Na Zhang
Biomolecules 2025, 15(10), 1423; https://doi.org/10.3390/biom15101423 - 7 Oct 2025
Viewed by 974
Abstract
The Sterile alpha motif domain-containing protein 4 (SAMD4) family consists of two evolutionarily conserved and highly homologous RNA-binding proteins, SAMD4A and SAMD4B. Previous studies have established SAMD4A as a tumor suppressor that is downregulated in breast cancer, while the function of SAMD4B in [...] Read more.
The Sterile alpha motif domain-containing protein 4 (SAMD4) family consists of two evolutionarily conserved and highly homologous RNA-binding proteins, SAMD4A and SAMD4B. Previous studies have established SAMD4A as a tumor suppressor that is downregulated in breast cancer, while the function of SAMD4B in tumorigenesis remains poorly defined. In this study, we observed that SAMD4B expression is upregulated in breast cancer. Functional assays demonstrated that SAMD4B facilitated breast cancer cell proliferation, migration, and invasion by inducing epithelial–mesenchymal transition (EMT). Furthermore, SAMD4B accelerated G1-to-S phase cell cycle progression by modulating p53 expression, collectively supporting an oncogenic function of SAMD4B in breast cancer. Mechanistically, we found that SAMD4B enhanced TCF/LEF transcriptional activity and upregulated the expression of β-catenin, Cyclin D1, c-Myc, and Axin2. Further investigations confirmed that SAMD4B activated the Wnt/β-catenin pathway by stabilizing β-catenin mRNA and increasing β-catenin protein expression level. Importantly, treatment with XAV-939, a specific Wnt/β-catenin pathway inhibitor, abrogated the pro-oncogenic effects of SAMD4B overexpression, including Wnt/β-catenin pathway activation, enhanced proliferation, and increased metastatic capacity. These results confirm that SAMD4B promotes the malignant phenotypes of breast cancer cells in a manner dependent on the Wnt/β-catenin pathway. In summary, our findings clarify that SAMD4B exerts an oncogenic role in breast cancer progression by activating the Wnt/β-catenin pathway. These data identify SAMD4B as a potential therapeutic target in breast cancer, although further in vivo investigations are required to validate its clinical relevance. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

19 pages, 2805 KB  
Article
SARS-CoV-2 Infection Influences Wnt/β-Catenin Pathway Components in Astrocytes
by KaReisha F. Robinson, Avantika I. Ahiya, Justin M. Richner and Sarah E. Lutz
Pathogens 2025, 14(10), 994; https://doi.org/10.3390/pathogens14100994 - 2 Oct 2025
Cited by 1 | Viewed by 1245
Abstract
The mechanisms by which SARS-CoV-2 infection lead to neuroinflammation and cognitive impairment in COVID-19 and Long COVID are unclear. Cerebrovascular Wnt/β-catenin pathway activity is suppressed in association with neuroinflammation and cognitive impairment in a mouse model of COVID-19. In this study, we asked [...] Read more.
The mechanisms by which SARS-CoV-2 infection lead to neuroinflammation and cognitive impairment in COVID-19 and Long COVID are unclear. Cerebrovascular Wnt/β-catenin pathway activity is suppressed in association with neuroinflammation and cognitive impairment in a mouse model of COVID-19. In this study, we asked whether SARS-CoV-2 (NY Iota strain) infection of astrocytes would result in cell-autonomous changes in Wnt/β-catenin pathway components. We report that induced pluripotent stem cell (hiPSC)-derived human astrocytes (iAs) are susceptible to sustained infection with SARS-CoV-2 in vitro. Real-time PCR revealed that SARS-CoV-2 infection of iAs decreased transcripts for Wnt3a, Wnt10b, and the downstream pathway effectors β-catenin and TCF3. Wnt7b was increased, as was the proinflammatory chemokine CXCL10. No changes were noted in Wnt3, Wnt7a, TCF1, TCF4, or LEF1. These data indicate that SARS-CoV-2 infection differentially influences Wnt/β-catenin pathway components in astrocytes. These data could have implications for the mechanistic basis of COVID-19 and Long COVID. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

28 pages, 1119 KB  
Review
β-Catenin: A Key Molecule in Osteoblast Differentiation
by Edyta Wróbel, Piotr Wojdasiewicz, Agnieszka Mikulska and Dariusz Szukiewicz
Biomolecules 2025, 15(7), 1043; https://doi.org/10.3390/biom15071043 - 18 Jul 2025
Cited by 7 | Viewed by 3146
Abstract
β-catenin is a key regulator of osteoblast differentiation, proliferation, and bone homeostasis. Through its interaction with transcription factors such as TCF/LEF, Runx2, and Osx, it coordinates gene expression essential for osteogenesis. The aim of this review is to demonstrate how β-catenin signaling is [...] Read more.
β-catenin is a key regulator of osteoblast differentiation, proliferation, and bone homeostasis. Through its interaction with transcription factors such as TCF/LEF, Runx2, and Osx, it coordinates gene expression essential for osteogenesis. The aim of this review is to demonstrate how β-catenin signaling is modulated by various physiological and pathological factors, including mechanical loading, oxidative stress, HIV-1 gp120, fluoride, implant topography, and microRNAs. These factors influence Wnt/β-catenin signaling through different mechanisms, often exerting opposing effects on osteoblast function. By integrating these modulators, we provide a comprehensive view of the dynamic regulation of β-catenin in bone biology. Understanding this complexity may provide insight into novel therapeutic strategies targeting β-catenin in bone regeneration, metabolic bone diseases, and pathologies such as HIV-associated bone loss or osteosarcoma. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 577 KB  
Article
Molecular Crosstalk Between SIRT1, Wnt/β-Catenin Signaling, and Inflammatory Pathways in Renal Transplant Rejection: Role of miRNAs, lncRNAs, IL-1, IL-6, and Tubulointerstitial Inflammation
by Nurhak Aksungur, Murat Kizilkaya, Necip Altundaş, Eda Balkan, Salih Kara, Elif Demirci and Abdullah Uyanik
Medicina 2025, 61(6), 1073; https://doi.org/10.3390/medicina61061073 - 11 Jun 2025
Cited by 1 | Viewed by 1313
Abstract
Background/Objectives: This study aimed to evaluate the relationship between sirtuin family members (SIRT1, SIRT3, and SIRT6) and Wnt/β-catenin pathways with inflammation during the rejection process following kidney transplantation, as well as to explore their potential roles as candidate biomarkers. Materials and Methods [...] Read more.
Background/Objectives: This study aimed to evaluate the relationship between sirtuin family members (SIRT1, SIRT3, and SIRT6) and Wnt/β-catenin pathways with inflammation during the rejection process following kidney transplantation, as well as to explore their potential roles as candidate biomarkers. Materials and Methods: Blood samples were collected from 35 kidney transplant rejection patients and 30 healthy controls. The gene expression levels of SIRT1, SIRT3, SIRT6, and Wnt/β-catenin pathway components were measured using real-time PCR, and miRNA and lncRNA expression levels were analyzed. Statistical analyses were performed using SPSS version 23. Results: Significant alterations in SIRT1, SIRT3, and SIRT6 expression levels were observed in rejection patients, suggesting their potential role in disease pathogenesis and as therapeutic biomarkers. Key altered genes included hsa-miR-34c-1, hsa-miR-122b-5b, MALAT1, HOTAIR, LINC00473, TUG, PVT1, SIRT1, SIRT3, SIRT6, WNT1, TCF-LEF, LRP, AXIN1, IL1B, IL6, and IFNB1, all showing significant changes. However, no significant differences were found for miRNAs such as hsa-miR-21-2, hsa-miR-155-5p, and hsa-miR-200b-3p. SIRT1 expression was significantly decreased in the cellular rejection group, with a more pronounced reduction in these patients. Significant differences in SIRT1 expression were observed with interstitial inflammation and glomerulitis. Increased inflammation severity correlated with decreased SIRT1 and increased TCF-LEF, TUG, and miR-21 levels, while tubulitis severity was associated with elevated TCF-LEF and miR-155 expression. Conclusions: Along with the activation of Wnt/β-catenin pathways and increased levels of certain miRNAs and long non-coding RNAs (lncRNAs) associated with TCF-LEF transcription factors, the observed decrease in SIRT1 expression may be related to the severity of inflammation and tubulitis. These findings suggest that SIRT1, Wnt/β-catenin pathways, and non-coding RNAs play a role in the rejection process following kidney transplantation and could be considered as potential biomarkers or therapeutic target candidates for future research. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

24 pages, 3506 KB  
Article
Polyphyllin I Inhibits the Metastasis of Cervical Cancer Through the Regulation of the β-Catenin Signaling Pathway
by Yingbin Chai, Shaopeng Yu, Guoqiang Lin, Chunying Luo, Xu Wang, Rui Zhang, Jiawen Peng, Yuying Zhu and Jiange Zhang
Int. J. Mol. Sci. 2025, 26(10), 4630; https://doi.org/10.3390/ijms26104630 - 12 May 2025
Viewed by 1615
Abstract
Cervical cancer ranks as the fourth most prevalent cancer and cause of cancer-related mortality among women globally. It exhibits a recurrence/metastasis rate of approximately 30% and a dismal 5-year survival of only 17% in metastatic cases. Despite significant advancements in surgical techniques, chemoradiotherapy, [...] Read more.
Cervical cancer ranks as the fourth most prevalent cancer and cause of cancer-related mortality among women globally. It exhibits a recurrence/metastasis rate of approximately 30% and a dismal 5-year survival of only 17% in metastatic cases. Despite significant advancements in surgical techniques, chemoradiotherapy, and targeted therapies, effective treatment options for metastatic cervical cancer remain limited. This study explored Polyphyllin I (PPI), which is a monomeric compound derived from the Rhizoma of Paris Polyphyllin, as a potential inhibitor of cervical cancer metastasis. Mechanistically, PPI directly interacted with β-catenin at the Ser552 site, inhibiting its phosphorylation and subsequent nuclear translocation, thereby suppressing TCF/LEF transcriptional activity and downstream EMT transcription factors (ZEB1, Slug, Snail, and Twist). Notably, PPI promoted β-catenin degradation via the autophagy–lysosomal pathway, as confirmed by CHX chase assays and the detection of the p62 and LC3 proteins, without altering the mRNA levels of β-catenin. In vitro experiments demonstrated that PPI effectively suppressed the migration and invasion of HO-8910PM cells by reversing the process of EMT. Additionally, PPI effectively inhibited TCF/LEF signaling, leading to a reduction in the transcription levels of EMT-associated transcription factors (EMT-TFs), which was mediated by the TCF/LEF family downstream of β-catenin. Furthermore, PPI exhibited inhibitory effects on proliferation, migration, and invasion in both HPV-positive (SiHa) and HPV-negative (C33A) cervical cancer cells. In vivo, PPI significantly suppressed peritoneal metastasis in a luciferase-labeled HO-8910PM xenograft mouse model. These findings reveal the dual role of PPI in blocking β-catenin signaling and inducing β-catenin depletion, thereby effectively restraining metastatic progression. This study underscores the potential of PPI as a promising therapeutic candidate for targeting cervical cancer metastasis through autophagy-mediated β-catenin regulation, offering a novel strategy to address current treatment limitations. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

16 pages, 11098 KB  
Article
Methionine Modulates the Growth and Development of Heat-Stressed Dermal Papilla Cells via the Wnt/β-Catenin Signaling Pathway
by Shu Li, Xiaosong Wang, Gongyan Liu and Fuchang Li
Int. J. Mol. Sci. 2025, 26(4), 1495; https://doi.org/10.3390/ijms26041495 - 11 Feb 2025
Cited by 1 | Viewed by 1579
Abstract
This study furnishes insights into how methionine mitigates heat-stress-induced impairments in hair follicle development in Rex rabbits at the cellular level. Dermal papilla cells from the dorsal skin of Rex rabbits were isolated, cultured in vitro, and divided into six groups, i.e., control [...] Read more.
This study furnishes insights into how methionine mitigates heat-stress-induced impairments in hair follicle development in Rex rabbits at the cellular level. Dermal papilla cells from the dorsal skin of Rex rabbits were isolated, cultured in vitro, and divided into six groups, i.e., control (37 °C; 0 mM methionine), heat stress (45 °C; 0 mM methionine), and heat stress + methionine (45 °C; 15 mM, 30 mM, 45 mM, and 60 mM methionine), with six replicates per group. The heat stress groups were exposed to 45 °C, 5% CO2, and 95% humidity for 30 min, followed by recovery at 37 °C, repeated three times over three days. On the third day, samples were collected post-heat stress. The results show that methionine markedly fortified HSP70, MSRA, and SOD expression (p < 0.01); augmented proliferation (p < 0.01); ameliorated cell cycle progression; and lessened apoptosis (p < 0.05). Adding Wnt signaling pathway activators and inhibitors manifested that these effects were associated with diminished β-catenin phosphorylation and aggrandized expression of the Wnt10b, β-catenin (p < 0.001), and LEF/TCF nuclear transcription factors (p < 0.01). Thus, this study demonstrates that methionine regulates the growth and development of heat-stressed hair papilla cells via the Wnt signaling pathway, remitting heat-stress trauma. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 18470 KB  
Article
Single-Cell RNA Sequencing Reveals LEF1-Driven Wnt Pathway Activation as a Shared Oncogenic Program in Hepatoblastoma and Medulloblastoma
by Christophe Desterke, Yuanji Fu, Jenny Bonifacio-Mundaca, Claudia Monge, Pascal Pineau, Jorge Mata-Garrido and Raquel Francés
Curr. Oncol. 2025, 32(1), 35; https://doi.org/10.3390/curroncol32010035 - 9 Jan 2025
Cited by 3 | Viewed by 3607
Abstract
(1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embryonic origins. Both tumor types can exhibit genetic alterations that affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioinformatics and integrative analysis of multi-omics data at [...] Read more.
(1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embryonic origins. Both tumor types can exhibit genetic alterations that affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioinformatics and integrative analysis of multi-omics data at both the tumor and single-cell levels to investigate two distinct pediatric tumors: medulloblastoma and hepatoblastoma; (3) Results: The cross-transcriptome analysis revealed a commonly regulated expression signature between hepatoblastoma and medulloblastoma tumors. Among the commonly upregulated genes, the transcription factor LEF1 was significantly expressed in both tumor types. In medulloblastoma, LEF1 upregulation is associated with the WNT-subtype. The analysis of LEF1 genome binding occupancy in H1 embryonic stem cells identified 141 LEF1 proximal targets activated in WNT medulloblastoma, 13 of which are involved in Wnt pathway regulation: RNF43, LEF1, NKD1, AXIN2, DKK4, DKK1, LGR6, FGFR2, NXN, TCF7L1, STK3, YAP1, and NFATC4. The ROC curve analysis of the combined expression of these 13 WNT-related LEF1 targets yielded an area under the curve (AUC) of 1.00, indicating 100% specificity and sensitivity for predicting the WNT subtype in the PBTA medulloblastoma cohort. An expression score based on these 13 WNT-LEF1 targets accurately predicted the WNT subtype in two independent medulloblastoma transcriptome cohorts. At the single-cell level, the WNT-LEF1 expression score was exclusively positive in WNT-medulloblastoma tumor cells. This WNT-LEF1-dependent signature was also confirmed as activated in the hepatoblastoma tumor transcriptome. At the single-cell level, the WNT-LEF1 expression score was higher in tumor cells from both human hepatoblastoma samples and a hepatoblastoma patient-derived xenotransplant model; (4) Discussion: This study uncovered a shared transcriptional activation of a LEF1-dependent embryonic program, which orchestrates the regulation of the Wnt signaling pathway in tumor cells from both hepatoblastoma and medulloblastoma. Full article
(This article belongs to the Special Issue Novel Biomarkers and Liver Cancer)
Show Figures

Figure 1

13 pages, 2219 KB  
Article
CRABP1 Enhances the Proliferation of the Dermal Papilla Cells of Hu Sheep through the Wnt/β-catenin Pathway
by Zahid Hussain, Tingyan Hu, Yuan Gou, Mingliang He, Xiaoyang Lv, Shanhe Wang and Wei Sun
Genes 2024, 15(10), 1291; https://doi.org/10.3390/genes15101291 - 30 Sep 2024
Cited by 3 | Viewed by 2127
Abstract
Background: The homologous proteins identified as cellular retinoic acid-binding proteins I and II (CRABP-I and CRABP-II) belong to a subset of intracellular proteins characterized by their robust affinity for retinoic acid, which plays an indispensable role in the development of hair [...] Read more.
Background: The homologous proteins identified as cellular retinoic acid-binding proteins I and II (CRABP-I and CRABP-II) belong to a subset of intracellular proteins characterized by their robust affinity for retinoic acid, which plays an indispensable role in the development of hair follicle, including differentiation, proliferation, and apoptosis in keratinocytes. Previous research on Hu sheep hair follicles revealed the specific expression CRABP1 in dermal papilla cells (DPCs), suggesting that CRABP1 has a potential role in regulating the DPC population. Therefore, the main purpose of this study is to expose the performance of the CRABP1 genes in the development and proliferation of DPCs. Methods: Initially, overexpression and inhibition of CRABP1 in the DPCs were conducted through overexpression vector and siRNA. CCK-8, EDU, and RT-PCR cell cycle assays and immunostaining were performed to evaluate the proliferation and cell cycle of dermal papilla cells (DPCs). Although, the influence of CRABP1 upon β-catenin in dermal papilla cells (DPCs) was found using immunofluorescence labeling. Finally, RT-PCR was conducted to assess the impact of CRABP1 on the expression levels of CTNNB1, TCF4, and LEF1 in DPCs involved in the Wnt/β-catenin signaling pathway. Results: The results showed that CRABP1 overexpression promotes the growth rates of DPCs and significantly enhances the proportion of S-phase cells compared with the control group (p < 0.05). The results were the opposite when CRABP1 was a knockdown. In contrast, there was a significant decline in the mRNA expression levels of CTNNβ1, LEF1 (p < 0.05), and TCF4 (p < 0.01) by CRABP1 knockdown. Conclusions: This study found that CRABP1 influences the expression of important genes within the Wnt/β-catenin signaling pathway and promotes DPC proliferation. This investigation provides a theoretical framework to explain the mechanisms that control hair follicle morphogenesis and development. Full article
(This article belongs to the Special Issue Advances in Cattle, Sheep, and Goats Molecular Genetics and Breeding)
Show Figures

Figure 1

11 pages, 1459 KB  
Communication
The Chronic Toxicity of Endocrine-Disrupting Chemical to Daphnia magna: A Transcriptome and Network Analysis of TNT Exposure
by Jun Lee, Hyun Woo Kim, Dong Yeop Shin, Jun Pyo Han, Yujin Jang, Ju Yeon Park, Seok-Gyu Yun, Eun-Min Cho and Young Rok Seo
Int. J. Mol. Sci. 2024, 25(18), 9895; https://doi.org/10.3390/ijms25189895 - 13 Sep 2024
Cited by 1 | Viewed by 2485
Abstract
Endocrine-disrupting chemicals (EDCs) impair growth and development. While EDCs can occur naturally in aquatic ecosystems, they are continuously introduced through anthropogenic activities such as industrial effluents, pharmaceutical production, wastewater, and mining. To elucidate the chronic toxicological effects of endocrine-disrupting chemicals (EDCs) on aquatic [...] Read more.
Endocrine-disrupting chemicals (EDCs) impair growth and development. While EDCs can occur naturally in aquatic ecosystems, they are continuously introduced through anthropogenic activities such as industrial effluents, pharmaceutical production, wastewater, and mining. To elucidate the chronic toxicological effects of endocrine-disrupting chemicals (EDCs) on aquatic organisms, we collected experimental data from a standardized chronic exposure test using Daphnia magna (D. magna), individuals of which were exposed to a potential EDC, trinitrotoluene (TNT). The chronic toxicity effects of this compound were explored through differential gene expression, gene ontology, network construction, and putative adverse outcome pathway (AOP) proposition. Our findings suggest that TNT has detrimental effects on the upstream signaling of Tcf/Lef, potentially adversely impacting oocyte maturation and early development. This study employs diverse bioinformatics approaches to elucidate the gene-level toxicological effects of chronic TNT exposure on aquatic ecosystems. The results provide valuable insights into the molecular mechanisms of the adverse impacts of TNT through network construction and putative AOP proposition. Full article
Show Figures

Figure 1

14 pages, 2047 KB  
Article
Lysine Demethylase KDM2A Promotes Proteasomal Degradation of TCF/LEF Transcription Factors in a Neddylation-Dependent Manner
by Tijana Šopin, František Liška, Tomáš Kučera, Dušan Cmarko and Tomáš Vacík
Cells 2023, 12(22), 2620; https://doi.org/10.3390/cells12222620 - 13 Nov 2023
Cited by 3 | Viewed by 1900
Abstract
Canonical Wnt signaling is essential for a plethora of biological processes ranging from early embryogenesis to aging. Malfunctions of this crucial signaling pathway are associated with various developmental defects and diseases, including cancer. Although TCF/LEF transcription factors (TCF/LEFs) are known to be essential [...] Read more.
Canonical Wnt signaling is essential for a plethora of biological processes ranging from early embryogenesis to aging. Malfunctions of this crucial signaling pathway are associated with various developmental defects and diseases, including cancer. Although TCF/LEF transcription factors (TCF/LEFs) are known to be essential for this pathway, the regulation of their intracellular levels is not completely understood. Here, we show that the lysine demethylase KDM2A promotes the proteasomal destabilization of TCF/LEFs independently of its demethylase domain. We found that the KDM2A-mediated destabilization of TCF/LEFs is dependent on the KDM2A zinc finger CXXC domain. Furthermore, we identified the C-terminal region of TCF7L2 and the CXXC domain of KDM2A as the domains responsible for the interaction between the two proteins. Our study is also the first to show that endogenous TCF/LEF proteins undergo KDM2A-mediated proteasomal degradation in a neddylation-dependent manner. Here, we reveal a completely new mechanism that affects canonical Wnt signaling by regulating the levels of TCF/LEF transcription factors through their KDM2A-promoted proteasomal degradation. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

16 pages, 2524 KB  
Article
Transcriptional Regulation of the Human 5-HT1A Receptor Gene by Lithium: Role of Deaf1 and GSK3β
by Emerson F. Harkin, Georges Nasrallah, Brice Le François and Paul R. Albert
Int. J. Mol. Sci. 2023, 24(21), 15620; https://doi.org/10.3390/ijms242115620 - 26 Oct 2023
Cited by 2 | Viewed by 3089
Abstract
Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) [...] Read more.
Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3β (GSK3β)—a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations—we investigated the role of GSK3β in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3β site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3β activity as detected by the GSK3β-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3β regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior. Full article
(This article belongs to the Special Issue Serotonin Receptors in Human Health and Disease)
Show Figures

Graphical abstract

Back to TopTop