Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,433)

Search Parameters:
Keywords = T cell immune response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1356 KB  
Review
Immunology of Hypertension: Pathophysiological and Therapeutic Aspects
by Alexander Manzano, Heliana Parra, Daniela Ariza, Maria Marquina, Pablo Duran, María J. Calvo, Manuel Nava, Omar Ross, Julio César Contreras-Velásquez, Diego Rivera-Porras and Valmore Bermúdez
Int. J. Mol. Sci. 2025, 26(20), 9921; https://doi.org/10.3390/ijms26209921 (registering DOI) - 12 Oct 2025
Abstract
Hypertension affects over 1.39 billion people globally, causing 9.4 million deaths annually. This paper examines the intricate relationship between the immune system and hypertension, highlighting the contributions of both innate and adaptive immune responses. The innate response, involving natural killer (NK) cells, macrophages, [...] Read more.
Hypertension affects over 1.39 billion people globally, causing 9.4 million deaths annually. This paper examines the intricate relationship between the immune system and hypertension, highlighting the contributions of both innate and adaptive immune responses. The innate response, involving natural killer (NK) cells, macrophages, toll-like receptors (TLRs), and dendritic cells, contributes to organ damage and inflammatory responses, exacerbating hypertension. Adaptive immunity, particularly T cells, further exacerbates vascular and renal dysfunction through the release of cytokines such as IFN-γ, IL-17A, and TNF-α, ultimately leading to multisystem damage. Therapeutic strategies targeting these immune responses are being explored, including immunosuppressants such as mycophenolate mofetil (MMF) and methotrexate (MTX), as well as monoclonal antibodies against IL-1β and TNF-α. While these strategies show promise, further research is needed to evaluate their efficacy and safety. Furthermore, this paper highlights the potential benefits of immunological approaches in managing the root causes of hypertension, offering an alternative to conventional therapies focused on the renin–angiotensin–aldosterone system. In conclusion, this work highlights the immune mechanisms in the hypertension pathogenesis, identifying them as potential therapeutic targets for enhanced management and improved patient outcomes. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

12 pages, 1461 KB  
Article
Clinical Impact of LAG3 Single-Nucleotide Polymorphism in DLBCL Treated with CAR-T Cell Therapy
by Katja Seipel, Sophia Maria Spahr, Inna Shaforostova, Ulrike Bacher, Henning Nilius and Thomas Pabst
Int. J. Mol. Sci. 2025, 26(20), 9905; https://doi.org/10.3390/ijms26209905 (registering DOI) - 11 Oct 2025
Abstract
Lymphocyte-activation gene 3 (LAG3) is an immune checkpoint receptor and inhibitory regulator of T-cells. Here, we analyzed the prevalence of LAG3 rs870849 in B-cell lymphoma patients and the treatment outcomes according to the LAG3 genetic background and discovered that LAG3 germline [...] Read more.
Lymphocyte-activation gene 3 (LAG3) is an immune checkpoint receptor and inhibitory regulator of T-cells. Here, we analyzed the prevalence of LAG3 rs870849 in B-cell lymphoma patients and the treatment outcomes according to the LAG3 genetic background and discovered that LAG3 germline variants may affect the risk of developing lymphoma and also affect the treatment outcome of DLBCL patients in the current CD19 CAR-T cell therapies. The LAG3 rs870849 was prevalent at high frequency in DLBCL patients. Significant differences in treatment outcomes to CAR-T cell therapy emerged in LAG3 I455hom versus I455Thet and T455hom carriers. The overall and complete response rates to CAR-T cell therapy were lower in the I455hom genetic subgroup with median PFS in the I455hom of 2 versus 20 months in the T455hom and I455Thet subgroups (p = 0.025). Median OS was 6 months in the LAG3 I455hom versus 41 months in the T455hom and I455Thet subgroups (p = 0.007). LAG3 rs870849 may affect treatment outcome in CAR-T cell therapy, with favorable outcomes in T455 carriers. Specific combinations of CTLA4 and LAG3 germline variants may cooperate to affect the response to CAR-T cell therapy. Full article
(This article belongs to the Special Issue Immune Cell Therapy and Genome Engineering)
Show Figures

Graphical abstract

32 pages, 2179 KB  
Review
Interferons in Autoimmunity: From Loss of Tolerance to Chronic Inflammation
by Grigore Mihaescu, Gratiela Gradisteanu Pircalabioru, Claudiu Natanael Roznovan, Lia-Mara Ditu, Mihaela Maria Comanici and Octavian Savu
Biomedicines 2025, 13(10), 2472; https://doi.org/10.3390/biomedicines13102472 (registering DOI) - 11 Oct 2025
Abstract
Interferons (IFNs) are key cytokines at the intersection of innate and adaptive immunity. While their antiviral and antitumor roles are well recognized, emerging evidence implicates IFNs—particularly types I, II, and III—in the initiation and progression of autoimmune diseases (ADs). This review synthesizes current [...] Read more.
Interferons (IFNs) are key cytokines at the intersection of innate and adaptive immunity. While their antiviral and antitumor roles are well recognized, emerging evidence implicates IFNs—particularly types I, II, and III—in the initiation and progression of autoimmune diseases (ADs). This review synthesizes current data on IFN biology, their immunoregulatory and pathogenic mechanisms, and their contributions to distinct AD phenotypes. We conducted a comprehensive review of peer-reviewed literature on IFNs and autoimmune diseases, focusing on publications indexed in PubMed and Scopus. Studies on molecular pathways, immune cell interactions, disease-specific IFN signatures, and clinical correlations were included. Data were extracted and thematically organized by IFN type, signaling pathway, and disease context, with emphasis on rheumatic and systemic autoimmune disorders. Across systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, systemic sclerosis, idiopathic inflammatory myopathies, multiple sclerosis, type 1 diabetes, psoriasis, and inflammatory bowel diseases, IFNs were consistently associated with aberrant activation of pattern recognition receptors, sustained expression of interferon-stimulated genes (ISGs), and dysregulated T cell and B cell responses. Type I IFNs often preceded clinical onset, suggesting a triggering role, whereas type II and III IFNs modulated disease course and severity. Notably, IFNs exhibited dual immunostimulatory and immunosuppressive effects, contingent on tissue context, cytokine milieu, and disease stage. IFNs are central mediators in autoimmune pathogenesis, functioning as both initiators and amplifiers of chronic inflammation. Deciphering the context-dependent effects of IFN signaling may inform targeted therapeutic strategies and advance precision immunomodulation in autoimmune diseases. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Disease: 3rd Edition)
18 pages, 2155 KB  
Article
PRV gD-Based DNA Vaccine Candidates Adjuvanted with cGAS, UniSTING, or IFN-α Enhance Protective Immunity
by Xinqi Shi, Shibo Su, Yongbo Yang, Liang Meng, Wei Yang, Xinyu Qi, Xuyan Xiang, Yandong Tang, Xuehui Cai, Haiwei Wang, Tongqing An and Fandan Meng
Pathogens 2025, 14(10), 1026; https://doi.org/10.3390/pathogens14101026 (registering DOI) - 11 Oct 2025
Abstract
Pseudorabies virus (PRV), a major swine pathogen, causes severe neurological, respiratory, and reproductive disorders, resulting in substantial economic losses to the global swine industry. Previous studies have shown that the gD glycoprotein of PRV has an effective protective effect. In this study, we [...] Read more.
Pseudorabies virus (PRV), a major swine pathogen, causes severe neurological, respiratory, and reproductive disorders, resulting in substantial economic losses to the global swine industry. Previous studies have shown that the gD glycoprotein of PRV has an effective protective effect. In this study, we constructed a plasmid DNA vaccine (pVAX1-GD-Fc) encoding a gD protein fused with pig IgG Fc and evaluated the adjuvant effects of porcine cGAS, the universal STING complex mimic (UniSTING), or IFN-α in mice. The mice were immunized three times (days 0, 14, and 21) with pVAX1-GD-Fc in the presence or absence of an adjuvant, followed by lethal challenge with PRV-HLJ8 3 days after the final immunization. The results revealed that the pVAX1-GD-Fc group exhibited 20% mortality (1/5 mice) on day 7 postchallenge, and all adjuvanted groups achieved 100% survival during the 14-day observation period. Flow cytometric analysis of splenocytes one week after the second immunization revealed significantly greater CD8+ T cell proportions in the adjuvant groups than in both the mock and pVAX1-GD-Fc-only control groups (p < 0.01). Furthermore, T cell proliferation assays demonstrated a significantly increased stimulation index in the adjuvant-treated mice, confirming enhanced cellular immunity. These findings demonstrate that cGAS, UniSTING, and IFN-α can serve as effective vaccine adjuvants to rapidly enhance cellular immune responses to PRV, highlighting their potential application in veterinary vaccines. Full article
Show Figures

Figure 1

24 pages, 1310 KB  
Review
Interferon-α for Immune Modulation in Chronic Hepatitis B Toward Functional Cure
by Asha Ashuo, Jia Liu, Zhenghong Yuan and Jieliang Chen
Viruses 2025, 17(10), 1358; https://doi.org/10.3390/v17101358 - 10 Oct 2025
Abstract
Chronic hepatitis B (CHB) remains a major global health challenge, largely due to the persistence of covalently closed circular DNA (cccDNA) and impaired host immunity. Interferon-α (IFN-α), a key antiviral cytokine, not only directly restricts HBV replication but also orchestrates innate and adaptive [...] Read more.
Chronic hepatitis B (CHB) remains a major global health challenge, largely due to the persistence of covalently closed circular DNA (cccDNA) and impaired host immunity. Interferon-α (IFN-α), a key antiviral cytokine, not only directly restricts HBV replication but also orchestrates innate and adaptive immune responses. This review summarizes current advances in IFN-α-mediated immune regulation, highlighting its effects across diverse immune cell populations. Evidence indicates that IFN-α can reprogram immune responses to promote viral clearance, although clinical efficacy is limited by modest response rates and adverse effects. Recent progress in cytokine engineering, subtype research, and rational combination strategies—including nucleo(s/t)ide analogs, RNA interference therapeutics, antisense oligonucleotides, therapeutic vaccines, and beyond—has expanded opportunities to improve treatment outcomes. While challenges remain, these advances lay the foundation for optimizing IFN-α–based interventions and highlight IFN-α as a key driver for innovative therapies aimed at achieving a functional cure of chronic hepatitis B. Full article
(This article belongs to the Special Issue Cellular Immune Response to Hepatitis Viruses)
Show Figures

Figure 1

20 pages, 1800 KB  
Review
Genomic, Epigenomic, and Immuno-Genomic Regulations of Vitamin D Supplementation in Multiple Sclerosis: A Literature Review and In Silico Meta-Analysis
by Preetam Modak, Pritha Bhattacharjee and Krishnendu Ghosh
DNA 2025, 5(4), 48; https://doi.org/10.3390/dna5040048 (registering DOI) - 10 Oct 2025
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disorder characterized by progressive demyelination and axonal degeneration within the central nervous system, driven by complex genomic and epigenomic dysregulation. Its pathogenesis involves aberrant DNA methylation patterns at CpG islands of numbers of genes like [...] Read more.
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disorder characterized by progressive demyelination and axonal degeneration within the central nervous system, driven by complex genomic and epigenomic dysregulation. Its pathogenesis involves aberrant DNA methylation patterns at CpG islands of numbers of genes like OLIG1 and OLIG2 disrupting protein expression at myelin with compromised oligodendrocyte differentiation. Furthermore, histone modifications, particularly H3K4me3 and H3K27ac, alter the promoter regions of genes responsible for myelination, affecting myelin synthesis. MS exhibits chromosomal instability and copy number variations in immune-regulatory gene loci, contributing to the elevated expression of genes for pro-inflammatory cytokines (TNF-α, IL-6) and reductions in anti-inflammatory molecules (IL-10, TGF-β1). Vitamin D deficiency correlates with compromised immune regulation through hypermethylation and reduced chromatin accessibility of vitamin D receptor (VDR) dysfunction and is reported to be associated with dopaminergic neuronal loss. Vitamin D supplementation demonstrates therapeutic potential through binding with VDR, which facilitates nuclear translocation and subsequent transcriptional activation of target genes via vitamin D response elements (VDREs), resulting in suppression of NF-κB signalling, enhancement of regulatory T-cell (Treg) responses due to upregulation of specific genes like FOXP3, downregulation of pro-inflammatory pathways, and potential restoration of the chromatin accessibility of oligodendrocyte-specific gene promoters, which normalizes oligodendrocyte activity. Identification of differentially methylated regions (DMRs) and differentially expressed genes (DEGs) that are in proximity to VDR-mediated gene regulation supports vitamin D supplementation as a promising, economically viable, and sustainable therapeutic strategy for MS. This systematic review integrates clinical evidence and eventual bioinformatical meta-analyses that reference transcriptome and methylome profiling and identify prospective molecular targets that represent potential genetic and epigenetic biomarkers for personalized therapeutic intervention. Full article
Show Figures

Figure 1

13 pages, 5646 KB  
Article
Analysis of the TGF-β1 of a Tibetan Plateau Schizothoracine Fish (Gymnocypris dobula) Revealed Enhanced Cytoprotection in Hypoxic Environments
by Ziyu Le, Xiaohui Wu, Yang Liu, Qianghua Xu and Congcong Wang
Genes 2025, 16(10), 1176; https://doi.org/10.3390/genes16101176 - 10 Oct 2025
Abstract
Background: The Tibetan Plateau, which is known for its high elevation and low oxygen levels, presents a challenging environment for its inhabitants. To adapt to these hypoxic conditions, species of Schizothoracine, a subfamily of Cyprinidae, have developed unique physiological mechanisms and [...] Read more.
Background: The Tibetan Plateau, which is known for its high elevation and low oxygen levels, presents a challenging environment for its inhabitants. To adapt to these hypoxic conditions, species of Schizothoracine, a subfamily of Cyprinidae, have developed unique physiological mechanisms and functions. Transforming growth factor-β (TGF-β) is a multifunctional cytokine involved in the regulation of cell growth, differentiation, apoptosis, and the cellular immune response. However, its specific role in adaptation to hypoxia remains poorly understood. Methods: In this study, we aimed to characterize the TGF-β1 gene in Gymnocypris dobula (Gd) and Schizothorax prenanti (Sp) and to test whether TGF-β1 contributes to hypoxia adaptation in plateau Schizothoracine fish. The predicted protein for Gd-TGF-β1 contains several primary domains, including cwf21 (cdc5 protein 21), GYF (Glycine-Tyrosine-Phenylalanine), FN1 (Fibronectin 1), a conservative domain, and a signal peptide. Results: The results of tissue distribution revealed that the mRNA level of TGF-β1 in brain, heart, muscle, skin, gills, and spleen—which are key tissues involved in oxygen sensing, transport, and physiological adaptation to hypoxic environments—was significantly lower in G. dobula than that in S. prenanti. Western blotting analysis revealed that the expression of activated TGF-β1 in G. dobula was significantly higher than that in S. prenanti. To investigate whether TGF-β1 in G. dobula possesses hypoxic adaptive features, Gd-TGF-β1 and Sp-TGF-β1 were cloned into an expression vector and transfected into 293-T cells, which are widely used due to their ease of culture, high transfectability, and well-characterized properties. We found that the survival rate of cells transfected with Gd-TGF-β1 was significantly higher than that of cells transfected with Sp-TGF-β1 after hypoxia treatment. Conclusions: These findings suggest that G. dobula may promote hypoxic adaptation through the activation and increased expression of TGF-β1. Changes in TGF-β1 expression may play a role in the adaptation of G. dobula to hypoxic conditions. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

23 pages, 8340 KB  
Article
Chemotherapy Liberates a Broadening Repertoire of Tumor Antigens for TLR7/8/9-Mediated Potent Antitumor Immunity
by Cheng Zu, Yiwei Zhong, Shuting Wu and Bin Wang
Cancers 2025, 17(19), 3277; https://doi.org/10.3390/cancers17193277 - 9 Oct 2025
Viewed by 121
Abstract
Background: Most immunologically “cold” tumors do not respond durably to checkpoint blockade because tumor antigen (TA) release and presentation are insufficient to prime effective T-cell immunity. While prior work demonstrated synergy between cisplatin and a TLR7/8/9 agonist (CR108) in 4T1 tumors, the underlying [...] Read more.
Background: Most immunologically “cold” tumors do not respond durably to checkpoint blockade because tumor antigen (TA) release and presentation are insufficient to prime effective T-cell immunity. While prior work demonstrated synergy between cisplatin and a TLR7/8/9 agonist (CR108) in 4T1 tumors, the underlying mechanism—particularly whether chemotherapy functions as a broad antigen-releasing agent enabling TLR-driven immune amplification—remained undefined. Methods: Using murine models of breast (4T1), melanoma (B16-F10), and colorectal cancer (CT26), we tested multiple chemotherapeutic classes combined with CR108. We quantified intratumoral and systemic soluble TAs, antigen presentation and cross-priming by antigen-presenting cells, tumor-infiltrating lymphocytes, and cytokine production by flow cytometry/ICS. T-cell receptor β (TCRβ) repertoire dynamics in tumor-draining lymph nodes were profiled to assess amplitude and breadth. Tumor microenvironment remodeling was analyzed, and public datasets (e.g., TCGA basal-like breast cancer) were interrogated for expression of genes linked to TA generation/processing and peptide loading. Results: Using cisplatin + CR108 in 4T1 as a benchmark, we demonstrate that diverse chemotherapies—especially platinum agents—broadly increase the repertoire of soluble tumor antigens available for immune recognition. Across regimens, chemotherapy combined with CR108 increased T-cell recognition of candidate TAs and enhanced IFN-γ+ CD8+ responses, with platinum agents producing the largest expansions in soluble TAs. TCRβ sequencing revealed increased clonal amplitude without loss of repertoire breadth, indicating focused yet diverse antitumor T-cell expansion. Notably, therapeutic efficacy was not predicted by canonical damage-associated molecular pattern (DAMP) signatures but instead correlated with antigen availability and processing capacity. In human basal-like breast cancer, higher expression of genes involved in TA generation and antigen processing/presentation correlated with improved survival. Conclusions: Our findings establish an antigen-centric mechanism underlying chemo–TLR agonist synergy: chemotherapy liberates a broadened repertoire of tumor antigens, which CR108 then leverages via innate immune activation to drive potent, T-cell-mediated antitumor immunity. This framework for rational selection of chemotherapy partners for TLR7/8/9 agonism and support clinical evaluation to convert “cold” tumors into immunologically responsive disease. Full article
Show Figures

Figure 1

39 pages, 2235 KB  
Review
Cross-Priming and Cross-Tolerance After Intramuscular mRNA Vaccination for Viral Infections: Feasibility and Implications
by Siguna Mueller
Life 2025, 15(10), 1575; https://doi.org/10.3390/life15101575 - 9 Oct 2025
Viewed by 270
Abstract
The induction of robust CD8 T cell immunity after intramuscular (i.m.) mRNA vaccination has remained a challenge. Due to the limited presence of professional antigen-presenting cells (APCs) in muscle tissue, this route of administration tends to result in the transfection of muscle cells [...] Read more.
The induction of robust CD8 T cell immunity after intramuscular (i.m.) mRNA vaccination has remained a challenge. Due to the limited presence of professional antigen-presenting cells (APCs) in muscle tissue, this route of administration tends to result in the transfection of muscle cells at the injection site with insufficient T cell activation capacity. The attraction of migratory APCs and related processes that lead to the acquisition of antigenic material from transfected non-APCs arises as a potential alternative to facilitate activation of CD8 T cells in the draining lymph nodes. This indirect pathway, known as antigen cross-presentation, has remained underappreciated for mRNA vaccines. This review provides a comprehensive analysis of this process. Due to the paucity of information available in this context, it also extrapolates from insights for antigen cross-presentation more generally and for traditional vaccines. Arguments are provided as to why this natural process in the context of pro-drugs, such as mRNA vaccines, may engender both specific and nonspecific responses and, in certain situations, evoke cross-tolerance rather than immunity. This widely unaccounted T cell activation process may, therefore, explain several key mysteries surrounding i.m. RNA vaccination, including its impact on heterologous infections. But it also raises numerous open questions that are clearly described. Full article
Show Figures

Graphical abstract

16 pages, 5548 KB  
Article
RNF135 Expression Marks Chemokine (C-C Motif) Ligand-Enriched Macrophage–Tumor Interactions in the Glioblastoma Microenvironment
by Jianan Chen, Qiong Wu, Anders E. Berglund, Robert J. Macaulay, James J. Mulé and Arnold B. Etame
Cancers 2025, 17(19), 3271; https://doi.org/10.3390/cancers17193271 - 9 Oct 2025
Viewed by 103
Abstract
Background: Tumor-associated macrophages (TAMs) are essential regulators of the glioblastoma (GBM) microenvironment; their functional heterogeneity and interaction networks are not fully elucidated. We identify RNF135 as a novel TAM-enriched gene associated with immune activation and adverse prognosis in GBM. Methods: To evaluate RNF135 [...] Read more.
Background: Tumor-associated macrophages (TAMs) are essential regulators of the glioblastoma (GBM) microenvironment; their functional heterogeneity and interaction networks are not fully elucidated. We identify RNF135 as a novel TAM-enriched gene associated with immune activation and adverse prognosis in GBM. Methods: To evaluate RNF135’s expression profile, prognostic significance, and functional pathways, extensive transcriptome analyses from TCGA and CGGA cohorts were conducted. The immunological landscape and cellular origin of RNF135 were outlined using single-cell RNA-seq analyses and bulk RNA-seq immune deconvolution (MCP-counter, xCell and ssGSEA). Cell–cell communication networks between tumor cells and RNF135-positive and -negative tumor-associated macrophage subsets were mapped using CellChat. Results: RNF135 predicted a poor overall survival and was markedly upregulated in GBM tissues. Functional enrichment analyses showed that increased cytokine signaling, interferon response, and innate immune activation were characteristics of RNF135-high samples. Immune infiltration profiling showed a strong correlation between the abundance of T cells and macrophages and RNF135 expression. According to the single-cell analyses, RNF135 was primarily expressed in TAMs, specifically in proliferation, phagocytic, and transitional subtypes. RNF135-positive TAMs demonstrated significantly improved intercellular communication with aggressive tumor subtypes in comparison to RNF135-negative TAMs. This was facilitated by upregulated signaling pathways such as MHC-II, CD39, ApoE, and most notably, the CCL signaling axis. The CCL3/CCL3L3–CCR1 ligand–receptor pair was identified as a major mechanistic driver of TAM–TAM crosstalk. High RNF135 expression was also linked to greater sensitivity to Selumetinib, a selective MEK1/2 inhibitor that targets the MAPK/ERK pathway, according to drug sensitivity analysis. Conclusions: RNF135 defines a TAM phenotype in GBM that is both immunologically active and immunosuppressive. This phenotype promotes inflammatory signaling and communication between cells in the tumor microenvironment. Targeting the CCL–CCR1 axis or combining RNF135-guided immunomodulation with certain inhibitors could be a promising therapeutic strategies for GBM. Full article
(This article belongs to the Special Issue Molecular Genomics in Brain Tumors)
Show Figures

Figure 1

20 pages, 2984 KB  
Article
A Single Dose of Live-Attenuated Rift Valley Fever Virus Vector Expressing Peste Des Petits Ruminants Virus (PPRV) H or F Antigens Induces Immunity in Sheep
by Sandra Moreno, Gema Lorenzo, Verónica Martín, Celia Alonso, Friedemann Weber, Belén Borrego and Alejandro Brun
Vaccines 2025, 13(10), 1039; https://doi.org/10.3390/vaccines13101039 - 9 Oct 2025
Viewed by 269
Abstract
Introduction/Background: Rift Valley fever virus (RVFV) and peste des petits ruminants virus (PPRV) are significant pathogens affecting small ruminants, causing substantial economic losses in the affected regions. The development of effective vaccines against both viruses is crucial for disease control. Recombinant viruses expressing [...] Read more.
Introduction/Background: Rift Valley fever virus (RVFV) and peste des petits ruminants virus (PPRV) are significant pathogens affecting small ruminants, causing substantial economic losses in the affected regions. The development of effective vaccines against both viruses is crucial for disease control. Recombinant viruses expressing heterologous antigens have shown promise as multivalent vaccine candidates. Unlike conventional PPRV vaccines, our recombinant RVFV-vectored vaccines offer a novel dual-protection strategy against RVF and PPR, combining safety, immunogenicity, and a DIVA strategy. Methods: Recombinant RVFVs (ZH548 strain) were generated to express either the hemagglutinin (H) or fusion (F) proteins from the PPRV strain Nigeria 75/1. The stability of these recombinant viruses was assessed through consecutive passages in cell culture. Immunogenicity studies were carried out in both mice and sheep to assess the induction of cellular and humoral immune responses capable of providing protection against RVFV and PPRV. These studies included intracellular cytokine staining (ICS), IFN-γ ELISAs, standard ELISAs for antibody detection, and virus neutralization assays. Results: The recombinant RVFVs expressing PPRV H or F proteins demonstrated stability in cell culture, maintaining high viral titers and consistent transgene expression over four passages. Immunization of mice resulted in the production of serum antibodies capable of neutralizing both RVFV and PPRV in vitro as well as cell-mediated immune responses specific to PPRV and RVFV antigens. In mice vaccinated with a high dose (105 pfu), RVFV neutralizing titers reached ≥1:160 and PPRV neutralizing titers ranged from 1:40 to 1:80 by day 30 post-immunization. In sheep, neutralizing antibody titers against RVFV exceeded 1:160 as early as 2 days post-inoculation, while PPRV-specific neutralization titers reached up to 1:80 by day 21 in responsive individuals. In mice, administration of rZH548ΔNSs:FPPRV elicited a detectable CD8+ IFNγ+ T-cell response against PPRV, with levels ranging from 1.29% to 1.56% for the low and high doses, respectively. In sheep, rZH548ΔNSs:FPPRV also induced a robust IFNγ production against PPRV at 14 and 21 days post-infection (dpi). Conclusions: The successful generation and characterization of recombinant RVFVs expressing PPRV antigens demonstrate the potential of using rationally attenuated RVFV as a vector for multivalent vaccine development. Notably, the strategy proved more effective for the recombinant virus expressing the F protein, as it consistently induced more robust cellular and humoral immune responses. These results suggest that this approach could be a viable strategy for simultaneous immunization against Rift Valley fever and other prevalent ruminant diseases, such as peste des petits ruminants. Even though challenge studies were not performed in target species, the strong immune response observed supports including them in future studies. Full article
(This article belongs to the Special Issue Next-Generation Vaccines for Animal Infectious Diseases)
Show Figures

Figure 1

26 pages, 1116 KB  
Review
Optimizing Anti-PD1 Immunotherapy: An Overview of Pharmacokinetics, Biomarkers, and Therapeutic Drug Monitoring
by Joaquim Faria Monteiro, Alexandrina Fernandes, Diogo Gavina Tato, Elias Moreira, Ricardo Ribeiro, Henrique Reguengo, Jorge Gonçalves and Paula Fresco
Cancers 2025, 17(19), 3262; https://doi.org/10.3390/cancers17193262 - 8 Oct 2025
Viewed by 337
Abstract
Anti-PD-1 therapies have transformed cancer treatment by restoring antitumor T cell activity. Despite their broad clinical use, variability in treatment response and immune-related adverse events underscore the need for therapeutic optimization. This article provides an integrative overview of the pharmacokinetics (PKs) of anti-PD-1 [...] Read more.
Anti-PD-1 therapies have transformed cancer treatment by restoring antitumor T cell activity. Despite their broad clinical use, variability in treatment response and immune-related adverse events underscore the need for therapeutic optimization. This article provides an integrative overview of the pharmacokinetics (PKs) of anti-PD-1 antibodies—such as nivolumab, pembrolizumab, and cemiplimab—and examines pharmacokinetic–pharmacodynamic (PK-PD) relationships, highlighting the impact of clearance variability on drug exposure, efficacy, and safety. Baseline clearance and its reduction during therapy, together with interindividual variability, emerge as important dynamic biomarkers with potential applicability across different cancer types for guiding individualized dosing strategies. The review also discusses established biomarkers for anti-PD-1 therapies, including tumor PD-L1 expression and immune cell signatures, and their relevance for patient stratification. The evidence supports a shift from traditional weight-based dosing toward adaptive dosing and therapeutic drug monitoring (TDM), especially in long-term responders and cost-containment contexts. Notably, the inclusion of clearance-based biomarkers—such as baseline clearance and its reduction—into therapeutic models represents a key step toward individualized, dynamic immunotherapy. In conclusion, optimizing anti-PD-1 therapy through PK-PD insights and biomarker integration holds promise for improving outcomes and reducing toxicity. Future research should focus on validating PK-based approaches and developing robust algorithms (machine learning models incorporating clearance, tumor burden, and other validated biomarkers) for tailored cancer treatment. Full article
Show Figures

Figure 1

32 pages, 1122 KB  
Review
Bispecific Monoclonal Antibodies in Diffuse Large B-Cell Lymphoma: Dawn of a New Era in Targeted Therapy
by Mattia Schipani, Matteo Bellia, Carola Sella, Riccardo Dondolin, Mariangela Greco, Abdurraouf Mokhtar Mahmoud, Clara Deambrogi, Riccardo Moia, Gianluca Gaidano and Riccardo Bruna
Cancers 2025, 17(19), 3258; https://doi.org/10.3390/cancers17193258 - 8 Oct 2025
Viewed by 443
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma (NHL) worldwide. Currently, approximately sixty percent of patients are cured with R-CHOP as frontline treatment, while the remaining patients experience primary refractory or relapsed (R/R) disease. Recently, the introduction of Pola-R-CHP [...] Read more.
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma (NHL) worldwide. Currently, approximately sixty percent of patients are cured with R-CHOP as frontline treatment, while the remaining patients experience primary refractory or relapsed (R/R) disease. Recently, the introduction of Pola-R-CHP as front-line therapy has represented a major advance in the management of DLBCL, resulting in improved outcomes. Prognosis of R/R DLBCL patients is poor, particularly for those eligible neither for chimeric antigen receptor (CAR) T-cell therapy nor autologous stem cell transplantation (ASCT), representing a significant unmet clinical need. The advent of bispecific monoclonal antibodies (BsAbs), such as bispecific T-cell engagers (BiTEs), dual affinity retargeting (DART) molecules and IgG-like bispecific antibodies, offers a novel promising therapeutic approach in the treatment of DLBCL, both as frontline treatment and in the R/R setting. BsAbs simultaneously engage two different antigens, a tumor-associated antigen and an immune cell antigen, redirecting T-cells against malignant cells and enhancing the immune response. Most BsAbs developed for the treatment of NHLs engage T-cells via CD3 and malignant B-cells via CD20, a surface antigen expressed on most lymphomatous cells. Engagement of malignant B-cells by BsAbs activates T-cells, leading to the release of multiple cytokines and potentially to two characteristic adverse events: cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The most extensively studied BsAbs, in both the frontline and relapsed/refractory (R/R) settings, include epcoritamab, glofitamab, mosunetuzumab, and odronextamab. Epcoritamab and glofitamab have received FDA and EMA approval for R/R DLBCL after two or more systemic line of therapies. EMA has also approved glofitamab in combination with gemcitabine and oxaliplatin (GemOx) for patients with R/R DLBCL ineligible for ASCT, whereas this indication has not been approved by FDA. Odronextamab is approved by EMA for R/R DLBCL and FL in patients who have received at least two prior lines of therapy, but it has not been approved by FDA. Mosunetuzumab is approved by both agencies—but only for R/R follicular lymphoma (FL). BsAbs represent a breakthrough therapy in the treatment of DLBCL, especially in R/R diseases. The purpose of this article is to review the landscape of BsAbs in DLBCL. Full article
(This article belongs to the Special Issue Monoclonal Antibodies in Lymphoma)
Show Figures

Figure 1

16 pages, 3680 KB  
Article
Hsp70 Peptides Induce TREM-1-Dependent and TREM-1-Independent Activation of Cytotoxic Lymphocytes
by Daria M. Yurkina, Elena A. Romanova, Aleksandr S. Chernov, Irina S. Gogleva, Anna V. Tvorogova, Alexey V. Feoktistov, Rustam H. Ziganshin, Denis V. Yashin and Lidia P. Sashchenko
Int. J. Mol. Sci. 2025, 26(19), 9750; https://doi.org/10.3390/ijms26199750 - 7 Oct 2025
Viewed by 145
Abstract
The novel data show that the Hsp70 protein is a potent activator of the immune system. Using limited trypsinolisis, we have identified the epitopes of Hsp70 responsible for TREM-1-dependent and TREM-1-independent cytotoxicity. The 11aa N9 peptide (AMTKDNNLLGR) contains nine amino acids that correspond [...] Read more.
The novel data show that the Hsp70 protein is a potent activator of the immune system. Using limited trypsinolisis, we have identified the epitopes of Hsp70 responsible for TREM-1-dependent and TREM-1-independent cytotoxicity. The 11aa N9 peptide (AMTKDNNLLGR) contains nine amino acids that correspond to the amino acid sequence of the known TKD peptide. Also, like TKD, this peptide does not interact with the TREM-1 receptor but activates CD94+ NK cells that kill tumor cells by secreting granzymes and inducing apoptosis. The 16aa peptide N7 (SDNQPGVLIQVYEGEK) interacts with the TREM-1 receptor and induces the activation of NK cells and cytotoxic T lymphocytes at different time points. T-lymphocytes activated by this peptide induce two alternative processes of cell death in HLA-negative tumor cells, apoptosis and necroptosis, through the interaction of the FasL lymphocyte with the Fas receptor of the tumor cell. A shortened fragment of this peptide, N7.1 (SDNQPGVL), has been identified that inhibits the interaction of TREM-1 with its ligands. This peptide has shown protective effects in the development of sepsis in mice. The results obtained can be used in antitumor and anti-inflammation therapy. Full article
Show Figures

Graphical abstract

21 pages, 6412 KB  
Review
Eosinophil ETosis and Cancer: Ultrastructural Evidence and Oncological Implications
by Rosario Caruso, Valerio Caruso and Luciana Rigoli
Cancers 2025, 17(19), 3250; https://doi.org/10.3390/cancers17193250 - 7 Oct 2025
Viewed by 212
Abstract
Eosinophils are innate immune cells that infiltrate tissues in response to cell proliferation and necrosis, which occurs during normal injury repair, parasitic infections, allergies, and cancer. Their involvement in cancer is controversial particularly with regard to tumor-associated tissue eosinophilia (TATE) and a recently [...] Read more.
Eosinophils are innate immune cells that infiltrate tissues in response to cell proliferation and necrosis, which occurs during normal injury repair, parasitic infections, allergies, and cancer. Their involvement in cancer is controversial particularly with regard to tumor-associated tissue eosinophilia (TATE) and a recently defined mechanism of extracellular trap cell death (ETosis), a particular type of eosinophil cell death that is distinct from both apoptosis and necrosis. This narrative review synthesizes the literature regarding the prognostic significance of TATE, focusing on eosinophil ETosis and the important role of transmission electron microscopy (TEM) in its detection and morphological characterization. The prognostic role of TATE is contradictory: in certain tumors, it is a favorable prognostic marker, while in others, it is unfavorable. However, recent research reveals that TATE is associated with a better prognosis in non-viral neoplasms, but it may correlate with a poor prognosis in virus-related neoplasms, such as human T-lymphotropic virus type 1 (HTLV-1)-associated lymphomas and HPV-positive carcinomas. Our ultrastructural investigations revealed distinct phases of eosinophil ETosis in gastric cancer, which were defined by chromatin decondensation, plasma membrane disruption, granule discharge, and development of extracellular traps. We observed synapse-like interactions between eosinophils, exhibiting ETosis or compound exocytosis, and tumor cells, which showed various degrees of cellular damage, ultimately leading to colloid-osmotic tumor cell death. TEM provides important insights into eosinophil-mediated cytotoxicity, requiring further investigation as potential immune effector mechanisms in non-viral tumors. TATE evaluation, together with the viral status of the neoplasia, may be useful to confirm its prognostic significance and consequently its therapeutic implication in specific cancers. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

Back to TopTop