Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Stefan–Boltzmann law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2432 KiB  
Article
High-Temperature Thermal Camouflage Device Considering Radiative Thermal Transfer from the Target
by Zeyu Lin, Xiaohong Wang, Jiangtai Lin, Honghao Jiang, Guodong Xu, Tao Zeng and Tiande Wen
Micromachines 2025, 16(8), 840; https://doi.org/10.3390/mi16080840 - 22 Jul 2025
Viewed by 255
Abstract
Thermal camouflage technologies manipulate heat fluxes to conceal objects from thermographic detection, offering potential solutions for thermal management in high-power-density electronics. Most reported approaches are aimed at scenarios where the target is not a heat source; however, any target with a non-zero temperature [...] Read more.
Thermal camouflage technologies manipulate heat fluxes to conceal objects from thermographic detection, offering potential solutions for thermal management in high-power-density electronics. Most reported approaches are aimed at scenarios where the target is not a heat source; however, any target with a non-zero temperature emits thermal radiation described by the Stefan–Boltzmann law since the thermal radiation of an object is proportional to the fourth power of its temperature (T4). To address this issue, this study proposes a thermal camouflage device that considers the influence of radiative thermal transfer from the target. The underlying principle involves maintaining synchronous heat transfer separately along both the device and background surfaces. Numerical simulation confirms the feasibility of this proposed thermal camouflage strategy. Moreover, by altering some parameters related to the target such as geometry, location, temperature, and surface emissivity, excellent performance can be achieved using this device. This work advances thermal management strategies for high-power electronics and infrared-sensitive systems, with applications in infrared stealth, thermal diagnostics, and energy-efficient heat dissipation. Full article
(This article belongs to the Special Issue Thermal Transport and Management of Electronic Devices)
Show Figures

Figure 1

16 pages, 5598 KiB  
Article
Hybrid Fabrics for Ohmic Heating Applications
by Jiří Militký, Karel Kupka, Veronika Tunáková and Mohanapriya Venkataraman
Polymers 2025, 17(10), 1339; https://doi.org/10.3390/polym17101339 - 14 May 2025
Viewed by 369
Abstract
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in [...] Read more.
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in different ways, e.g., from metallic yarns, conductive polymers, conductive coatings, etc. In comparison with other types of flexible ohmic heaters, these structures should be corrosion resistant, air permeable, and comfortable. They should not loose ohmic heating efficiency due to frequent intensive washing and maintenance. In this study, the basic electrical properties of a conductive fabric composed of a polyester/cotton fiber mixture and a small amount of fine stainless-steel staple fibers (SS) were evaluated and predicted. Even though the basic conductive component of SS fibers is iron and its electrical characteristics obey Ohm’s law, the electrical behavior of the prepared fabric was highly nonlinear, resembling a more complex response than that of a classical conductor. The non-linear behavior was probably due to non-ideal, poorly defined random interfaces between individual short SS fibers. A significant time–dynamics relationship was also shown. Using the Stefan–Boltzmann law describing radiation power, we demonstrated that it is possible to predict surface temperature due to the ohmic heating of a fabric related to the input electrical power. Significant local temperature variations in the heated hybrid fabric in both main directions (warp and weft) were identified. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

16 pages, 3268 KiB  
Article
Estimating Maximum Dwell Time for Firefighting Teams Based on Ambient Temperature and Radiant Heat Exposure
by Álvaro Romero-Barriuso, Jesús Manuel Ballesteros-Álvarez, Blasa María Villena-Escribano, José Luis Fuentes-Bargues and Cristina González-Gaya
Fire 2025, 8(3), 89; https://doi.org/10.3390/fire8030089 - 22 Feb 2025
Viewed by 727
Abstract
This research presents a scientifically grounded model designed to enhance the safety protocols for firefighting teams during fire intervention scenarios. The model estimates the maximum allowable exposure duration based on ambient temperature and radiant heat, employing data captured by thermal imaging cameras, which [...] Read more.
This research presents a scientifically grounded model designed to enhance the safety protocols for firefighting teams during fire intervention scenarios. The model estimates the maximum allowable exposure duration based on ambient temperature and radiant heat, employing data captured by thermal imaging cameras, which provide real-time measurements of infrared radiation emitted by fire-affected zones. Utilising the Stefan–Boltzmann law to quantify radiative heat transfer and Probit vulnerability analysis to assess thermal risk, critical temperature thresholds and corresponding exposure durations were determined. The results indicate that the maximum permissible ambient temperature for firefighting interventions is 263 °C, with a safe exposure duration of 26 s under these thermal conditions. This approach underscores the significance of ambient temperature as a pivotal parameter in risk assessment and intervention strategy development. Furthermore, the model’s applicability extends to other high-risk environments, including industrial operations, providing a robust and versatile framework for safety management. These findings contribute to advancing evidence-based protocols that mitigate injury risks, safeguard firefighting personnel, and optimise operational decision-making during emergencies. Full article
Show Figures

Figure 1

21 pages, 7974 KiB  
Article
Horizontal Heat Flux Spread in an Inner Corner of Buildings
by Daniela Šejnová Pitelková, Petr Hejtmánek and Vladimír Mózer
Safety 2024, 10(4), 88; https://doi.org/10.3390/safety10040088 - 16 Oct 2024
Viewed by 1497
Abstract
This study investigates fire separation distances as essential means of passive fire protection in building design. The focus is on the inner corner configuration of building exterior walls, which represents the worst-case scenario for façade fire spread outside of a building. The inner-corner [...] Read more.
This study investigates fire separation distances as essential means of passive fire protection in building design. The focus is on the inner corner configuration of building exterior walls, which represents the worst-case scenario for façade fire spread outside of a building. The inner-corner configuration appears to increase the intensity of the radiative heat flux due to reflection and reradiation of heat. Comprehensive approaches for determining fire separation distances around the various façade geometries can be found, but none of them is focused on detailed descriptions of the unprotected area in an inner corner. A medium-scale scenario was chosen and was experimentally validated with a radiant panel for a better understanding of heat flux spread. This paper compares the experiment with analytical and numerical models. The analytical model is based on the Stefan–Boltzmann law and the calculated configuration factor as per Eurocode 1. The numerical model combines radiative and convective components of the heat flux because convection is non-negligible near the heat source. Experimental data confirm the prediction based on the numerical and analytical model and show agreement. The final increase in heat flux due to the corner configuration investigated at the medium scale reaches up to 29%. Full article
Show Figures

Figure 1

12 pages, 2993 KiB  
Article
Intelligent Space Thermal Control Radiator Based on Phase Change Material with Partial Visible Transparency
by Xianghao Kong, Hezhi Sun, Shiri Liang, Zao Yi, Naiting Gu and Yougen Yi
Coatings 2024, 14(5), 535; https://doi.org/10.3390/coatings14050535 - 25 Apr 2024
Cited by 5 | Viewed by 2974
Abstract
Coating structures with dynamically adjustable infrared emissivity are crucial in spacecraft components to cope with the transient thermal environments of space. For a long time, thermochromic phase change materials have been widely used in applications requiring emissivity adjustment, and optimizing the range of [...] Read more.
Coating structures with dynamically adjustable infrared emissivity are crucial in spacecraft components to cope with the transient thermal environments of space. For a long time, thermochromic phase change materials have been widely used in applications requiring emissivity adjustment, and optimizing the range of adjustable infrared emissivity has always been at the forefront of research. However, reducing the absorption of solar radiation has significant implications for the practical application and thermal stability of spacecraft components in space environments. In this paper, we propose a multilayer film structure based on the phase change material VO2 combined with the materials ZnSe and ITO to achieve low solar radiation absorption and adjustable infrared emissivity for intelligent thermal radiators in space. Through finite element simulation analysis of the structure, we achieve a solar radiation absorption rate of 0.3 and an adjustable infrared emissivity of 0.49. According to Stefan–Boltzmann’s law, the structure exhibits strong radiative heat dissipation at high temperatures and weak energy dissipation at low temperatures to maintain the thermal stability of the device and ensure efficient operation. The intelligent thermal radiator operates based on the principles of Fabry–Perot resonance. Therefore, the multilayer structure based on the phase change material VO2 demonstrates excellent performance in both solar radiation absorption and adjustable infrared emissivity, showcasing its tremendous potential in the field of intelligent thermal control in aerospace. Full article
(This article belongs to the Special Issue Micro-Nano Optics and Its Applications)
Show Figures

Figure 1

17 pages, 10097 KiB  
Article
The Metastable State of Fermi–Pasta–Ulam–Tsingou Models
by Kevin A. Reiss and David K. Campbell
Entropy 2023, 25(2), 300; https://doi.org/10.3390/e25020300 - 6 Feb 2023
Cited by 5 | Viewed by 2744
Abstract
Classical statistical mechanics has long relied on assumptions such as the equipartition theorem to understand the behavior of the complicated systems of many particles. The successes of this approach are well known, but there are also many well-known issues with classical theories. For [...] Read more.
Classical statistical mechanics has long relied on assumptions such as the equipartition theorem to understand the behavior of the complicated systems of many particles. The successes of this approach are well known, but there are also many well-known issues with classical theories. For some of these, the introduction of quantum mechanics is necessary, e.g., the ultraviolet catastrophe. However, more recently, the validity of assumptions such as the equipartition of energy in classical systems was called into question. For instance, a detailed analysis of a simplified model for blackbody radiation was apparently able to deduce the Stefan–Boltzmann law using purely classical statistical mechanics. This novel approach involved a careful analysis of a “metastable” state which greatly delays the approach to equilibrium. In this paper, we perform a broad analysis of such a metastable state in the classical Fermi–Pasta–Ulam–Tsingou (FPUT) models. We treat both the α-FPUT and β-FPUT models, exploring both quantitative and qualitative behavior. After introducing the models, we validate our methodology by reproducing the well-known FPUT recurrences in both models and confirming earlier results on how the strength of the recurrences depends on a single system parameter. We establish that the metastable state in the FPUT models can be defined by using a single degree-of-freedom measure—the spectral entropy (η)—and show that this measure has the power to quantify the distance from equipartition. For the α-FPUT model, a comparison to the integrable Toda lattice allows us to define rather clearly the lifetime of the metastable state for the standard initial conditions. We next devise a method to measure the lifetime of the metastable state tm in the α-FPUT model that reduces the sensitivity to the exact initial conditions. Our procedure involves averaging over random initial phases in the plane of initial conditions, the P1-Q1 plane. Applying this procedure gives us a power-law scaling for tm, with the important result that the power laws for different system sizes collapse down to the same exponent as Eα20. We examine the energy spectrum E(k) over time in the α-FPUT model and again compare the results to those of the Toda model. This analysis tentatively supports a method for an irreversible energy dissipation process suggested by Onorato et al.: four-wave and six-wave resonances as described by the “wave turbulence” theory. We next apply a similar approach to the β-FPUT model. Here, we explore in particular the different behavior for the two different signs of β. Finally, we describe a procedure for calculating tm in the β-FPUT model, a very different task than for the α-FPUT model, because the β-FPUT model is not a truncation of an integrable nonlinear model. Full article
Show Figures

Figure 1

28 pages, 19642 KiB  
Article
Testing Some Different Implementations of Heat Convection and Radiation in the Leapfrog-Hopscotch Algorithm
by Ali Habeeb Askar, Issa Omle, Endre Kovács and János Majár
Algorithms 2022, 15(11), 400; https://doi.org/10.3390/a15110400 - 29 Oct 2022
Cited by 7 | Viewed by 2363
Abstract
Based on many previous experiments, the most efficient explicit and stable numerical method to solve heat conduction problems is the leapfrog-hopscotch scheme. In our last paper, we made a successful attempt to solve the nonlinear heat conduction–convection–radiation equation. Now, we implement the convection [...] Read more.
Based on many previous experiments, the most efficient explicit and stable numerical method to solve heat conduction problems is the leapfrog-hopscotch scheme. In our last paper, we made a successful attempt to solve the nonlinear heat conduction–convection–radiation equation. Now, we implement the convection and radiation terms in several ways to find the optimal implementation. The algorithm versions are tested by comparing their results to 1D numerical and analytical solutions. Then, we perform numerical tests to compare their performance when simulating heat transfer of the two-dimensional surface and cross section of a realistic wall. The latter case contains an insulator layer and a thermal bridge. The stability and convergence properties of the optimal version are analytically proved as well. Full article
(This article belongs to the Special Issue Computational Methods and Optimization for Numerical Analysis)
Show Figures

Figure 1

16 pages, 4197 KiB  
Article
Compensation for Vanadium Oxide Temperature with Stereo Vision on Long-Wave Infrared Light Measurement
by Chun-Yi Lin and Wu-Sung Yao
Sensors 2022, 22(21), 8302; https://doi.org/10.3390/s22218302 - 29 Oct 2022
Viewed by 2011
Abstract
In this paper, using automated optical inspection equipment and a thermal imager, the position and the temperature of the heat source or measured object can effectively be grasped. The high-resolution depth camera is with the stereo vision distance measurement and the low-resolution thermal [...] Read more.
In this paper, using automated optical inspection equipment and a thermal imager, the position and the temperature of the heat source or measured object can effectively be grasped. The high-resolution depth camera is with the stereo vision distance measurement and the low-resolution thermal imager is with the long-wave infrared measurement. Based on Planck’s black body radiation law and Stefan–Boltzmann law, the binocular stereo calibration of the two cameras was calculated. In order to improve the measured temperature error at different distances, equipped with Intel Real Sense Depth Camera D435, a compensator is proposed to ensure that the measured temperature of the heat source is correct and accurate. From the results, it can be clearly seen that the actual measured temperature at each distance is proportional to the temperature of the thermal image vanadium oxide, while the actual measured temperature is inversely proportional to the distance of the test object. By the proposed compensation function, the compensation temperature at varying vanadium oxide temperatures can be obtained. The errors between the average temperature at each distance and the constant temperature of the test object at 39 °C are all less than 0.1%. Full article
(This article belongs to the Special Issue Sensors for Machine Condition Monitoring and Fault Detection)
Show Figures

Figure 1

39 pages, 11695 KiB  
Article
Thermodynamic Relationships for Perfectly Elastic Solids Undergoing Steady-State Heat Flow
by Anne M. Hofmeister, Everett M. Criss and Robert E. Criss
Materials 2022, 15(7), 2638; https://doi.org/10.3390/ma15072638 - 3 Apr 2022
Cited by 4 | Viewed by 2937
Abstract
Available data on insulating, semiconducting, and metallic solids verify our new model that incorporates steady-state heat flow into a macroscopic, thermodynamic description of solids, with agreement being best for isotropic examples. Our model is based on: (1) mass and energy conservation; (2) Fourier’s [...] Read more.
Available data on insulating, semiconducting, and metallic solids verify our new model that incorporates steady-state heat flow into a macroscopic, thermodynamic description of solids, with agreement being best for isotropic examples. Our model is based on: (1) mass and energy conservation; (2) Fourier’s law; (3) Stefan–Boltzmann’s law; and (4) rigidity, which is a large, yet heretofore neglected, energy reservoir with no counterpart in gases. To account for rigidity while neglecting dissipation, we consider the ideal, limiting case of a perfectly frictionless elastic solid (PFES) which does not generate heat from stress. Its equation-of-state is independent of the energetics, as in the historic model. We show that pressure-volume work (PdV) in a PFES arises from internal interatomic forces, which are linked to Young’s modulus (Ξ) and a constant (n) accounting for cation coordination. Steady-state conditions are adiabatic since heat content (Q) is constant. Because average temperature is also constant and the thermal gradient is fixed in space, conditions are simultaneously isothermal: Under these dual restrictions, thermal transport properties do not enter into our analysis. We find that adiabatic and isothermal bulk moduli (B) are equal. Moreover, Q/V depends on temperature only. Distinguishing deformation from volume changes elucidates how solids thermally expand. These findings lead to simple descriptions of the two specific heats in solids: ∂ln(cP)/∂P = −1/B; cP = nΞ times thermal expansivity divided by density; cP = cVnΞ/B. Implications of our validated formulae are briefly covered. Full article
(This article belongs to the Special Issue Thermophysical Properties of Materials)
Show Figures

Figure 1

15 pages, 2904 KiB  
Article
Thermoeconomic Optimization of an Irreversible Novikov Plant Model under Different Regimes of Performance
by Juan Carlos Pacheco-Paez, Fernando Angulo-Brown and Marco Antonio Barranco-Jiménez
Entropy 2017, 19(3), 118; https://doi.org/10.3390/e19030118 - 15 Mar 2017
Cited by 14 | Viewed by 4315
Abstract
The so-called Novikov power plant model has been widely used to represent some actual power plants, such as nuclear electric power generators. In the present work, a thermo-economic study of a Novikov power plant model is presented under three different regimes of performance: [...] Read more.
The so-called Novikov power plant model has been widely used to represent some actual power plants, such as nuclear electric power generators. In the present work, a thermo-economic study of a Novikov power plant model is presented under three different regimes of performance: maximum power (MP), maximum ecological function (ME) and maximum efficient power (EP). In this study, different heat transfer laws are used: The Newton’s law of cooling, the Stefan–Boltzmann radiation law, the Dulong–Petit’s law and another phenomenological heat transfer law. For the thermoeconomic optimization of power plant models, a benefit function defined as the quotient of an objective function and the total economical costs is commonly employed. Usually, the total costs take into account two contributions: a cost related to the investment and another stemming from the fuel consumption. In this work, a new cost associated to the maintenance of the power plant is also considered. With these new total costs, it is shown that under the maximum ecological function regime the plant improves its economic and energetic performance in comparison with the other two regimes. The methodology used in this paper is within the context of finite-time thermodynamics. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

16 pages, 6824 KiB  
Article
The Evaluation of Noise Spectroscopy Tests
by Pavel Fiala, Petr Drexler, Dusan Nespor, Zoltan Szabo, Jan Mikulka and Jiri Polivka
Entropy 2016, 18(12), 443; https://doi.org/10.3390/e18120443 - 10 Dec 2016
Cited by 29 | Viewed by 4945
Abstract
The paper discusses mathematical tools to evaluate novel noise spectroscopy based analysis and describes, via physical similarity, the mathematical models expressing the quantitative character of the modeled task. Using the Stefan–Boltzmann law, the authors indicate finding the spectral density of the radiated power [...] Read more.
The paper discusses mathematical tools to evaluate novel noise spectroscopy based analysis and describes, via physical similarity, the mathematical models expressing the quantitative character of the modeled task. Using the Stefan–Boltzmann law, the authors indicate finding the spectral density of the radiated power of a hemisphere, and, for the selected frequency interval and temperature, they compare the simplified models with the expression of noise spectral density according to the Johnson–Nyquist formula or Nyquist’s expression of the function of spectral density based on a derivation of Planck’s law. The related measurements and evaluations, together with analyses of the noise spectroscopy of periodic resonant structures, are also outlined in the given context. Full article
(This article belongs to the Section Complexity)
Show Figures

Graphical abstract

19 pages, 1728 KiB  
Article
A Possible Cosmological Application of Some Thermodynamic Properties of the Black Body Radiation in n-Dimensional Euclidean Spaces
by Julian Gonzalez-Ayala, Jennifer Perez-Oregon, Rubén Cordero and Fernando Angulo-Brown
Entropy 2015, 17(7), 4563-4581; https://doi.org/10.3390/e17074563 - 29 Jun 2015
Cited by 3 | Viewed by 5680
Abstract
In this work, we present the generalization of some thermodynamic properties of the black body radiation (BBR) towards an n-dimensional Euclidean space. For this case, the Planck function and the Stefan–Boltzmann law have already been given by Landsberg and de Vos and some [...] Read more.
In this work, we present the generalization of some thermodynamic properties of the black body radiation (BBR) towards an n-dimensional Euclidean space. For this case, the Planck function and the Stefan–Boltzmann law have already been given by Landsberg and de Vos and some adjustments by Menon and Agrawal. However, since then, not much more has been done on this subject, and we believe there are some relevant aspects yet to explore. In addition to the results previously found, we calculate the thermodynamic potentials, the efficiency of the Carnot engine, the law for adiabatic processes and the heat capacity at constant volume. There is a region at which an interesting behavior of the thermodynamic potentials arises: maxima and minima appear for the n—dimensional BBR system at very high temperatures and low dimensionality, suggesting a possible application to cosmology. Finally, we propose that an optimality criterion in a thermodynamic framework could be related to the 3—dimensional nature of the universe. Full article
(This article belongs to the Special Issue Geometry in Thermodynamics)
Show Figures

12 pages, 2077 KiB  
Article
Direct Fusion of Geostationary Meteorological Satellite Visible and Infrared Images Based on Thermal Physical Properties
by Lei Han, Buzha Wulie, Yiling Yang and Hongqing Wang
Sensors 2015, 15(1), 703-714; https://doi.org/10.3390/s150100703 - 5 Jan 2015
Cited by 7 | Viewed by 5315
Abstract
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of [...] Read more.
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

16 pages, 720 KiB  
Article
Thermal Physical Property-Based Fusion of Geostationary Meteorological Satellite Visible and Infrared Channel Images
by Lei Han, Lu Shi, Yiling Yang and Dalei Song
Sensors 2014, 14(6), 10187-10202; https://doi.org/10.3390/s140610187 - 10 Jun 2014
Cited by 11 | Viewed by 6066
Abstract
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR [...] Read more.
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Graphical abstract

15 pages, 118 KiB  
Article
A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria
by Juan C. Chimal-Eguía, Norma Sánchez-Salas and Marco A. Barranco-Jiménez
Entropy 2012, 14(12), 2611-2625; https://doi.org/10.3390/e14122611 - 17 Dec 2012
Cited by 6 | Viewed by 6011
Abstract
This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT). Using an endoreversible Curzon–Ahlborn (CA) heat engine as a model for actual thermal engines, three different criteria for [...] Read more.
This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT). Using an endoreversible Curzon–Ahlborn (CA) heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law) was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained. Full article
Show Figures

Figure 1

Back to TopTop