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1 Faculty of Materials Science and Technology, VSB–Technical University of Ostrava, 17. listopadu 2172/15,
70800 Ostrava–Poruba, Czech Republic; ivo.schindler@vsb.cz (I.S.); petr.kawulok@vsb.cz (P.K.);
rostislav.kawulok@vsb.cz (R.K.); stanislav.rusz2@vsb.cz (S.R.); horymir.navratil@vsb.cz (H.N.)
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Abstract: In the presented research, conventional hot processing maps superimposed over the flow
stress maps or activation energy maps are utilized to study a correlation among the efficiency of
power dissipation, flow stress, and activation energy evolution in the case of Cr-Mo low-alloyed
steel. All maps have been assembled on the basis of two flow curve datasets. The experimental one
is the result of series of uniaxial hot compression tests. The predicted one has been calculated on
the basis of the subsequent approximation procedure via a well-adapted artificial neural network.
It was found that both flow stress and activation energy evolution are capable of expressing changes
in the studied steel caused by the hot compression deformation. A direct association with the course
of power dissipation efficiency is then evident in the case of both. The connection of the presence
of instability districts to the activation energy evolution, flow stress course, and power dissipation
efficiency was discussed further. Based on the obtained findings it can be stated that the activation
energy processing maps represent another tool for the finding of appropriate forming conditions
and can be utilized as a support feature for the conventionally-used processing maps to extend their
informative ability.

Keywords: processing maps; activation energy maps; flow stress maps; artificial neural networks

1. Introduction

Since the end of the 2nd millennium, hot processing maps, introduced on the basis of the
dynamic material model (DMM), have been being broadly used in the sense of the optimization of hot
forming processes (forging, rolling, etc.) [1–28]. It is well known that the processing map displays the
distribution of power dissipation efficiency and metallurgical instability in the strain rate–temperature
coordinates under the specific value of strain. The thermomechanical conditions linked with the higher
efficiency of power dissipation and in the same time with the absence of metallurgical instability are
then usually considered as advantageous. In the case of a specific material, the results are usually
presented as the series of processing maps assembled at various strains or as a volumetric chart,
which allows these maps to be unified into one coherent unit [1,2].

The above approach has been employed to study the hot working behavior of various materials
which were prepared and formed by different methods and subsequently used for different applications—
for instance, steels: Fe-11Mn-10Al-0.9C duplex low-density steel susceptible to κ-carbides [3],
as-extruded 42CrMo high-strength steel [4], 25Cr3Mo3NiNb steel [5], 10CrMo9-10 steel [6], 34CrNiMo
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medium carbon steel [7], medium carbon steel, microalloyed by B and Ti [8], medium-carbon
bainitic steel [9], 43CrNi steel [10], high-carbon/low-carbon steel composite [11], 347H austenitic
heat-resistant stainless steel [12], high-titanium Nb-micro-alloyed steel [2]; nickel alloys: Ni-based
superalloy [13], P/M nickel-based superalloy [14], IN-718 superalloy [15], NiTiNb shape memory
alloy [16]; aluminum alloys: as-extruded 7075 [17], 5052 alloy [1], B4C/6061Al nanocomposites
fabricated by spark plasma sintering [18]; titanium alloys: Ti-15-3 [19], Ti-6242 [20], ATI425 [21],
TC21 [22]; zirconium alloys: reactor-grade alpha-zirconium [23], Zr-2.5Nb [24]; and some other alloys:
AZ31-1Ca-1.5 vol% nano-alumina composite [25], Cu–Cr–Zr–Nd alloy [26], Pb-Mg-10Al-0.5B alloy [27],
Fe3Al intermetallic alloy [28], etc.

Recently, some efforts have been made to improve the informative capability of the above-
mentioned processing maps. In the case of a specific material, these maps are usually developed
on the basis of an experimentally-achieved flow-curve dataset. Nevertheless, Quan et al. [17] have
proposed to extend an experimental dataset by means of a prediction procedure since the limited
number of experimental curves can lead to the inferior informative ability of compiled processing maps.
This suggestion has been recently studied in the case of 10CrMo9-10 steel [6] when the additional
(predicted) dataset revealed potentially inappropriate forming conditions. In connection with the above
presented maps, Zhou et al. [1] utilized a term—conventional hot processing (CHP) maps. They pointed
out the fact that, until now, employed processing maps do not take into account the difficulty of the
course of material deformation. They demonstrated this assumption on the previously-published
CHP maps—these maps indicated suitable forming conditions at thermomechanical circumstances in
which the corresponding microstructure observations revealed notable shear bands [1]. Zhou et al.
therefore introduced a so-called activation energy processing (AEP) maps. These maps combine the
above discussed CHP maps and activation-energy (AE) maps. The activation energy characterizes
the difficulty of a deformation course since embodies the capability of atoms to surmount energy
barriers. Lower values of activation energy are then linked with the easier course of deformation.
Thus, the potentially appropriate forming conditions are in the case of the AEP maps given by the high
values of the efficiency of power dissipation in combination with the absence of instability regions and
in the same time by the low values of activation energy [1,8,14,29]. In the case of the 5052-aluminum
alloy, Zhou et al. [1] have confirmed that the introduced AEP maps display the suitable and aggravated
forming conditions in comparison with the CHP maps more accurately.

The aim of the presented research is to find a correlation between the efficiency of power dissipation
and the evolution of the activation energy for the case of Cr-Mo low-alloyed steel, and, in addition,
also consider the relation of power dissipation efficiency to the flow stress course. This means the
assembly of the above-mentioned AEP maps (i.e., the combination of CHP and AE maps) and creating
the combination of the CHP maps with flow-stress (FS) maps will be realized. In addition, the relation
of the presence of instability districts in the assembled CHP maps to the AEP maps and FS maps will
be also taken into account.

2. Materials and Methods

2.1. Experimental Procedure

The chemical composition of the investigated Cr-Mo low-alloyed steel is displayed in Table 1.
Cylindrical hot-compression-test samples with the diameter of 10 mm and the length of 15 mm
(prepared by turning) were subjected to the series of uniaxial hot compression tests on the Gleeble 3800
in connection with the Hydrawedge II Mobile Conversion Unit (Dynamic Systems Inc., Poestenkill,
NY, USA) [30].

Table 1. Chemical composition of the investigated Cr-Mo low-alloyed steel in wt%.

C Cr Mo Mn Si Al N

0.29 0.79 0.21 1.20 0.27 0.028 0.0093
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Four strain rates (specifically: 0.02, 0.2, 2, and 20 s−1) in combination with six deformation
temperatures (1043, 1113, 1203, 1303, 1413, and 1553 K) have been tested in the frame of the current
research, when the value of true strain reached to 1.0. Before the compression, each tested specimen
was preheated to a deformation temperature by the heating rate of 5 K·s−1 (performed via direct
electric resistance heating) with the following dwell time of 300 s. The temperature measurement was
always realized on the sample surface in the middle length. This measurement was mediated via a
pair of thermocouple wires (fixed by welding) of the K-type (i.e., Ni–Cr (+) and Ni–Al (−)) and R-type
(Pt–13%Rh (+) and Pt (−)) as regards to the temperatures of 1043 K–1413 K and the temperature of
1553 K, respectively. The testing course was always performed under vacuum in order to prohibit
oxidation processes. Tantalum foils in combination with a nickel-based high-temperature grease were
chosen to protect the anvils and reduce the friction on the sample-anvils interface. The described
experimental procedure resulted in a flow curve dataset expressing the evolution of true flow stress
under the above-mentioned experimental values of true strain, strain rate and deformation temperature.

After the prime evaluation of subsequently assembled CHP-FS and AEP maps, additional
compression tests were performed under various thermomechanical conditions in order to link these
maps with a metallographic observation. The compressed specimens were immediately water-quenched
to fix the structure, thereafter sectioned along the compression axis, mechanically polished, and then
etched (solution of picric acid (50 g) and ferric chloride (5 g) in 100 mL of distilled water) to visualize the
original grain boundaries. An optical microscopy (OM) observation has been subsequently realized by
means of the Olympus GX51 inverted metallurgical microscope (Olympus Corporation, Tokyo, Japan).

2.2. Flow Curve Approximation and Prediction

Since the experimentally obtained flow curve dataset is intended to be used for the creation of
CHP and AEP maps which is associated with the interpolation of the processed data, the approximation
and subsequent prediction processes were applied to augment the input dataset and, thus, increase the
interpolation accuracy.

Based on the previous experiences [6,31–33] and other various studies that have been done in
recent decades (see, e.g., introduction in [31]), the artificial neural network (ANN) approach [34–36]
was found to be appropriate to deal with the current approximation and prediction task. Specifically,
a multi-layer perceptron (MLP) network type with the feed-forward course has been employed in order
to create a functional relationship between the vectors of the independent variables (i.e., true strain, ε (-),
strain rate

.
ε (s−1), and temperature, T (K)) and the vector of the dependent variable (i.e., true flow stress,

σ (MPa). Generally, the functional relationship (MLP architecture) is given by the ad hoc established set
of perceptrons (computational units) [35] which are arranged into one or more hidden layers and one
summary layer, when the perceptrons of adjacent layers are connected via synaptic weights (material
constants), see Figure 1. The detailed description of the ANN approximation background inclusive of
MLP network type can be found, e.g., in [36].

Based on the adaptation procedure (analogical to that utilized in [6]), an ideal MLP-network
architecture was found to be given by two hidden layers, each with eight perceptrons; these hidden
perceptrons were activated via a hyperbolic-tangent sigmoid activation function [37].

Synaptic weights (material constants) were calculated on the basis of the minimization of the mean
squared error [38] of MLP-output residuals (learning procedure). This minimization task has been
solved by the use of the Levenberg–Marquardt algorithm [39–41] in a combination with the Bayesian
regularization [42,43] and the back-propagation of error signal [44]. Note, 12 experimental flow curves
were subjected to the minimization algorithm (training set), while six curves were used to evaluate the
prediction ability during the training course (validation set) and other six curves then served for the
subsequent final prediction evaluation of a trained MLP architecture (testing set)—see Table 2.
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It should be noted that the input vectors (ε,
.
ε, T) are introduced to the network in a normalized form

(i.e., dimensionless and with the sample standard deviations equal to 1.0). The applied normalization
procedure was analogical to that described previously in [6].

Table 2. Distribution of the temperature and strain rate combinations for the MLP learning purpose.

.
ε (s−1)/T (K) 1553 1413 1303 1203 1113 1043

0.02 train test valid train test train
0.2 valid train train test valid train
2 train valid test train train test
20 test train train valid train valid

Based on the assembled MLP network, flow curve prediction has been realized for five additional
temperatures (1078, 1158, 1253, 1358, and 1483 K) under the experimentally tested strain rate levels.

The entire approximation and prediction procedures have been performed by means of
MATLAB® 9.3 software [45] with the embedded Neural Network Toolbox™ 11.0 (MathWorks®, Natick,
MA, USA) [46].

2.3. Conventional Hot Processing Maps

In the current research, CHP maps of the studied steel were compiled on the basis of the findings
resulting from the Prasad’s dynamic material model (DMM) [20,47,48]. With regard to the hot-formed
workpiece, the DMM discloses a related energy-balance background. Specifically, it deals with
the dissipation of power in the connection with a plastic deformation and associated metallurgical
processes like, e.g., dynamic recovery (DRV) and recrystallization (DRX). On the foreground of the
DMM theory, a dimensionless indicator is utilized to quantify the power dissipation in the wide range
of thermomechanical circumstances, just with the relation to the microstructural changes—known as
the efficiency of power dissipation, η (-, %) [20]:

η =
2 ·m

m + 1
, (1)

where the strain rate sensitivity, m (-), is given as [20]:

m =
∂ ln σ
∂ ln

.
ε

∣∣∣∣∣
T,ε

, (2)

Note that in order to perform this derivation, the relevant ln σ—ln
.
ε data points were extracted from

the combined experimental/predicted flow curve dataset.
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The dependency of the efficiency of power dissipation with respect to the temperature and
strain rate is under specific strains usually graphically expressed in the form of so-called power
dissipation maps. These maps are usually combined with the so-called flow instability maps, when the
superimposition of both map types resulting in the above introduced CHP maps. The presence of
instability is conditioned by the continuum criterion [49,50]:

ξ
( .
ε
)
=
∂ ln

(
m

m+1

)
∂ ln

.
ε

+ m ≤ 0, (3)

where the value of ξ(
.
ε) (-) is known as the flow instability parameter.

2.4. Activation-Energy Maps

As it was mentioned in the introduction, the AEP maps, i.e., the combination of the CHP maps and
the activation energy (AE) maps, can enhance the ability of CHP maps to reveal the potentially unstable
forming conditions since the activation energy has the ability to reflect the difficulty of deformation
course [1]. The creation of the AE maps requires the calculation of activation energy values under all
thermomechanical conditions. In most cases, however, the activation energy is considered to be a
material constant (so-called apparent activation energy) or, at most, strain dependent [21,26,51–54].
In order to deal with the activation energy as a strain, strain rate, and temperature dependent parameter,
the method utilized, e.g., in [55,56] has been employed. Similarly, as in the case of the apparent
activation energy, the calculation is based on the well-known Garofalo’s relationship [57]. With the
use of this relation, the values of the activation energy, Q (ε,

.
ε, T) (J·mol−1), have been calculated as

follows [55,56]:
Q
(
ε,

.
ε, T

)
= R · n(ε, T) ·M

(
ε,

.
ε
)
, (4)

where the R (8.314 J·K−1
·mol−1) is the universal gas constant, and the products of the n(ε,T) (-) and

M(ε,
.
ε) (K) parameters are given on the basis of the known values (experimental and predicted via

MLP) of
.
ε, T and σ as follows [55,56]:

n(ε, T) ·M
(
ε,

.
ε
)
=

∂ ln
.
ε

∂ ln
{
sinh[α(ε, T) · σ]

} ∣∣∣∣∣∣
ε,T
·
∂ ln

{
sinh[α(ε) · σ]

}
∂(1/T)

∣∣∣∣∣∣
ε,

.
ε

, (5)

where the values of the stress multiplier α(ε,T) (MPa−1) were estimated as [55,56]:

α(ε, T) =
∂ ln

.
ε

∂σ

∣∣∣∣∣∣
ε,T

/
∂ ln

.
ε

∂ ln σ

∣∣∣∣∣∣
ε,T

. (6)

Note that α(ε) is the arithmetic mean [58] of the α(ε,T) parameter under different temperatures.
From the practical reasons, the above introduced parameters have been expressed in the form of the
following multivariate polynomials:

M
(
ε,

.
ε
)
=

∑4
i=0

∑4
j=0ai j · ε

i
· ln j .

ε, (7)

n(ε, T) =
∑4

i=0
∑4

j=0bi j · ε
i
· T j, (8)

α(ε, T) =
∑4

i=0
∑4

j=0ci j · ε
i
· T j. (9)

The material constants of the polynomials (7)–(9), i.e., aij (-), bij (-) and cij (-) (where i = [0, 4] ⊂
N0 and j = [0, 4] ⊂ N0), have been estimated on the basis of nonlinear least square method via the
Levenberg–Marquardt iterative optimization algorithm [39–41].
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3. Results and Discussion

3.1. Evaluation of the Performed Calculations

In order to evaluate the accuracy of the above performed MLP-approximation, the Pearson’s
correlation coefficient [59], R (-), and the average absolute relative error, AARE (%), have been
calculated—see Equations (10) and (11) [17]. In these equations, the Ti (MPa) and Ai (MPa) represent
the flow stress values of the target (i.e., experimental) and approximated dataset, respectively. i = [1, n]
⊂ N, where n is the number of elements in the flow stress vector. T (MPa) and A (MPa) then embody
the mean values [58] of these vectors.

R =

∑n
i=1

(
Ti − T

)
·

(
Ai −A

)
√∑n

i=1

(
Ti − T

)2
·
∑n

i=1

(
Ai −A

)2
, (10)

AARE =
1
n
·
∑n

i=1

∣∣∣∣∣Ti −Ai
Ti

∣∣∣∣∣ · 100. (11)

As can be seen in Figure 2, both statistical indicators exhibit the favorable values. It is apparent,
the approximated dataset, thanks to the utilized MLP approach, exhibits a good fit with the
experimental one.
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Figure 2. Correlation between the experimental and by-MLP approximated flow curve datasets.

The experimental and approximated flow curves are displayed in Figure 3 (see the color curves).
In addition, the gray curves then represent the performed prediction. It can be seen, this graphical
comparison confirms the above achieved statistical observation. It is also noticeable that the predicted
curves fit into the presumed flow stress levels. The presented flow curves show the apparent
manifestation of a DRX course and it is favorable that this characteristic flow stress course could be
modeled via the assembled MLP network.

The calculated material constants of the above-introduced polynomials (7)–(9) are listed in
Tables 3–5 together with the achieved values of the Pearson’s correlation coefficient [59], R (-), Equation
(10). In this equation, in association with the polynomials (7)–(9), Ti (K, -, MPa−1) and Ai (K, -, MPa−1)
represent the target and approximated values of the studied parameters, i.e., M(ε,

.
ε), n(ε, T), and α(ε,T).

i = [1, n] ⊂ N, where, n is the number of elements in the individual parameter vector. T (K, -, MPa−1)
and A (K, -, MPa−1) then embody the mean values [58] of these vectors.
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b0,0 5.67 × 102 b1,0 6.53 × 102 b2,0 −7.35 × 102 b3,0 2.75 × 102 b4,0 −6.53 × 100

b0,1 −1.71 × 100 b1,1 −1.33 × 100 b2,1 1.30 × 100 b3,1 −3.87 × 10−1 b4,1 0.00 × 100

b0,2 1.97 × 10−3 b1,2 8.70 × 10−4 b2,2 −7.04 × 10−4 b3,2 1.40 × 10−4 b4,2 0.00 × 100

b0,3 −1.01 × 10−6 b1,3 −1.85 × 10−7 b2,3 1.12 × 10−7 b3,3 0.00 × 100 b4,3 0.00 × 100

b0,4 1.93 × 10−10 b1,4 0.00 × 100 b2,4 0.00 × 100 b3,4 0.00 × 100 b4,4 0.00 × 100

R 0.996660
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Table 5. Material constants cij of the polynomial α(ε,T) (9).

cij Value cij Value cij Value cij Value cij Value

c0,0 2.85 × 10−2 c1,0 −2.84 × 10−1 c2,0 2.86 × 10−1 c3,0 −1.06 × 10−1 c4,0 1.58 × 10−2

c0,1 −8.81 × 10−5 c1,1 5.65 × 10−4 c2,1 −4.64 × 10−4 c3,1 1.02 × 10−4 c4,1 0.00 × 100

c0,2 1.32 × 10−7 c1,2 −3.74 × 10−7 c2,2 2.57 × 10−7 c3,2 −3.82 × 10−8 c4,2 0.00 × 100

c0,3 −9.99 × 10−11 c1,3 7.75 × 10−11 c2,3 −3.76 × 10−11 c3,3 0.00 × 100 c4,3 0.00 × 100

c0,4 3.26 × 10−14 c1,4 0.00 × 100 c2,4 0.00 × 100 c3,4 0.00 × 100 c4,4 0.00 × 100

R 0.999562

3.2. Flow Stress Evolution

The experimental and predicted flow curve datasets are expressed together in the form of a
volumetric chart (constructed using MATLAB® 9.3 software (MathWorks®, Natick, MA, USA) [45]),
see Figure 4.
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Figure 4. Volumetric expression of the experimental-predicted flow curve datasets of the Cr-Mo
low-alloyed steel. Colors–flow-stress level. (a) Global overview; (b) sliced in the temperature axis;
(c) sliced in the strain rate axis; (d) sliced in the strain axis.

The independent variables, i.e., deformation temperature, strain rate, and true strain are
represented by the x, y, and z axes, respectively. The flow stress values are then embodied by the
3D-color-space matrix. For a better orientation, the volumetric chart is expressed also in the form of
sliced panels along the x, y, and z exes. Predictably, the flow stress level declines with an increasing
deformation temperature and decreasing strain rate. A DRX-like behavior can be observed—with
the increase of strain, the flow stress increases up to a maximum level (strengthening phase) and
then decreases to a steady-state flow (softening phase). In the case of the highest strain rate level
(20 s−1), however, the studied strain range is not enough to undergo through the entire DRX softening
(i.e., reaching the steady-state).



Materials 2020, 13, 3480 9 of 19

3.3. Processing Maps

Based on the experimental and predicted flow curve datasets (see Figure 4), the calculations
introduced in Section 2.3 enabled a gain in the η and ξ values of the investigated Cr-Mo steel under
the wide range of thermomechanical conditions. These values have been subsequently expressed
in the form of the above-mentioned CHP maps—see Figure 5a–c. The solid contours marked by
the labels correspond to the percentage values of the power dissipation efficiency (i.e., η, Equation
(1)). The dashed contours then delimit the areas of assumed flow instability (i.e., the ξ-values ≤ 0,
Equation (3)).

Generally, higher η-values are connected with promising thermomechanical conditions. As it was
implied above, the η-values reflect the progress of metallurgical processes (most often the DRV or DRX
softening) under various thermomechanical conditions. The progress of these softening processes,
of course, corresponds also with the changes in the flow-stress level. Since the η-values are calculated
form the flow-stress values, their mutual ability to reflect the dynamic softening progress should,
thus, be evident. In the case of this research, for the purpose of easier comparison, the assembled CHP
maps have been combined with the flow-stress (FS) maps by their mutual superimposing—see the
color background expressing the flow stress evolution (Figure 5a–c).

It is well-known that the purpose of the ξ-values is to reveal potentially aggravated forming
conditions. Nevertheless, as presented in the introduction, the calculated ξ-values do not have to be
sufficient for the revealing of all these unstable conditions. To deal with this issue, Zhou et al. [1]
introduced the above-mentioned activation-energy processing (AEP) maps. The assumption is as
follows: Since the activation energy expresses the difficulty of the deformation course, the Q-values
can be utilized to reveal potentially aggravated forming conditions and thus encourage the results
given by the ξ-values. The AEP maps of the investigated steel, i.e., superimposition of the CHP maps
(Section 2.3) over the AE maps (Section 2.4), are offered in Figure 5d–f. The contours embody the CHP
maps—the same as in the case of Figure 5a–c—however, in this case, the color background corresponds
with the evolution of activation energy. All the above-mentioned maps have been assembled by means
of the Gnuplot 5.2 graphing utility Patchlevel 7 [60].

Based on the gained η-range, the deformation course of the studied material can be associated
with the specific metallurgical processes, e.g., η-range from 30 to 50% is usually attributed to the DRX
course, lower values correspond with the DRV and the η-values above the ca. 60% can have connection
to the superplastic behavior [6,23,24]. In the case of the studied steel, the η-values go beyond the
30% threshold (see Figure 5)—Thus, the softening course is probably mediated via DRX. This is in
accordance with the observations in Figure 3.

It is clear, the η-values increase as the temperature level increases. The obvious η-increase is also
observable with the decrease of strain rate under medium temperature levels. This phenomenon
can be observed also under higher temperatures—however, local η-maximums can be visible at the
highest strain rates (see, e.g., the parabolic η-course under the 1468 K in Figure 5b). The η-increase
is then practically negligible under lower temperatures. Nevertheless, despite of the nuances in
η-

.
ε dependence, it can be said that the η-values generally increase with increasing temperature and

decreasing strain rate. This behavior is closely linked with the softening course. It is understandable
that the higher the temperature and the lower the strain rate, the earlier the DRX-start. In other words,
the η-values represent the intensity of the DRX progress—higher η-values are coupled with a more
progressed DRX course.

The relation between the η-values and DRX course can be observed in optical microscopy (OM)
images (Figure 6). Based on the comparison of Figure 6a,b, it can be seen that microstructure under the
higher temperature is fully recrystallized (see clearly non-elongated grains with distinctly equiaxed
boundaries), which is linked with a higher η-level in Figure 5c,f. Further, Figure 6c,d demonstrates
the growing of recrystallized grains with the decrease in strain rate as the consequence of longer
grain-growth time, which is also linked with a higher η-level. Of course, the grain growth is also
supported by higher temperature levels.
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• Thus, it can be stated, the more progressed the DRX and the larger the grains, the higher the
η-level.

• It is understandable that a larger grain size is not beneficial for the achievement of simultaneous
high strength and high toughness [9,16]. Thus, it seems, too much high η-level does not have to
be connected with the best thermomechanical conditions—at least as regards to the final material
properties. The growing grain size with the increasing η-level has been also observed, e.g., in [1,9].
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Figure 5. Processing maps of the investigated Cr-Mo low alloyed steel. (a–c) Conventional hot
processing (CHP) maps superimposed by flow-stress (FS) maps; (d–f) activation-energy processing
(AEP) maps. Solid contours with labels—power dissipation efficiency, dashed lines—districts of
metallurgical instability, color background—flow stress evolution in (a–c) or activation energy evolution
in (d–f).

The color background in Figure 5a–c distinctly illustrates the relation between the η-values and
σ-values. It is observable, the η-values have practically an opposite evolution—they are rising as the
σ-values are decreasing (i.e., inverse proportion). Thus, in connection to the flow stress course, higher
η-values refer to deformation conditions which are beneficial form the point of view of lower forming
forces and thus lower energetic consumption and also longer tool life.

The relation between the η-values and Q-values (see Figure 5d–f) is, however, quite different in
comparison to the η-σ course. It is observable, if the temperature is rising, the η-values are increasing



Materials 2020, 13, 3480 11 of 19

and Q-values are decreasing (i.e., the inverse proportion). Nevertheless, if the strain rate is rising,
the η-values and Q-values are both decreasing (i.e., direct proportion). Similar Q-evolution has also
been observed in [56].

• Note, the decrease of the Q-values is coupled with the easier deformation course. Specifically,
the decrease of the Q-values with the increasing temperature is linked with the higher kinetic
energy of dislocation movement. The decrease of the Q-values with the increasing strain rate is
then linked with the increasing shear stress, i.e., with the activation of dislocation movement.
A more detailed explanation can be found in [55,56].
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Figure 6. OM images of samples deformed under the true strain of 1.0. (a) 1043 K/20 s−1, (b) 1553 K/20
s−1, (c) 1553 K/0.02 s−1, (d) 1553 K/20 s−1.

It is discernable, the influence of the strain rate on the Q-values is rather less apparent—linked
mainly with lower temperature levels. The strain rate influence is the most apparent under the
temperature level of 1043 K at the true strain of 0.4 (Figure 5d). The Q-value decreased from 776 to
708 kJ·mol−1 when the strain rate increased from 0.02 to 20 s−1. With respect to the highest temperature
level, i.e., 1553 K, the Q-value decreased from 255 to 233 kJ·mol−1 as the strain rate increased from 0.02
to 20 s−1.

• It is noticeable that this Q-decrease (representing a better deformation course) is in accordance
with the decrease of the grain size due to the increasing strain rate as illustrated in Figure 6c,d.

• The raising of η-values and lowering of Q-values are commonly linked with the achieving of
beneficial thermomechanical conditions. However, as stated above, the generally beneficial
increase of η-values is in the same time coupled with the grain size growing (i.e., with the
reaching of worse strength-toughness combination) because the η-increase is closely linked with
an increasing temperature and decreasing strain rate. On the other hand, the generally beneficial
decrease of Q-values is linked with a grain size growing only at the temperature increase.
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• Nonetheless, the strain rate effect is quite opposite when the true strain achieves the highest level,
i.e., 1.0 (Figure 5f). At the same temperature (specifically 1043 K), the Q-value increased from
699 to 725 kJ·mol−1 as the strain rate increased from 0.02 to 20 s−1. At the highest temperature
level (i.e., 1553 K), the Q-value increased from 263 to 273 kJ·mol−1 as the strain rate increased from
0.02 to 20 s−1. Thus, it seems like that under the higher strains the Q-evolution and η-evolution
become to be inverse proportional even in the case of the strain rate course.

Furthermore, Figure 7 offers a detailed view on the relationship between the calculated values of
activation energy (solid lines) and strain level. This relation is in the same time compared with the
flow stress course (boxes).
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Figure 7. Correlation between the activation energy and flow stress course. (a) Strain rate of 0.02 s−1;
(b) strain rate of 0.2 s−1; (c) strain rate of 2 s−1; (d) strain rate of 20 s−1. Boxes–experimental flow curves;
solid lines–activation energy evolution.

It is visible that the stage of the σ-increase is under a strain rate of 0.02 s−1 coupled with the
increase of Q (see e.g., 1043 K/0.02 s−1). This Q-course seems to be related to the prevailing work
hardening (i.e., aggravated deformation conditions). The observed Q-increase is then terminated
by the achieving of maximum point with a following gradual decrease. This decrease can be then
considered as the manifestation of the prevailing DRX course (also manifested by the σ-decrease)
which is associated with better deformation conditions. Nevertheless, most of the Q-ε curves start
immediately with a decrease phase regardless to the flow curve peak point. In addition, the decrease
in Q-values is not associated with the following constant phase (equilibrium between the DRX and
work hardening) as is typical for the σ-ε curves. Moreover, the following Q-increase with strain can be
observed in the case of all Q-ε curves. This increase is under higher temperatures and lower strain



Materials 2020, 13, 3480 13 of 19

rates followed by another decrease. The observed increase signalizes other aggravation of deformation
conditions although the corresponding σ-ε curves remain in constant phase. This fact can result in
divergences in the prediction of unfavorable conditions via the above-discussed CHP and AEP maps.

In addition, Figure 8 shows the evolution of the parameters which were calculated as an
intermediate step for the activation energy maps assembling.Materials 2020, 13, x FOR PEER REVIEW 13 of 19 
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Figure 8a is aimed on the stress multiplier α. It is clear that this parameter is predominantly
influenced by the temperature level and almost independent on the strain course. At first glance it is
clear that the temperature dependence of the α-parameter is opposite in comparison to the temperature
dependence of Q-values (Figure 7). However, the differences in the α-values between the highest and
the lowest temperature levels are almost negligible. With respect to the n-parameter (see Figure 8b),
the temperature and strain dependencies are very similar to those observed in Q-evolution (Figure 7).
The course of the M-parameter (Figure 8c) is then more complicated. It can be seen that the strain
dependency is, in the case of this parameter, strongly influenced by the strain rate level. Small strain
rate values (0.02 and 0.2 s−1) are associated with the most complicated course while the course under
the higher rates seems to be simpler. It seems that this behavior can strongly influence the reaction
of the Q-values on the changes in strain rate level (consider Equation (4)). As observed in Figure 5d,
the Q-values are higher under the lower strain rates at the strain of 0.4, which corresponds with the
observation under the strain of 0.4 in Figure 8c. The situation is opposite in the case of the strain
of 1.0 (Figure 5f). This is also reflected by the M-course in Figure 8c—the M-values of the rates of
2 and 20 s−1 become to be higher. In addition, the complicated M-course is also manifested by the
more complicated form of the polynomial description—compare the values in Table 3 (M-polynomial)
with the values in Table 4 (n-polynomial) and Table 5 (α-polynomial). Table 3 does not contain zero
values unlike the other tables, i.e., the full polynomial form had to be applied to properly describe the
M-course. The complicated M-evolution is also apparent from the surface expression in Figure 8.

Furthermore, the flow instability areas (i.e., ξ-values ≤ 0) bring the information about the potential
presence of metallurgical instabilities which can accompany the deformation course. Based on the
formed material and thermomechanical circumstances, these instability areas can be appeared as the
manifestation of e.g., flow localization, shear bands, Lüders’ bands, kink bands, mechanical twinning,
or cracks [1,6]. In the case of the above presented maps (Figure 5), two areas of metallurgical instability
can be observed:

• As regards to the strain of 0.4, the first instability area (I) is situated in the very small temperature
range of 1043–ca. 1128 K and the strain rate range of 0.02–ca. 0.2 s−1. It is observable, this small
area is growing with the increase of strain—especially towards to higher strain rates. Under the
strain of 1.0, the district (I) covers the temperature range of 1043–ca. 1170 K and the strain rate
range of 0.02–20 s−1.

• Under the strain of 0.4, the second area (II) is located in the wide temperature range of ca.
1086–more than 1298 K and the wide strain rate range of ca. 0.06–20 s−1. This area, however,
is under the higher strains significantly reduced.

• It is observable, as the strain level increase the instability district (II) gives way to district (I).
Practically, both districts are probably the part of the same instability domain.

• It is noticeable, the location of both districts is in the accordance with the thermomechanical
conditions which are connected with the higher values of activation energy, higher flow stress
values and lower values of power dissipation efficiency, i.e., with conditions potentially associated
with an aggravated deformation course.

• Nevertheless, neither the microstructure observation (realized inside of the instability districts
and in a surrounding area) (Figure 9) nor the flow curve course (Figure 3) proves the apparent
manifestation of the typical above-mentioned instability features. Only inclusions and segregations
can be visible as the consequence of the effort to visualize original grain boundaries via
etching procedure (Figure 9). It should be noted that under the constant temperature the
ξ-values are sensitive to the changes in σ-value with the strain rate level. Unfortunately, these
changes can be negatively influenced in the stage of data-acquiring procedure. In addition,
the final processing-map form is influenced by the subsequent data processing, e.g., utilized
surface-interpolation methods. These facts can lead to the overestimation of results and
microstructural observations then should confirm or refute these results.
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Figure 9. OM images of samples deformed under various strains. (a) 0.4/1063 K/15 s−1;
(b) 0.4/1128 K/0.2 s−1; (c) 0.4/1213 K/7 s−1; (d) 0.8/1213 K/7 s−1.

The results have showed that the activation energy maps can be used as a support tool for the
choice of appropriate forming conditions in cooperation with the conventional processing maps.
As stated previously in [1] the main benefit of the AE maps is that they consider the difficulty of the
deformation course. The above discussed correlation issue can enrich the overall awareness regarding
the processing maps theory and can lead to the selecting of more useful forming conditions.

4. Conclusions

For the case of Cr-Mo low-alloyed steel, based on Prasad’s dynamic material model, conventional
hot processing maps, i.e., the maps of power dissipation efficiency (η) combined with the maps of
metallurgical instability (ξ), have been assembled and subsequently superimposed over the maps of
flow stress (σ) evolution and also over the maps of activation energy (Q) evolution.

Two flow curve datasets have been combined to assemble the mentioned maps. The experimental
one has been acquired via a series of uniaxial hot compression tests realized up to the true strain of
1.0 in the temperature range of 1043–1553 K and the strain rate range of 0.02–20 s−1. In order to gain
a higher number of data points inside the experimental matrix, a multi-layer perceptron network
has been assembled, trained, and subsequently utilized to predict the flow stress course under five
additional temperature levels.

Based on the assembled maps, a correlation among the power dissipation efficiency, flow stress
course, and activation energy evolution of the investigated steel has been studied. The basic
presumption is: Higher η-values, lower Q-values, and lower σ-values should be connected with
beneficial thermomechanical conditions. Correlation among these indicators should be natural since
the relation between the flow stress and strain rate is utilized to calculate the η and Q values.
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The η-evolution and σ-course are inversely proportional (the η-increase is connected with the
σ-decrease). This indicates that η-increase is connected with the achieving of lower forming forces and
energy consumption, and also with the progress of the softening course.

The η-evolution and Q-evolution are then proportional inversely with regard to the change in a
temperature level (η-values increase as Q-values decrease). This indicates that Q-evolution and also
η-evolution predict more beneficial conditions under the higher temperature levels. However, except
of higher strains, they are non-unified with respect to the strain rate (both decrease as the strain rate
increase). Thus, in contrast with the η-values, the Q-values predict better conditions under higher
strain rates. Note, higher strain rates are beneficial with respect to the smaller grain size (providing a
better strength-toughness combination).

Furthermore, the assembled processing maps reveal two instability districts. Both districts have
been observed under the lower temperature levels, lower η-values, higher Q-values, and higher
σ-values, i.e., under conditions linked with a harder deformation course.

The obtained findings can contribute to the enrichment of overall awareness about the processing
maps theory, which can lead to the selecting of better forming conditions.
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