Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = Striatae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7008 KiB  
Article
Microfossil (Diatoms, Tintinnids, and Testate Amoebae) Assemblages in the Holocene Sediments of the Laptev Sea Shelf off the Yana River as a Proxy for Paleoenvironments
by Maria S. Obrezkova, Lidiya N. Vasilenko, Ira B. Tsoy, Xuefa Shi, Limin Hu, Yaroslav V. Kuzmin, Aleksandr N. Kolesnik, Alexandr V. Alatortsev, Anna A. Mariash, Evgeniy A. Lopatnikov, Irina A. Yurtseva, Darya S. Khmel and Anatolii S. Astakhov
Quaternary 2025, 8(3), 40; https://doi.org/10.3390/quat8030040 - 30 Jul 2025
Viewed by 157
Abstract
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; [...] Read more.
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; additionally, five species of marine tintinnids (planktonic ciliates) and 15 species of freshwater testate amoebae (testacean) were discovered for the first time in the sea sediments. Three assemblages of microfossils reflecting the phases of environmental changes during the Holocene transgression are distinguished in the studied sediments of core LV83-32. Assemblage 1 was formed under terrestrial conditions (assemblage of diatoms Eunotia-Pinnularia and testacean Difflugia-Cylindrifflugia-Centropyxis), assemblage 2 in the zone of mixing of sea and fresh waters (assemblages of diatoms Cyclotella striata-Aulacoseira, Thalassiosira hyperborea-Chaetoceros and T. hyperborea-Aulacoseira, testacean Cyclopyxis kahli, tintinnids Tintinnopsis fimbriata), and assemblage 3 reflects modern conditions in the inner shelf of the Laptev Sea under the strong influence of river runoff (assemblage of diatoms T. hyperborea-Aulacoseira-M. arctica and tintinnids Tintinnopsis ventricosoides). Changes in the natural environment in the coastal part of the Laptev Sea shelf during the Holocene, established by microfossil assemblages, are confirmed by geochemical data. Full article
Show Figures

Figure 1

18 pages, 2629 KiB  
Article
Dietary Interventions with Bletilla striata Polysaccharides and/or Composite Polysaccharides Remodel Liver Lipid Profiles and Ameliorate Gut Metabolic Disturbances in High-Fat Diet-Induced Obese Mice
by Peiting Zhang, Jinjin Dong, Jiamin Lu, Zijian Cai, Bingde Zhou, Qian Zhang, Chenglin Zhu and Luca Laghi
Foods 2025, 14(15), 2653; https://doi.org/10.3390/foods14152653 - 29 Jul 2025
Viewed by 150
Abstract
The global obesity epidemic and associated metabolic disorders present urgent public health challenges. This study employed a multi-omics approach (lipidomics, metabolomics, and gut microbiome analysis) to investigate how Bletilla striata polysaccharides (BSPs) and composite polysaccharides modulate liver lipid metabolism and gut microbiota in [...] Read more.
The global obesity epidemic and associated metabolic disorders present urgent public health challenges. This study employed a multi-omics approach (lipidomics, metabolomics, and gut microbiome analysis) to investigate how Bletilla striata polysaccharides (BSPs) and composite polysaccharides modulate liver lipid metabolism and gut microbiota in high-fat diet (HFD)-induced obese mice. HFD elevated hepatic phosphatidylcholines, cholesteryl esters (CEs), and acylcarnitines (CARs), alongside increased cecal choline and trimethylamine. BSP interventions reduced hepatic CEs, free fatty acids (FAs), CARs, and cecal sarcosine while restoring gut microbial diversity. Notably, BSP enriched beneficial genera, including Jeotgalicoccus and Atopostipes, and the network analysis revealed negative correlations between these genera and hepatic triglycerides (TGs), implicating the gut–liver axis in lipid metabolism regulation. These findings elucidate the anti-obesity mechanisms of polysaccharides through gut microbiota remodeling and cross-tissue metabolic interactions, providing a foundation for leveraging plant polysaccharides in developing safer, effective obesity therapies. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

13 pages, 5236 KiB  
Article
De Novo Transcriptome Sequencing Analysis Revealed the Expression Patterns of Genes in Different Organs and the Molecular Basis of Polysaccharide Synthesis in Bletilla striata
by Wenkui Liu, Jinxing Jiang, Zhonghai Tang, Zemao Yang and Jingping Qin
Genes 2025, 16(5), 558; https://doi.org/10.3390/genes16050558 - 6 May 2025
Viewed by 527
Abstract
Background: Bletilla striata (Thunb.) Rchb.f., a perennial medicinal plant in the genus Bletilla of the Orchidaceae family, is renowned for its hemostatic, anti-inflammatory, and tissue-regenerative properties. Despite the established importance of polysaccharides as key bioactive components in B. striata, the genes and [...] Read more.
Background: Bletilla striata (Thunb.) Rchb.f., a perennial medicinal plant in the genus Bletilla of the Orchidaceae family, is renowned for its hemostatic, anti-inflammatory, and tissue-regenerative properties. Despite the established importance of polysaccharides as key bioactive components in B. striata, the genes and molecular mechanisms underlying their synthesis remain largely unexplored. Methods: This study conducted transcriptomic analysis on the roots, tubers, and leaves of B. striata, and identified gene expression profiles and candidate genes for polysaccharide synthesis in different organs. Results: The results indicated that there were 7699 differentially expressed genes (DEGs) in Tuber vs. Leaf, 7695 DEGs in Luber vs. Root, and 6151 DEGs in Tuber vs. Root. There were significant differences in polysaccharide metabolism pathways (photosynthesis, starch, and sucrose metabolism) in different organs of B. striata. The overall enrichment levels were ranked as tubers > leaves > roots. It is worth noting that enzyme genes involved in polysaccharide synthesis exhibit significant organ specificity, with HK genes expression significantly higher in roots than in tubers and leaves, PMM, GMPP, pgm, and UGP2 genes highly expressed in tubers, while scrK, manA, and GPI genes have similar expression levels in the three organs. Conclusions: These findings identify key enzyme genes involved in the synthesis of polysaccharides in B. striata, providing a theoretical framework for enhancing its medicinal value through genetic improvement. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3576 KiB  
Article
Resequencing and Functional Analysis Revealed That BsDFR4 Could Cause the Formation of Different Flower Colors in Bletilla striata (Orchidaceae)
by Siting Zheng, Zeyuan Mi, Yuanqing Chang, Ruohan Huang, Jiaxin Li, Xiulin Jiang, Shuai Liu and Zhezhi Wang
Int. J. Mol. Sci. 2025, 26(8), 3555; https://doi.org/10.3390/ijms26083555 - 10 Apr 2025
Viewed by 430
Abstract
The formation of flower color is closely related to anthocyanin synthesis. In this study, flowers of Bletilla striata (Orchidaceae) exhibiting distinct color morphs were collected and analyzed. The HPLC results showed significantly higher total flavonoid and anthocyanin contents in purple flowers compared to [...] Read more.
The formation of flower color is closely related to anthocyanin synthesis. In this study, flowers of Bletilla striata (Orchidaceae) exhibiting distinct color morphs were collected and analyzed. The HPLC results showed significantly higher total flavonoid and anthocyanin contents in purple flowers compared to pink counterparts, with increases of 2.20-fold (p < 0.01) and 15.22-fold (p < 0.01), respectively. Cyanidin was the predominant anthocyanin in B. striata. Resequencing analyses highlighted SNP as the primary variation associated with color divergence. A comprehensive screen identified 61 genes encoding enzymes critical to the flavonoid and anthocyanin biosynthesis pathways in B. striata. Among these, 16 flower-specific genes exhibited high expression levels and harbored SNP variations. Notably, a premature stop codon was identified in a gene encoding dihydroflavonol 4-reductase (DFR), leading to truncated protein synthesis and potential disruption of anthocyanin production. Further, the heterologous overexpression of BsDFR4 in Phalaenopsis aphrodite changed petal color from white to yellow-green, demonstrating that it indeed played a regulatory role in the formation of flower color. Furthermore, yeast one-hybrid assays confirmed that transcription factors BsMYB36 and BsMYB51 could directly bind to the BsDFR4 promoter, suggesting their synergistic regulation of anthocyanin biosynthesis. These results provided a conceptual basis for insights into the formation of different flower colors in Orchidaceae. Full article
(This article belongs to the Special Issue Molecular Research on Orchid Plants: 2nd Edition)
Show Figures

Figure 1

18 pages, 5667 KiB  
Article
Vertical Migration and Habitat Preference of Planktonic Ostracods (Crustacea) in the Deep Adriatic Sea
by Igor Brautović, Barbara Gangai Zovko and Ivona Onofri
Diversity 2025, 17(4), 256; https://doi.org/10.3390/d17040256 - 4 Apr 2025
Viewed by 331
Abstract
The main objective of our study was to determine for the first time the daily vertical migration (DVM) of 15 planktonic ostracod taxa in the southern Adriatic Sea. We analysed the influence of environmental factors on the Weighted Mean Depth (WMD) of these [...] Read more.
The main objective of our study was to determine for the first time the daily vertical migration (DVM) of 15 planktonic ostracod taxa in the southern Adriatic Sea. We analysed the influence of environmental factors on the Weighted Mean Depth (WMD) of these species, considering differences between males, females and juveniles. Planktonic ostracods were collected during a research cruise in July 2003 at a depth of 1200 m. A total of 152 vertical hauls, divided into 19 sample series, were conducted from the surface to the seafloor at standard oceanographic depths at four times of day. The results showed that the species Archiconchoecia striata, Porroecia spinirostris and Conchoecia magna exhibited significant DVM and migrated daily between the surface and deeper waters. In contrast, the species Porroecia porrecta porrecta, Mikroconchoecia curta, Proceroecia procera, Proceroecia microprocera, Discoconchoecia elegans, Paraconchoecia spinifera and Metaconchoecia rotundata showed less movement. Species with subtle DVM were Porroecia porrecta adriatica, Mikroconchoecia echinulata, Proceroecia macroprocera, Paramollicia rhynchena and Loricoecia loricata, reflecting their adaptation to environmental factors such as hydrographic and biological conditions. Our analysis of WMD revealed noteworthy differences in the vertical distribution of ostracods, focussing on their diurnal migration patterns and depth preferences. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

22 pages, 12236 KiB  
Article
Transcriptome Analysis of the CML Gene Family in Bletilla striata and Regulation of Militarine Synthesis Under Sodium Acetate and Salicylic Acid Treatments
by Kunqian Li, Mengwei Xu, Qingqing Li, Hongwei Li, Ya Xu and Delin Xu
Plants 2025, 14(7), 1052; https://doi.org/10.3390/plants14071052 - 28 Mar 2025
Cited by 1 | Viewed by 580
Abstract
Calmodulin-like proteins (CMLs) are essential for calcium signal transduction in plants, influencing growth, development, stress responses, and the regulation of medicinal secondary metabolites. Despite their importance, the roles of CML genes in B. striata have not been characterized. This study aimed to elucidate [...] Read more.
Calmodulin-like proteins (CMLs) are essential for calcium signal transduction in plants, influencing growth, development, stress responses, and the regulation of medicinal secondary metabolites. Despite their importance, the roles of CML genes in B. striata have not been characterized. This study aimed to elucidate the composition and function of the BsCML gene family in B. striata, identifying 38 genes across eight subfamilies. Evolutionary analysis showed that BsCML genes are stable and conserved, while functional predictions indicated involvement in environmental stress response, hormone regulation, and circadian rhythms. Expression profiling revealed that BsCML27 and BsCML16 were highly expressed during callus culture, suggesting their involvement in growth and development. Notably, BsCML32 and BsCML37 exhibited bidirectional regulation of militarine synthesis under sodium acetate (NaAc) and salicylic acid (SA) treatments, with tissue-specific expression strongly correlated (p < 0.01) with metabolite accumulation. These findings highlight the significant roles of BsCML genes in stress response and secondary metabolite synthesis, providing a foundation for enhancing the medicinal quality of B. striata. Full article
(This article belongs to the Special Issue Genetic and Biological Diversity of Plants)
Show Figures

Figure 1

17 pages, 11396 KiB  
Article
Transcriptome Analysis of Wild Bletilla striata Tubers Across Multiple Years Revealed the Molecular Mechanisms Regulating Polysaccharide Metabolism and Tuber Enlargement
by Hai Huang, Long Yang, Chunfang Luo, Tuo Qi and Junna Duan
Plants 2025, 14(5), 689; https://doi.org/10.3390/plants14050689 - 24 Feb 2025
Cited by 1 | Viewed by 686
Abstract
A Bletilla striata (Thunb.) Reichb.f., known as Bai Ji in Chinese, is a plant from the Orchidaceae family that has been used for its medicinal properties for thousands of years in China. B. striata holds significant economic value due to [...] Read more.
A Bletilla striata (Thunb.) Reichb.f., known as Bai Ji in Chinese, is a plant from the Orchidaceae family that has been used for its medicinal properties for thousands of years in China. B. striata holds significant economic value due to its esteemed medicinal applications. Our study aimed to analyze the transcriptome of wild B. striata tubers across multiple years to understand the molecular mechanisms regulating polysaccharide metabolism and tuber enlargement. We collected wild B. striata samples of different growth ages and analyzed their chemical composition, including total phenols, polysaccharides, alkaloids, and proteins. The results showed that the content of these compounds varied with the growth age of the plants. Our study focused on analyzing the genes associated with growth years and accelerating the seedling growth cycle, which holds immense value for the preservation and optimal utilization of superior B. striata orchid resources. To further investigate the underlying molecular mechanisms, we performed a comprehensive transcriptome analysis to explore gene expression, functional annotation, and regulatory networks related to the development and chemical composition of B. striata tubers. The quality of perennial medicinal herbs is intricately linked to their growth age. Unfortunately, excessive wild resource excavation has resulted in the premature harvesting of these herbs, causing a decline in their overall quality and effectiveness. Our study offers valuable insights into the conservation and utilization of B. striata resources. Full article
(This article belongs to the Topic Research on Natural Products of Medical Plants)
Show Figures

Figure 1

17 pages, 6115 KiB  
Article
Black Sea Bass Centropristis striata Year Class Strength and Spatial Extent from Two Long-Term Surveys off the Southeast U.S. Atlantic Coast
by Julie L. Vecchio, Margaret W. Finch, Kevin R. Spanik, Amy Zimney and Tracey I. Smart
Fishes 2025, 10(2), 53; https://doi.org/10.3390/fishes10020053 - 28 Jan 2025
Viewed by 856
Abstract
The Southeastern U.S. Atlantic coast (North Carolina to Florida, U.S.A.) has undergone considerable environmental change in recent decades, including increasing coastal water temperature and human development. The region is also home to a diverse suite of exploited reef fish species, including the southern [...] Read more.
The Southeastern U.S. Atlantic coast (North Carolina to Florida, U.S.A.) has undergone considerable environmental change in recent decades, including increasing coastal water temperature and human development. The region is also home to a diverse suite of exploited reef fish species, including the southern stock of black sea bass (Centropristis striata). The objective of the current study was to compare trends in black sea bass year class strength and central location captured by trawls (age 0) and traps (age 2) as well as compare those trends to regional bottom temperature. We found no correlation between age 0 and age 2 abundance when comparing the same year class, suggesting that the numbers of trawl-caught juveniles cannot predict the number of adults available to the fishery. Larger year classes observed in traps were correlated with centers of abundance farther south in the region, while smaller year classes corresponded with more northerly centers of abundance. In both trawls and traps, strong year classes occurred following years with below-average regional water temperatures, and a series of recent, weak year classes correspond with recent higher-than-average water temperatures. It is unclear whether correlations between shifting centers of abundance, year class strength, and regional bottom temperature indicate a range contraction for the southern stock of black sea bass or movement into areas previously inhabited by the northern stock of the species. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes, Second Edition)
Show Figures

Figure 1

12 pages, 2118 KiB  
Article
Natural Bletilla striata Polysaccharide-Based Hydrogels for Accelerating Hemostasis
by Hui-Fang Lin, Yue-Yue Wang, Feng-Zhen Liu, Zi-Wei Yang, Hao Cui, Si-Yu Hu, Feng-He Li and Pei Pan
Gels 2025, 11(1), 48; https://doi.org/10.3390/gels11010048 - 8 Jan 2025
Cited by 2 | Viewed by 1196
Abstract
Most of the existing hydrogel dressings have inadequacies in mechanical performance, biological activities, compatibility, or versatility, which results in the development of rapid, green, and cost-effective approaches for hydrogels in biochemical and biomedical applications becoming a top-priority task. Herein, inspired by the inherent [...] Read more.
Most of the existing hydrogel dressings have inadequacies in mechanical performance, biological activities, compatibility, or versatility, which results in the development of rapid, green, and cost-effective approaches for hydrogels in biochemical and biomedical applications becoming a top-priority task. Herein, inspired by the inherent bioactivity, water retention properties, and biocompatibility of natural polysaccharide hydrogels, we have prepared self-healing gels. Using Bletilla striata polysaccharide (BSP), carboxymethyl chitosan (CMCS), and borax via borate ester linkages, we created hemostatic and self-healing Chinese herbal medicine hydrogels in varying concentrations (2.5%, 3.0%, and 4.0%). A rotational rheometer was used to describe the hydrogels’ shape and rheological characteristics. At all concentrations, it was found that the hydrogels’ elastic modulus (G′) consistently and significantly outperformed their viscous modulus (G″), suggesting a robust internal structure. All of the hydrogels had cell viability levels as high as 100% and hemolysis rates below 1%, indicating the hydrogels’ outstanding biocompatibility. Furthermore, the hydrogels demonstrated superior hemostatic qualities in an in vivo mouse tail amputation model, as well as in in vitro coagulation tests. The results show that the hydrogel possesses excellent self-healing properties, as well as a good biocompatibility and hemostatic performance, thus paving the way for the development of a potential hemostatic green hydrogel. Full article
Show Figures

Graphical abstract

1 pages, 606 KiB  
Correction
Correction: Zhang et al. Interactions of Self-Assembled Bletilla Striata Polysaccharide Nanoparticles with Bovine Serum Albumin and Biodistribution of Its Docetaxel-Loaded Nanoparticles. Pharmaceutics 2019, 11, 43
by Guangyuan Zhang, Jin Qiao, Xin Liu, Yuran Liu, Ji Wu, Long Huang, Danyang Ji and Qingxiang Guan
Pharmaceutics 2025, 17(1), 15; https://doi.org/10.3390/pharmaceutics17010015 - 25 Dec 2024
Cited by 2 | Viewed by 480
Abstract
In the original publication [...] Full article
25 pages, 14280 KiB  
Article
The Use of Chemical Flocculants and Chitosan as a Pre-Concentration Step in the Harvesting Process of Three Native Microalgae Species from the Canary Islands Cultivated Outdoors at the Pilot Scale
by Laura Figueira Garcia, Zivan Gojkovic, Marianna Venuleo, Flavio Guidi and Eduardo Portillo
Microorganisms 2024, 12(12), 2583; https://doi.org/10.3390/microorganisms12122583 - 13 Dec 2024
Cited by 1 | Viewed by 1436
Abstract
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid–liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The [...] Read more.
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid–liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl3 and AlCl3 were tested on freshwater Chlorella sorokiniana and two marine algae, Dunaliella tertiolecta and Tetraselmis striata. A preliminary screening at the laboratory scale was performed to detect the most suitable doses of flocculants. On the basis of these results, selected doses were tested on the pilot scale, using the flocculants for a pre-concentration step and the centrifugation as a second step to confirm the effectiveness of flocculants in a realistic operational environment. The biomass recoveries (Rpilot, %) of 100 L cultures were as follows: (1) for T. striata, Rpilot = 94.6% for 0.08 g/L AlCl3, 88.4% for 0.1 g/L FeCl3, and 68.3% for 0.04 g/L chitosan; (2) for D. tertiolecta, Rpilot = 81.7% for 0.1 g/L AlCl3, 87.9% for 0.2 g/L FeCl3, and 81.6% for 0.1 g/L chitosan; and (3) for C. sorokiniana, Rpilot = 89.6% for 0.1 g/L AlCl3, 98.6% for 0.2 g/L FeCl3, and 68.3% for 0.1 g/L chitosan. Flocculation reduced the harvesting costs by 85.9 ± 4.5% using chemical flocculants. Excesses of aluminum and iron in the biomass could be solved by decreasing the pH in the biomass combined with washing. This is the first study, to the best of our knowledge, that investigates the pilot-scale flocculation of three native Canarian microalgal strains. A pilot-scale pre-concentration step before centrifugation can improve the yield and reduce costs in the microalgae harvesting process. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

12 pages, 2517 KiB  
Article
Evaluation of Soil Quality in Different Bletilla striata Agroforestry Systems in Eastern China
by Xiaoqing Cao, Zhili Zhang, Jingjing Wang, Huiyan Dai, Aiting Zhang and Xiaoniu Xu
Horticulturae 2024, 10(12), 1308; https://doi.org/10.3390/horticulturae10121308 - 9 Dec 2024
Cited by 1 | Viewed by 897
Abstract
Agroforestry is being promoted as a feasible land use management to improve understory economic benefits. However, there are few studies on species selection and the comprehensive evaluation of soil quality change in rhizoma bletillae (Bletilla striata) agroforestry systems. The soil quality [...] Read more.
Agroforestry is being promoted as a feasible land use management to improve understory economic benefits. However, there are few studies on species selection and the comprehensive evaluation of soil quality change in rhizoma bletillae (Bletilla striata) agroforestry systems. The soil quality index (SQI) and minimum dataset (MDS) methods can reflect the overall condition and were effective tools for understanding different cultivation systems. In this study, we evaluated the soil quality of four cultivation models (including three agroforestry systems: PeB, moso bamboo (Phyllostachys edulis)–rhizoma bletillae; PoB, plane trees (Platanus orientali)–rhizoma bletillae; CcB, pecan trees (Carya cathayensis)–rhizoma bletillae; and CK, rhizoma bletillae monoculture. The total dataset (TDS) consisted of 15 soil parameters containing physical, chemical, and biological characteristics. The results showed that soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) were finally selected and established as the MDS. Agroforestry could significantly influence soil quality. Compared with CK, the SQI in CcB significantly increased and decreased in PeB and PoB. Soil water content (SWC), nitrate nitrogen (NO3-N), dissolved organic carbon (DOC), SOC, TN, and TP contents were higher in CcB than in the other cultivation models. Based on various soil indicators and SQI analysis, the CcB was the best in improving soil quality. These findings showed that the soil quality index based on the MDS can be used as an effective indicator for agroforestry systems selection. It provides theoretical guidance for the practice of bionic cultivation and the sustainable management of rhizoma bletillae. Full article
Show Figures

Figure 1

21 pages, 13386 KiB  
Article
Unveiling the Role of β-Glucosidase Genes in Bletilla striata’s Secondary Metabolism: A Genome-Wide Analysis
by Mengwei Xu, Hongwei Li, Hongyuan Luo, Jingyi Liu, Kunqian Li, Qingqing Li, Ning Yang and Delin Xu
Int. J. Mol. Sci. 2024, 25(23), 13191; https://doi.org/10.3390/ijms252313191 - 8 Dec 2024
Cited by 3 | Viewed by 1510
Abstract
β-glucosidases (BGLUs) are abundant enzymes in plants that play pivotal roles in cell wall modification, hormone signal transduction, secondary metabolism, defense against herbivores, and volatile compound release. Bletilla striata, a perennial herb revered for its therapeutic properties, lacks a comprehensive analysis of [...] Read more.
β-glucosidases (BGLUs) are abundant enzymes in plants that play pivotal roles in cell wall modification, hormone signal transduction, secondary metabolism, defense against herbivores, and volatile compound release. Bletilla striata, a perennial herb revered for its therapeutic properties, lacks a comprehensive analysis of its BGLU gene family despite the critical role these genes play in plant secondary metabolism. This study aims to perform a genome-wide analysis of the BGLU gene family in B. striata (BsBGLU) to elucidate their functions and regulatory mechanisms in secondary metabolite biosynthesis. We conducted a genome-wide screening to identify BsBGLU, followed by phylogenetic analysis to classify these genes into groups. Sequence characteristics were analyzed to predict functional roles. Simple sequence repeat (SSR) markers were examined to assess conservation and polymorphism among different landraces. Expression profiles of BsBGLUs were evaluated under sodium acetate and salicylic acid elicitor treatments and across different tissues. The accumulation of phylogenetic metabolites in different treatments and tissues was also analyzed by HPLC and LCMS detection to explore the correlation between gene expression and metabolite accumulation. A total of 23 BsBGLU genes were identified and classified into eight distinct groups. Sequence analysis suggested diverse functions related to hormone responses, secondary metabolism, and stress resistance. BsBGLUs with SSR sequences were conserved yet showed polymorphism among different B. striata landraces. Under elicitor treatments, expression profiling revealed that BsBGLUs significantly modulate the synthesis of secondary metabolites such as dactylorhin A and militarine. Tissue-specific expression analysis indicated that BsBGLU15 and BsBGLU28 were highly expressed in tubers compared to other tissues, suggesting their central role and a potential negative regulatory effect in metabolite accumulation. The elicitor NaAc can regulate metabolite synthesis by modulating the expression of BsBGLUs. The BsBGLU gene family in B. striata is integral to the modulation of secondary metabolite biosynthesis and accumulation and can respond to elicitors to promote the synthesis of militarine. These findings provide a theoretical foundation for the further exploration of BsBGLU gene functions and their regulatory mechanisms, advancing the production of medicinally active compounds in B. striata. Full article
Show Figures

Figure 1

15 pages, 6033 KiB  
Article
DNA Barcodes and Morphology Reveal Two New Species of the Genus Prochas Walkley, 1959 (Ichneumonidae, Campopleginae), from China
by Yuanyuan Han, Kees van Achterberg and Xuexin Chen
Insects 2024, 15(12), 968; https://doi.org/10.3390/insects15120968 - 4 Dec 2024
Viewed by 1242
Abstract
DNA barcoding is an effective modern tool in taxonomy, evolutionary biology, and biodiversity research. Many new species have been discovered and described with DNA barcodes as part of their diagnostic features. We combined morphological examination and molecular species delimitation of the mitochondrial cytochrome [...] Read more.
DNA barcoding is an effective modern tool in taxonomy, evolutionary biology, and biodiversity research. Many new species have been discovered and described with DNA barcodes as part of their diagnostic features. We combined morphological examination and molecular species delimitation of the mitochondrial cytochrome c oxidase 1 (COI) gene using the automatic barcode gap discovery (ABGD) to investigate species boundaries. The genus Prochas Walkley (Hymenoptera, Ichneumonidae, Campopleginae) was first reported from China and is new for the Oriental and Eastern Palearctic regions. Using an integrative taxonomy method, two new species P. rugipunctata sp. nov. and P. striata sp. nov. are hereby described and illustrated. A key to the world species and a distribution map are provided. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

25 pages, 3965 KiB  
Article
Preparation, Characterization, and Wound Healing Promotion of Hydrogels Containing Glucosyloxybenzyl 2-Isobutylmalates Extract from Bletilla striata (Thunb.) Reichb.f.
by Fei Ran, Kailang Mu, Gang Liu, Yuchen Liu, Yuxin Pang, Guo Feng, Lingli Zhou and Leqiang Peng
Int. J. Mol. Sci. 2024, 25(19), 10563; https://doi.org/10.3390/ijms251910563 - 30 Sep 2024
Cited by 1 | Viewed by 1409
Abstract
Plant-derived medicinal materials have significant potential and promising applications in wound healing and skin regeneration. This study aims to develop a plant-based extract hydrogel from Bletilla striata (Thunb.Reichb.f.), specifically a glucosyloxybenzyl 2-isobutylmalates extract (B), and characterize its potential effects on wound healing. We [...] Read more.
Plant-derived medicinal materials have significant potential and promising applications in wound healing and skin regeneration. This study aims to develop a plant-based extract hydrogel from Bletilla striata (Thunb.Reichb.f.), specifically a glucosyloxybenzyl 2-isobutylmalates extract (B), and characterize its potential effects on wound healing. We synthesized the hydrogel using carbomer (C), glycerol (G), and triethanolamine (T) as the matrix, incorporating B into the hydrogel base, and evaluated its physical and chemical properties. In vitro tests assessed the biocompatibility of the glucosyloxybenzyl 2-isobutylmalates-carbomer-glycerol-triethanolamine (B-CGT) hydrogel and its effects on cell proliferation, migration, and adhesion. Animal model experiments evaluated its potential to promote wound healing. The results showed that the prepared B-CGT hydrogel possessed a good three-dimensional network structure and stability, demonstrating significant free radical scavenging capacity in antioxidant tests. In cell experiments, the B-CGT hydrogel exhibited no potential cytotoxicity and showed good hemocompatibility and promotion of cell proliferation. Animal experiments indicated that wounds treated with the B-CGT hydrogel healed significantly faster, with improved formation of new epithelial tissue and collagen. This study suggests that the developed B-CGT hydrogel is a promising candidate for wound dressings, with excellent physicochemical properties and controlled drug release capabilities, effectively promoting the wound healing process. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

Back to TopTop