# A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

**Figure 1.**(

**a**) Diagram of the CA endoreversible heat engine with conductances ${\alpha}_{1}={\alpha}_{2}=\phantom{\rule{3.33333pt}{0ex}}\alpha $; (

**b**) The Müser engine.

## 2. Maximum Power Criterion

## 3. Ecological Function Criterion

## 4. Maximum Power Density Criterion

**Figure 3.**Effect of the conductance allocation parameter b on the efficiency at maximum power density.

## 5. Concluding Remarks

## Acknowledgments

## References

- Gutkowicz-Krusin, D.; Procaccia, I.; Ross, J. On the efficiency of rate processes. Power and efficiency of heat engines. J. Chem. Phys.
**1978**, 69, 3898–3906. [Google Scholar] [CrossRef] - De Vos, A. Efficiency of some heat engines at maximum-power conditions. Am. J. Phys.
**1985**, 53, 570–573. [Google Scholar] [CrossRef] - Chen, L.; Yan, Z. The effect of heat-transfer law on performance of a two-heat-source endoreversible cycle. J. Chem. Phys.
**1989**, 90, 3740–3743. [Google Scholar] [CrossRef] - Angulo-Brown, F.; Páez-Hernández, R. Endoreversible thermal cycle with a nonlinear heat transfer law. J. Appl. Phys.
**1993**, 74, 2216–2219. [Google Scholar] [CrossRef] - Arias-Hérnandez, L.A.; Angulo-Brown, F. Thermodynamic optimization of endoreversible engines. Revista Mexicana de Física
**1994**, 40, 866–977. [Google Scholar] - Arias-Hernández, L.A.; Angulo-Brown, F. A general property of endoreversible thermal engines. J. Appl. Phys.
**1997**, 81, 2973–2979. [Google Scholar] [CrossRef] - Arias-Hernandez, L.A.; Barranco-Jiménez, M.A.; Angulo-Brown, F. Comparative analysis of two ecological type modes of performance for a simple energy converter. J. Energy Inst.
**2009**, 82, 223–227. [Google Scholar] [CrossRef] - Barranco-Jiménez, M.A.; Sánchez-Salas, N.; Angulo-Brown, F. On the optimum operation conditions of an endoreversible heat engine with different heat transfer laws in the thermal couplings. Revista Mexicana de Física
**2008**, 54, 284–292. [Google Scholar] - Barranco-Jiménez, M.A.; Sánchez-Salas, N. On thermodynamic optimisation of solar collector model under maximum ecological conditions. J. Energy Inst.
**2008**, 81, 164–167. [Google Scholar] [CrossRef] - Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys.
**1975**, 43, 22–24. [Google Scholar] [CrossRef] - Chen, L.; Sun, F.; Wu, C. Influence of heat transfer law on the performance of a Carnot engine. Appl. Thermal Eng.
**1997**, 17, 277–282. [Google Scholar] [CrossRef] - Wu, C.; Chen, L.; Sun, F. Heat transfer effect on the performance of and endoreversible heat engine. Int. J. Energy Environ. Econ.
**2000**, 9, 249–258. [Google Scholar] - Zhu, X.; Chen, L.; Sun, F.; Wu, C. The ecological optimization of a generalized irreversible Carnot engine with a generalized heat transfer law. Int. J. Ambient Energy
**2003**, 24, 189–194. [Google Scholar] [CrossRef] - Chen, L.; Zhu, X.; Sun, F.; Wu, C. Optimal configuration and performance for a generalized Carnot cycle assuming the heat-transfer law Q ∝ (ΔT)
^{m}. Appl. Energy**2004**, 78, 305–313. [Google Scholar] [CrossRef] - Zhu, X.; Chen, L.; Sun, F.; Wu, C. Effect of heat transfer law on the ecological optimization of a generalized irreversible carnot engine. Open Syst. Inf. Dyn.
**2005**, 12, 249–260. [Google Scholar] [CrossRef] - Chen, L.; Zhu, X.; Sun, F.; Wu, C. Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines. Appl. Energy
**2006**, 83, 573–582. [Google Scholar] [CrossRef] - Chen, L.; Zhu, X.; Sun, F.; Wu, C. Effect of mixed heat-resistances on the optimal configuration and performance of a heat-engine cycle. Appl. Energy
**2006**, 83, 537–544. [Google Scholar] [CrossRef] - Chen, L.; Li, J.; Sun, F. Generalized irreversible heat-engine experiencing a complex heat-transfer law. Appl. Energy
**2008**, 85, 52–60. [Google Scholar] [CrossRef] - Li, J.; Chen, L.; Sun, F.; Wu, C. Power vs. efficiency characteristic of an endoreversible Carnot heat engine with heat transfer law Q ∝ (ΔT)
^{m}. Int. J. Ambient Energy**2008**, 29, 149–152. [Google Scholar] [CrossRef] - Li, J.; Chen, L.; Sun, F. Ecological performance of an endoreversible Carnot heat engine with complex heat transfer law. Int. J. Sustain. Energy
**2011**, 30, 55–64. [Google Scholar] [CrossRef] - Li, J.; Sun, F. Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law. Int. J. Energy Environ.
**2011**, 2, 57–70. [Google Scholar] - Rubin, H. Optimal configuration of a class of irreversible heat engines I. Phys. Rev. A
**1979**, 19, 1272–1281. [Google Scholar] [CrossRef] - De Parga, G.A.; Santillán, M. A variational approach to some properties of endoreversible heat engines. Revista Mexicana de Física
**1998**, 44, 373–376. [Google Scholar] - De Parga, G.A.; Angulo-Brown, F.; Navarrete-González, T. A variational optimization of a finite-time thermal cycle with a nonlinear heat transfer law. Energy
**1999**, 24, 997–1008. [Google Scholar] [CrossRef] - Angulo-Brown, F. An ecological optimization criterion for finite-time heat engines. J. Appl. Phys.
**1991**, 69, 7465–7469. [Google Scholar] [CrossRef] - De Vos, A. Endoreversible Thermodynamics of Solar Energy Conversion; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Margenau, H.; Murphy, G. The Mathematics of Physics and Chemistry; D. Van Nostrand Co.: New York, NY, USA, 1961. [Google Scholar]
- Müser, H. Behandlung von Elektronenprozessen in Halbleiter-Randschichten. Zeitschrift fur Physik
**1957**, 148, 380–390. [Google Scholar] [CrossRef] - Jeter, S.M. Maximum conversion efficiency for the utilization of direct solar radiation. Sol. Energy
**1981**, 26, 231–236. [Google Scholar] [CrossRef] - Vos, A.D.; Pauwels, H. On the thermodynamic limit of photovoltaic energy conversion. Appl. Phys. A
**1981**, 25, 119–125. [Google Scholar] [CrossRef] - Yan, Z. Comment on “An ecological optimization criterion for finite-time heat engines”. J. Appl. Phys.
**1993**, 73, 3583–3583. [Google Scholar] [CrossRef] - Calvo Hernández, A.; Medina, A.; Roco, J.M.M.; White, J.A.; Velasco, S. Unified optimization criterion for energy converters. Phys. Rev. E
**2001**, 63, 037102. [Google Scholar] [CrossRef] - Sánchez-Salas, N.; López-Palacios, L.; Velasco, S.; Calvo Hernández, A. Optimization criteria, bounds, and efficiencies of heat engines. Phys. Rev. E
**2010**, 82, 051101. [Google Scholar] [CrossRef] - Sánchez-Salas, N.; Calvo Hernández, A. Unified working regime of irreversible Carnot-like heat engines with nonlinear heat transfer laws. Energy Convers. Manag.
**2002**, 43, 2341–2348. [Google Scholar] [CrossRef] - Sahin, B.; Kodal, A.; Yavuz, H. Maximum power density for an endoreversible carnot heat engine. Energy
**1996**, 21, 1219–1225. [Google Scholar] [CrossRef] - Bejan, A. Theory of heat transfer-irreversible power plants-II. The optimal allocation of heat exchange equipment. Int. J. Heat Mass Transfer
**1995**, 38, 433–444. [Google Scholar] [CrossRef] - De Vos, A. Endoreversible thermoeconomics. Energy Convers. Manag.
**1995**, 36, 1–5. [Google Scholar] [CrossRef]

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Chimal-Eguía, J.C.; Sánchez-Salas, N.; Barranco-Jiménez, M.A. A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria. *Entropy* **2012**, *14*, 2611-2625.
https://doi.org/10.3390/e14122611

**AMA Style**

Chimal-Eguía JC, Sánchez-Salas N, Barranco-Jiménez MA. A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria. *Entropy*. 2012; 14(12):2611-2625.
https://doi.org/10.3390/e14122611

**Chicago/Turabian Style**

Chimal-Eguía, Juan C., Norma Sánchez-Salas, and Marco A. Barranco-Jiménez. 2012. "A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria" *Entropy* 14, no. 12: 2611-2625.
https://doi.org/10.3390/e14122611