Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Třinec

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1489 KiB  
Article
A Simple Risk Formula for the Prediction of COVID-19 Hospital Mortality
by Jiří Plášek, Jozef Dodulík, Petr Gai, Barbora Hrstková, Jan Škrha, Lukáš Zlatohlávek, Renata Vlasáková, Peter Danko, Petr Ondráček, Eva Čubová, Bronislav Čapek, Marie Kollárová, Tomáš Fürst and Jan Václavík
Infect. Dis. Rep. 2024, 16(1), 105-115; https://doi.org/10.3390/idr16010008 - 29 Jan 2024
Viewed by 1999
Abstract
SARS-CoV-2 respiratory infection is associated with significant morbidity and mortality in hospitalized patients. We aimed to assess the risk factors for hospital mortality in non-vaccinated patients during the 2021 spring wave in the Czech Republic. A total of 991 patients hospitalized between January [...] Read more.
SARS-CoV-2 respiratory infection is associated with significant morbidity and mortality in hospitalized patients. We aimed to assess the risk factors for hospital mortality in non-vaccinated patients during the 2021 spring wave in the Czech Republic. A total of 991 patients hospitalized between January 2021 and March 2021 with a PCR-confirmed SARS-CoV-2 acute respiratory infection in two university hospitals and five rural hospitals were included in this analysis. After excluding patients with unknown outcomes, 790 patients entered the final analyses. Out of 790 patients included in the analysis, 282/790 (35.7%) patients died in the hospital; 162/790 (20.5) were male and 120/790 (15.2%) were female. There were 141/790 (18%) patients with mild, 461/790 (58.3%) with moderate, and 187/790 (23.7%) with severe courses of the disease based mainly on the oxygenation status. The best-performing multivariate regression model contains only two predictors—age and the patient’s state; both predictors were rendered significant (p < 0.0001). Both age and disease state are very significant predictors of hospital mortality. An increase in age by 10 years raises the risk of hospital mortality by a factor of 2.5, and a unit increase in the oxygenation status raises the risk of hospital mortality by a factor of 20. Full article
Show Figures

Graphical abstract

18 pages, 13528 KiB  
Article
Physical Experiments and Numerical Simulations of the Influence of Turbulence Inhibitors and the Position of Ladle Shroud on the Steel Flow in an Asymmetric Five-Strand Tundish
by Josef Walek, Markéta Tkadlečková, Marek Velička, Mario Machů, Jiří Cupek, Tomáš Huczala, Jiří Cibulka, Jan Růžička and Karel Michalek
Metals 2023, 13(11), 1821; https://doi.org/10.3390/met13111821 - 29 Oct 2023
Cited by 9 | Viewed by 1682
Abstract
The submitted article deals with the use of physical and numerical modelling to study the process of the steel flow in an asymmetric five-strand tundish that continuously casts steel. For the purposes of physical modelling, a 1:4-scale plexiglass model was used as the [...] Read more.
The submitted article deals with the use of physical and numerical modelling to study the process of the steel flow in an asymmetric five-strand tundish that continuously casts steel. For the purposes of physical modelling, a 1:4-scale plexiglass model was used as the operating tundish, and for numerical modelling, the geometry of the operating tundish was created on a 1:1 scale. A model liquid (water) was used in the physical modelling of the melt flow process, while liquid steel was used as the standard flowing medium in the numerical modelling. We assessed the relevant operating parameters influencing the characteristics of the flow of the bath in the tundish—the shape of the turbulence inhibitor, the position of the ladle shroud in relation to the turbulence inhibitor and the distance between the ladle shroud orifice and the bottom of the turbulence inhibitor. The preliminary results show that optimal steel flow characteristic results are achieved by using the TI3-C configuration. The results from both modelling methods achieved the same characteristics, therefore verifying the results of each other and demonstrating that when taken together, the results of physical and numerical modelling can be considered sufficiently informative. Full article
(This article belongs to the Special Issue Advanced Tundish Metallurgy and Clean Steel Technology)
Show Figures

Figure 1

17 pages, 5444 KiB  
Article
Utilization of Metallurgical Slags in Cu-free Friction Material Formulations
by Vlastimil Matějka, Priyadarshini Jayashree, Mara Leonardi, Jozef Vlček, Tomáš Sabovčík and Giovanni Straffelini
Lubricants 2022, 10(9), 219; https://doi.org/10.3390/lubricants10090219 - 10 Sep 2022
Cited by 4 | Viewed by 2057
Abstract
The aim of our research was to indicate the suitability of metallurgical slags (two blast furnace slags and one steel furnace slag) as the components of Cu-free friction materials. The base mixture consisted of nine components including phenolic resin, graphite, tin sulphide, steel [...] Read more.
The aim of our research was to indicate the suitability of metallurgical slags (two blast furnace slags and one steel furnace slag) as the components of Cu-free friction materials. The base mixture consisted of nine components including phenolic resin, graphite, tin sulphide, steel and aramid fibers, iron powder, a mixture of barite with calcite, and vermiculite. To this base mixture, the slags with a particle size below 0.1 mm were added individually in the amount of 20 wt.%. A base friction mixture with alumina in the amount of 20 wt.% represented the reference. Samples for the friction-wear tests were produced in the form of pins by hot press molding. The prepared pins were tested using a pin-on-disc tester in a drag mode at the pressure of 1 MPa and a constant sliding speed of 1.51 m/s for 90 min. The samples with slags exhibited slightly lower values of steady-state friction coefficient compared to the reference composite with alumina, and at the same time produced lower wear particle emissions. The particle concentration was reduced for the samples with slowly cooled blast furnace and steel furnace slag. The results obtained indicated steel furnace slag as a promising component of Cu-free friction composites. Full article
Show Figures

Figure 1

17 pages, 9026 KiB  
Article
Study of Material Properties and Creep Behavior of a Large Block of AISI 316L Steel Produced by SLM Technology
by Šárka Hermanová, Zdeněk Kuboň, Petr Čížek, Jana Kosňovská, Gabriela Rožnovská, Ondřej Dorazil and Marcela Cieslarová
Metals 2022, 12(8), 1283; https://doi.org/10.3390/met12081283 - 29 Jul 2022
Cited by 6 | Viewed by 2377
Abstract
The additive manufacturing (3D printing) of metallic materials is a relatively new technology and its use is quickly increasing. Although it is of interest to many researchers, there are still areas which are not fully explored. One of those areas is the behavior [...] Read more.
The additive manufacturing (3D printing) of metallic materials is a relatively new technology and its use is quickly increasing. Although it is of interest to many researchers, there are still areas which are not fully explored. One of those areas is the behavior of large components and/or semi-products processed by 3D printing. This work is focused on the study of material properties of additive manufactured large block made of AISI 316L steel in two heat treatment conditions (as-printed and solution annealed) and their comparison with the properties of hot-rolled plate performed by tensile tests, Charpy V-notch tests, small punch tests and stress rupture tests. Mechanical tests were complemented by microstructural investigation and the fractographic analysis of fracture surfaces. We found out that mechanical and long-term properties of large 3D printed blocks of this steel are excellent and comparable with other published results obtained on small-sized and intentionally produced test pieces. The observed lower ductility is the result of printing imperfections in microstructure. The results of small punch tests confirmed the possibility of exploiting the existing database and using the correlation between small punch tests and tensile tests results even for 3D-printed AISI 316L steel. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

13 pages, 3458 KiB  
Article
The Effect of Trace Oxygen Addition on the Interface Behavior of Low-Alloy Steel
by Vlastimil Novák, Lenka Řeháčková, Petra Váňová, Michal Sniegoň, Dalibor Matýsek, Kateřina Konečná, Bedřich Smetana, Silvie Rosypalová, Markéta Tkadlečková, Ľubomíra Drozdová and Petr Klus
Materials 2022, 15(4), 1592; https://doi.org/10.3390/ma15041592 - 20 Feb 2022
Cited by 3 | Viewed by 2128
Abstract
This work aims to assess the effect of an oxygen content graded in minimal quantities, on the order of hundreds of ppms, on the determination of surface tension of low-alloy FeCOCr and FeCONi steels in contact with a corundum substrate. Oxygen, as a [...] Read more.
This work aims to assess the effect of an oxygen content graded in minimal quantities, on the order of hundreds of ppms, on the determination of surface tension of low-alloy FeCOCr and FeCONi steels in contact with a corundum substrate. Oxygen, as a surface-active element, was segregated at the surface where it interacted with the major components of the alloys, leading to a reduction in surface tension. The sessile drop method was used for wetting tests in the temperature range from steel liquidus temperatures to 1600 °C under nonoxidizing conditions. The effect of oxygen on surface tension and wetting angles was verified by statistical analysis using the Kruskal–Wallis test, which supported the results stating that the values of these quantities decreased with increasing oxygen content. Furthermore, liquidus temperatures, which are of practical importance, were determined by the optical and DTA methods and then compared with theoretically calculated temperature values. It turned out that the increased chromium content causes difficulties in determining surface tension up to 1550 °C due to the formation of a thin Cr2O3 layer. In addition, SEM and XRD analyses accompanied by calculations in the FactSage oxide database were performed to better understand the wetting mechanism. Full article
Show Figures

Figure 1

26 pages, 5621 KiB  
Article
Monitoring of Heavy Metals and Nitrogen Concentrations in Mosses in the Vicinity of an Integrated Iron and Steel Plant: Case Study in Czechia
by Irena Pavlíková, Oldřich Motyka, Vítězslav Plášek and Jan Bitta
Appl. Sci. 2021, 11(17), 8262; https://doi.org/10.3390/app11178262 - 6 Sep 2021
Cited by 5 | Viewed by 4052
Abstract
A biomonitoring study using terrestrial mosses was performed in the vicinity of an Integrated Iron and Steel plant near the Czech–Polish border. Moss samples were collected in two seasons (June, October) in order to embrace the effect of the heating season on the [...] Read more.
A biomonitoring study using terrestrial mosses was performed in the vicinity of an Integrated Iron and Steel plant near the Czech–Polish border. Moss samples were collected in two seasons (June, October) in order to embrace the effect of the heating season on the pollution levels. The contents of metals (Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, As, Sb and Hg) were determined using the Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Atomic Absorption Spectroscopy (AAS) and contents of N, C, H via elemental analysis. The influence of the proximity of the factory, the heating season and modelled concentrations of particulate matter <10 µm (PM10) on determined concentrations of elements were studied via multivariate statistical methods using clr-transformed data. This approach led to the first-time demonstration that not only the distance from the industrial source but also the sampling season and PM10 concentrations significantly affect the elemental content in mosses; the association of the emissions from the source and the determined concentrations of elements in moss samples were more evident outside the heating season (October). The analyses of transformed data revealed the association of Fe, Cr, V, As and Al with the coarse particles and their dominant spatial distribution depending on the prevailing wind directions. The spatial distribution of Mn, Zn and Cd, which are carried by fine particles, appears to depend more on atmospheric dispersion and long-range transport, and, thus, these metals should be considered weak markers of the pollution load in the close surroundings of an industrial source. Full article
(This article belongs to the Special Issue Monitoring and Analysis of Environmental Pollution)
Show Figures

Figure 1

24 pages, 6955 KiB  
Article
Integrated Magnetic Analyses for the Discrimination of Urban and Industrial Dusts
by Beata Górka-Kostrubiec, Tadeusz Magiera, Katarzyna Dudzisz, Sylwia Dytłow, Małgorzata Wawer and Aldo Winkler
Minerals 2020, 10(12), 1056; https://doi.org/10.3390/min10121056 - 26 Nov 2020
Cited by 12 | Viewed by 3443
Abstract
Industrial and urban dusts were characterized by investigating their magnetic properties. Topsoil composed of technogenic magnetic particles (TMP) originating from areas affected by three ironworks, street dust mainly composed of traffic-related pollution, and particulate matter (PM) from urban agglomeration in Warsaw, Poland were [...] Read more.
Industrial and urban dusts were characterized by investigating their magnetic properties. Topsoil composed of technogenic magnetic particles (TMP) originating from areas affected by three ironworks, street dust mainly composed of traffic-related pollution, and particulate matter (PM) from urban agglomeration in Warsaw, Poland were investigated. Several magnetic methods, namely magnetic susceptibility, thermomagnetic curves, hysteresis loops, decomposition of isothermal remanent magnetization acquisition curves, and first-order reversal curves, were performed to evaluate the magnetic fraction of dust. Magnetite was the main magnetic phase in all types of samples, with a small amount of high-coercive hematite within ironworks and street dust samples. Significant differences were observed in the domain structure (grain size) of industrial and traffic-related magnetic particles. The grain size of TMP obtained from steel production was in the range of 5–20 µm and was predominated by a mixture of single-domain (SD) and multidomain (MD) grains, with the prevalence of SD grains in the topsoil affected by Třinec ironwork. The traffic-related dust contained finer grains with a size of about 0.1 µm, which is characteristic of the pseudo-single-domain (PSD)/SD threshold. Street dusts were composed of a slightly higher proportion of MD grains, while PM also revealed the typical behavior of superparamagnetic particles. Full article
(This article belongs to the Special Issue Natural and Technogenic Magnetic Particles in the Environment)
Show Figures

Figure 1

20 pages, 10478 KiB  
Article
Effects of Austenitization Temperature and Pre-Deformation on CCT Diagrams of 23MnNiCrMo5-3 Steel
by Ivo Schindler, Rostislav Kawulok, Petr Opěla, Petr Kawulok, Stanislav Rusz, Jaroslav Sojka, Michal Sauer, Horymír Navrátil and Lukáš Pindor
Materials 2020, 13(22), 5116; https://doi.org/10.3390/ma13225116 - 13 Nov 2020
Cited by 10 | Viewed by 2679
Abstract
The combined effect of deformation temperature and strain value on the continuous cooling transformation (CCT) diagram of low-alloy steel with 0.23% C, 1.17% Mn, 0.79% Ni, 0.44% Cr, and 0.22% Mo was studied. The deformation temperature (identical to the austenitization temperature) was in [...] Read more.
The combined effect of deformation temperature and strain value on the continuous cooling transformation (CCT) diagram of low-alloy steel with 0.23% C, 1.17% Mn, 0.79% Ni, 0.44% Cr, and 0.22% Mo was studied. The deformation temperature (identical to the austenitization temperature) was in the range suitable for the wire rolling mill. The applied compressive deformation corresponded to the true strain values in an unusually wide range. Based on the dilatometric tests and metallographic analyses, a total of five different CCT diagrams were constructed. Pre-deformation corresponding to the true strain of 0.35 or even 1.0 had no clear effect on the austenite decomposition kinetics at the austenitization temperature of 880 °C. During the long-lasting cooling, recrystallization and probably coarsening of the new austenitic grains occurred, which almost eliminated the influence of pre-deformation on the temperatures of the diffusion-controlled phase transformations. Decreasing the deformation temperature to 830 °C led to the significant acceleration of the austenite → ferrite and austenite → pearlite transformations due to the applied strain of 1.0 only in the region of the cooling rate between 3 and 35 °C·s−1. The kinetics of the bainitic or martensitic transformation remained practically unaffected by the pre-deformation. The acceleration of the diffusion-controlled phase transformations resulted from the formation of an austenitic microstructure with a mean grain size of about 4 µm. As the analysis of the stress–strain curves showed, the grain refinement was carried out by dynamic and metadynamic recrystallization. At low cooling rates, the effect of plastic deformation on the kinetics of phase transformations was indistinct. Full article
(This article belongs to the Special Issue Hot Deformation and Microstructure Evolution of Metallic Materials)
Show Figures

Figure 1

25 pages, 94968 KiB  
Article
Hot Deformation Behaviour of Mn–Cr–Mo Low-Alloy Steel in Various Phase Regions
by Ivo Schindler, Petr Opěla, Petr Kawulok, Jaroslav Sojka, Kateřina Konečná, Stanislav Rusz, Rostislav Kawulok, Michal Sauer and Petra Turoňová
Metals 2020, 10(9), 1255; https://doi.org/10.3390/met10091255 - 17 Sep 2020
Cited by 4 | Viewed by 2864
Abstract
The deformation behaviour of a coarse-grained as-cast medium-carbon steel, alloyed with 1.2% Mn, 0.8% Cr and 0.2% Mo, was studied by uniaxial compression tests for the strain rates of 0.02 s−1–20 s−1 in the unusually wide range of temperatures (650–1280 [...] Read more.
The deformation behaviour of a coarse-grained as-cast medium-carbon steel, alloyed with 1.2% Mn, 0.8% Cr and 0.2% Mo, was studied by uniaxial compression tests for the strain rates of 0.02 s−1–20 s−1 in the unusually wide range of temperatures (650–1280 °C), i.e., in various phase regions including the region with predominant bainite content (up to the temperature of 757 °C). At temperatures above 820 °C, the structure was fully austenitic. The hot deformation activation energies of 648 kJ·mol−1 and 364 kJ·mol−1 have been calculated for the temperatures ≤770 °C and ≥770 °C, respectively. This corresponds to the significant increase of flow stress in the low-temperature bainitic region. Unique information on the hot deformation behaviour of bainite was obtained. The shape of the stress-strain curves was influenced by the dynamic recrystallization of ferrite or austenite. Dynamically recrystallized austenitic grains were strongly coarsened with decreasing strain rate and growing temperature. For the austenitic region, the relationship between the peak strain and the Zener–Hollomon parameter has been derived, and the phenomenological constitutive model describing the flow stress depending on temperature, true strain rate and true strain was developed. The model can be used to predict the forming forces in the seamless tubes production of the given steel. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

19 pages, 6822 KiB  
Article
Correlation among the Power Dissipation Efficiency, Flow Stress Course, and Activation Energy Evolution in Cr-Mo Low-Alloyed Steel
by Petr Opěla, Ivo Schindler, Petr Kawulok, Rostislav Kawulok, Stanislav Rusz, Horymír Navrátil and Radek Jurča
Materials 2020, 13(16), 3480; https://doi.org/10.3390/ma13163480 - 7 Aug 2020
Cited by 16 | Viewed by 2505
Abstract
In the presented research, conventional hot processing maps superimposed over the flow stress maps or activation energy maps are utilized to study a correlation among the efficiency of power dissipation, flow stress, and activation energy evolution in the case of Cr-Mo low-alloyed steel. [...] Read more.
In the presented research, conventional hot processing maps superimposed over the flow stress maps or activation energy maps are utilized to study a correlation among the efficiency of power dissipation, flow stress, and activation energy evolution in the case of Cr-Mo low-alloyed steel. All maps have been assembled on the basis of two flow curve datasets. The experimental one is the result of series of uniaxial hot compression tests. The predicted one has been calculated on the basis of the subsequent approximation procedure via a well-adapted artificial neural network. It was found that both flow stress and activation energy evolution are capable of expressing changes in the studied steel caused by the hot compression deformation. A direct association with the course of power dissipation efficiency is then evident in the case of both. The connection of the presence of instability districts to the activation energy evolution, flow stress course, and power dissipation efficiency was discussed further. Based on the obtained findings it can be stated that the activation energy processing maps represent another tool for the finding of appropriate forming conditions and can be utilized as a support feature for the conventionally-used processing maps to extend their informative ability. Full article
(This article belongs to the Special Issue Hot Deformation and Microstructure Evolution of Metallic Materials)
Show Figures

Figure 1

20 pages, 8651 KiB  
Article
Numerical Analysis of RTD Curves and Inclusions Removal in a Multi-Strand Asymmetric Tundish with Different Configuration of Impact Pad
by Markéta Tkadlečková, Josef Walek, Karel Michalek and Tomáš Huczala
Metals 2020, 10(7), 849; https://doi.org/10.3390/met10070849 - 27 Jun 2020
Cited by 37 | Viewed by 3602
Abstract
To effectively remove non-metallic inclusions from the steel during the flowing in a five-strand asymmetric tundish, the novel configuration of the impact pad was developed. For analysis, complex numerical modelling in the programme ANSYS Fluent was used. The Lagrangian Discrete Phase Model of [...] Read more.
To effectively remove non-metallic inclusions from the steel during the flowing in a five-strand asymmetric tundish, the novel configuration of the impact pad was developed. For analysis, complex numerical modelling in the programme ANSYS Fluent was used. The Lagrangian Discrete Phase Model of inclusion tracking was applied. The distribution of inclusions, with sizes ranging from 2 µm to 100 µm and density from 2500 to 3500 kg·m−3, was considered only through the shroud tube. The residence time distribution (RTD) curves and inclusion removal efficiency were used for evaluation of steady state steel flow character depending on internal configuration of a tundish with an impact pad in two design modifications (Modification 1—M1, Modification 2—M2). The preliminary results showed that in the case of asymmetric geometry plays a role the computational mesh independency. The assembly method with cut cell approach was satisfactory even when the tundish geometry was changed. The RTD curves with an M1 showed a huge dead volume in the tundish. In the case with an M2, the RTD curves are more or less uniform for all casting strands, and the removal of inclusions to slag increased from about 55% up to 70% in comparison with M1. Full article
(This article belongs to the Special Issue Numerical Modelling in Steel Metallurgy)
Show Figures

Figure 1

28 pages, 11766 KiB  
Article
Air Pollution Sources’ Contribution to PM2.5 Concentration in the Northeastern Part of the Czech Republic
by Radim Seibert, Irina Nikolova, Vladimíra Volná, Blanka Krejčí and Daniel Hladký
Atmosphere 2020, 11(5), 522; https://doi.org/10.3390/atmos11050522 - 19 May 2020
Cited by 27 | Viewed by 4638
Abstract
This article focuses on the source apportionment of air pollution in a specific northeastern part of the Czech Republic. The research area, located around the city of Třinec, is significantly affected by a complex spectrum of air pollution sources, including local residential heating [...] Read more.
This article focuses on the source apportionment of air pollution in a specific northeastern part of the Czech Republic. The research area, located around the city of Třinec, is significantly affected by a complex spectrum of air pollution sources, including local residential heating (coal and wood burning), heavy industry (mainly iron and steel production), road traffic, and regional and long-range air pollution transport from the nearby cities, Poland, and other countries. The main pollution sources contributing to the total concentration of fine suspended particles (PM2.5) were evaluated on the basis of the measurements at three sites and on subsequent positive matrix factorization modeling. The six major air pollution factors were identified, and their relative and absolute contributions were quantified. The result of the study is that the most important current task of air protection is to reduce the residential emissions from solid fuels, which are responsible for approximately 50–60% of PM2.5 concentration, followed by the regional primary and secondary aerosol sources (up to 40% of the total PM2.5 aerosol mass). Lower contributions have been identified in the case of resuspended mineral and biogenic particles (15–20%), long-range (trans-European) air pollution transport (up to 10%), and heavy industry (up to 10% in the most affected location). A detailed discussion has been provided considering specific regional EC (elemental carbon)–OC (organic carbon) relations in the region with traditional coal-burning for household heating which complicate the interpretation of the PMF (Positive Matrix Factorization) results, especially due to the interference between the traffic, residential heating, and biogenic aerosol factors. Full article
(This article belongs to the Special Issue Ambient Air Quality in the Czech Republic)
Show Figures

Figure 1

21 pages, 11418 KiB  
Article
Detailed Assessment of the Effects of Meteorological Conditions on PM10 Concentrations in the Northeastern Part of the Czech Republic
by Vladimíra Volná and Daniel Hladký
Atmosphere 2020, 11(5), 497; https://doi.org/10.3390/atmos11050497 - 12 May 2020
Cited by 18 | Viewed by 3880
Abstract
This article assessed the links between PM10 pollution and meteorological conditions over the Czech-Polish border area at the Třinec-Kosmos and Věřňovice sites often burdened with high air pollution covering the years 2016–2019. For this purpose, the results of the measurements of special [...] Read more.
This article assessed the links between PM10 pollution and meteorological conditions over the Czech-Polish border area at the Třinec-Kosmos and Věřňovice sites often burdened with high air pollution covering the years 2016–2019. For this purpose, the results of the measurements of special systems (ceilometers) that monitor the atmospheric boundary layer were used in the analysis. Meteorological conditions, including the mixing layer height (MLH), undoubtedly influence the air pollution level. Combinations of meteorological conditions and their influence on PM10 concentrations also vary, depending on the pollution sources of a certain area and the geographical conditions of the monitoring site. Gen1erally, the worst dispersion conditions for the PM10 air pollution level occur at low air temperatures, low wind speed, and low height of the mixing layer along with a wind direction from areas with a higher accumulation of pollution sources. The average PM10 concentrations at temperatures below 1 °C reach the highest values on the occurrence of a mixing layer height of up to 400 m at both sites. The influence of a rising height of the mixing layer at temperatures below 1 °C on the average PM10 concentrations at Třinec-Kosmos site is not as significant as in the case of Věřňovice, where a difference of several tens of µg·m−3 in the average PM10 concentrations was observed between levels of up to 200 m and levels of 200–300 m. The average PM10 hourly concentrations at Třinec-Kosmos were the highest at wind speeds of up to 0.5 m·s−1, at MLH levels of up to almost 600 m; at Věřňovice, the influence of wind speeds of up to 2 m·s−1 was detected. Despite the fact that the most frequent PM10 contributions come to the Třinec-Kosmos site from the SE direction, the average maximum concentration contributions come from the W–N sectors at low wind speeds and MLHs of up to 400 m. In Věřňovice, regardless of the prevailing SW wind direction, sources in the NE–E sector from the site have a crucial influence on the air pollution level caused by PM10. Full article
(This article belongs to the Special Issue Ambient Air Quality in the Czech Republic)
Show Figures

Figure 1

16 pages, 9097 KiB  
Article
Effect of Strain on Transformation Diagrams of 100Cr6 Steel
by Rostislav Kawulok, Ivo Schindler, Jaroslav Sojka, Petr Kawulok, Petr Opěla, Lukáš Pindor, Eduard Grycz, Stanislav Rusz and Vojtěch Ševčák
Crystals 2020, 10(4), 326; https://doi.org/10.3390/cryst10040326 - 21 Apr 2020
Cited by 11 | Viewed by 4938
Abstract
Based on dilatometric tests, the effect of various values of previous deformation on the kinetics of austenite transformations during the cooling of 100Cr6 steel has been studied. Dilatometric tests have been performed with the use of the optical dilatometric module of the plastometer [...] Read more.
Based on dilatometric tests, the effect of various values of previous deformation on the kinetics of austenite transformations during the cooling of 100Cr6 steel has been studied. Dilatometric tests have been performed with the use of the optical dilatometric module of the plastometer Gleeble 3800. The obtained results were compared to metallographic analyses and hardness measurements HV30. Uniaxial compression deformations were chosen as follows: 0, 0.35, and 1; note that these are true (logarithmic) deformations. The highly important finding was the absence of bainite. In addition, it has been verified that with the increasing amount of deformation, there is a further shift in the pearlitic region to higher cooling rates. The previous deformation also affected the temperature martensite start, which decreased due to deformation. The deformation value of 1 also shifted the critical cooling rate required for martensite formation from the 12 °C/s to 25 °C/s. Full article
(This article belongs to the Special Issue Crystal Plasticity)
Show Figures

Figure 1

14 pages, 3658 KiB  
Article
The Effect of Temperature and Milling Process on Steel Scale Utilized as a Pigment for Ceramic Glaze
by Hana Ovčačíková, Jozef Vlček, Vlastimil Matějka, Jan Juřica, Petra Maierová and Petr Mlčoch
Materials 2020, 13(8), 1814; https://doi.org/10.3390/ma13081814 - 12 Apr 2020
Cited by 6 | Viewed by 3357
Abstract
This study is focused on the evaluation of the re-utilizability of scale originated during the steel casting and steel rolling processes as a pigment for glazes. Non-oiled scale with Fe3O4 as the major phase were used as a coloring component [...] Read more.
This study is focused on the evaluation of the re-utilizability of scale originated during the steel casting and steel rolling processes as a pigment for glazes. Non-oiled scale with Fe3O4 as the major phase were used as a coloring component of transparent glaze matrix in: (i) as received state, (ii) thermally pre-treated at 700 and 900 °C, (iii) mechanically treated in planetary ball mill (60, 120 and 240 min) and (iv) mechanically treated in vibratory disc mill (60 and 120 min). Prepared glazes were applied on the surface of ceramic tiles prepared from a commercially available white ceramic slurry. The resulting tiles with given glaze were thermally treated at 800, 900 and 1060 °C. The pigments were characterized by X-ray powder diffraction method (XRD), X-ray fluorescence spectroscopy (XRF), granulometry (PSD), thermogravimetric analysis (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM/EDAX). The color of the samples was described by the coordinates L*a*b* from CIELAB color space. The results showed that the non-oiled scale is suitable as the pigment for ceramic glazes. Careful control of the scale treatment process (mechanical as well as thermal) together with the temperature of final glaze firing is necessary to obtain the glaze of desired color and quality. Full article
Show Figures

Graphical abstract

Back to TopTop