Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (174)

Search Parameters:
Keywords = Space Situational Awareness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 318
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

28 pages, 7048 KiB  
Article
Enhanced Conjunction Assessment in LEO: A Hybrid Monte Carlo and Spline-Based Method Using TLE Data
by Shafeeq Koheal Tealib, Ahmed Magdy Abdelaziz, Igor E. Molotov, Xu Yang, Jian Sun and Jing Liu
Aerospace 2025, 12(8), 674; https://doi.org/10.3390/aerospace12080674 - 28 Jul 2025
Viewed by 219
Abstract
The growing density of space objects in low Earth orbit (LEO), driven by the deployment of large satellite constellations, has elevated the risk of orbital collisions and the need for high-precision conjunction analysis. Traditional methods based on Two-Line Element (TLE) data suffer from [...] Read more.
The growing density of space objects in low Earth orbit (LEO), driven by the deployment of large satellite constellations, has elevated the risk of orbital collisions and the need for high-precision conjunction analysis. Traditional methods based on Two-Line Element (TLE) data suffer from limited accuracy and insufficient uncertainty modeling. This study proposes a hybrid collision assessment framework that combines Monte Carlo simulation, spline-based refinement of the time of closest approach (TCA), and a multi-stage deterministic refinement process. The methodology begins with probabilistic sampling of TLE uncertainties, followed by a coarse search for TCA using the SGP4 propagator. A cubic spline interpolation then enhances temporal resolution, and a hierarchical multi-stage refinement computes the final TCA and minimum distance with sub-second and sub-kilometer accuracy. The framework was validated using real-world TLE data from over 2600 debris objects and active satellites. Results demonstrated a reduction in average TCA error to 0.081 s and distance estimation error to 0.688 km. The approach is computationally efficient, with average processing times below one minute per conjunction event using standard hardware. Its compatibility with operational space situational awareness (SSA) systems and scalability for high-volume screening make it suitable for integration into real-time space traffic management workflows. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 267
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

27 pages, 31172 KiB  
Article
Digital Twin for Analog Mars Missions: Investigating Local Positioning Alternatives for GNSS-Denied Environments
by Benjamin Reimeir, Amelie Leininger, Raimund Edlinger, Andreas Nüchter and Gernot Grömer
Sensors 2025, 25(15), 4615; https://doi.org/10.3390/s25154615 - 25 Jul 2025
Viewed by 218
Abstract
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of [...] Read more.
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of a digital twin for the AMADEE-24 analog Mars mission, organized by the Austrian Space Forum and conducted in Armenia in March 2024. Alternative local positioning methods were evaluated to enhance the system’s utility in Global Navigation Satellite System (GNSS)-denied environments. The digital twin integrates telemetry from the Aouda space suit simulators, inertial measurement unit motion capture (IMU-MoCap), and sensor data from the Intuitive Rover Operation and Collecting Samples (iROCS) rover. All nine experiment runs were reconstructed successfully by the developed digital twin. A comparative analysis of localization methods found that Simultaneous Localization and Mapping (SLAM)-based rover positioning and IMU-MoCap localization of the astronaut matched Global Positioning System (GPS) performance. Adaptive Cluster Detection showed significantly higher deviations compared to the previous GNSS alternatives. However, the IMU-MoCap method was limited by discontinuous segment-wise measurements, which required intermittent GPS recalibration. Despite these limitations, the results highlight the potential of alternative localization techniques for digital twin integration. Full article
Show Figures

Figure 1

36 pages, 1680 KiB  
Article
Guarding Our Vital Systems: A Metric for Critical Infrastructure Cyber Resilience
by Muharman Lubis, Muhammad Fakhrul Safitra, Hanif Fakhrurroja and Alif Noorachmad Muttaqin
Sensors 2025, 25(15), 4545; https://doi.org/10.3390/s25154545 - 22 Jul 2025
Viewed by 457
Abstract
The increased occurrence and severity of cyber-attacks on critical infrastructure have underscored the need to embrace systematic and prospective approaches to resilience. The current research takes as its hypothesis that the InfraGuard Cybersecurity Framework—a capability model that measures the maturity of cyber resilience [...] Read more.
The increased occurrence and severity of cyber-attacks on critical infrastructure have underscored the need to embrace systematic and prospective approaches to resilience. The current research takes as its hypothesis that the InfraGuard Cybersecurity Framework—a capability model that measures the maturity of cyber resilience through three functional pillars, Cyber as a Shield, Cyber as a Space, and Cyber as a Sword—is an implementable and understandable means to proceed with. The model treats the significant aspects of situational awareness, active defense, risk management, and recovery from incidents and is measured using globally standardized maturity models like ISO/IEC 15504, NIST CSF, and COBIT. The contributions include multidimensional measurements of resilience, a scored scale of capability (0–5), and domain-based classification enabling organizations to assess and enhance their cybersecurity situation in a formalized manner. The framework’s applicability is illustrated in three exploratory settings of power grids, healthcare systems, and airports, each constituting various levels of maturity in resilience. This study provides down-to-earth recommendations to policymakers through the translation of the attributes of resilience into concrete assessment indicators, promoting policymaking, investment planning, and global cyber defense collaboration. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

27 pages, 5788 KiB  
Article
A Novel Artificial Eagle-Inspired Optimization Algorithm for Trade Hub Location and Allocation Method
by Shuhan Hu, Gang Hu, Bo Du and Abdelazim G. Hussien
Biomimetics 2025, 10(8), 481; https://doi.org/10.3390/biomimetics10080481 - 22 Jul 2025
Viewed by 289
Abstract
Aiming for convenience and the low cost of goods transfer between towns, this paper proposes a trade hub location and allocation method based on a novel artificial eagle-inspired optimization algorithm. Firstly, the trade hub location and allocation model is established, taking the total [...] Read more.
Aiming for convenience and the low cost of goods transfer between towns, this paper proposes a trade hub location and allocation method based on a novel artificial eagle-inspired optimization algorithm. Firstly, the trade hub location and allocation model is established, taking the total cost consisting of construction and transportation costs as the objective function. Then, to solve the nonlinear model, a novel artificial eagle optimization algorithm (AEOA) is proposed by simulating the collective migration behaviors of artificial eagles when facing a severe living environment. Three main strategies are designed to help the algorithm effectively explore the decision space: the situational awareness and analysis stage, the free exploration stage, and the flight formation integration stage. In the first stage, artificial eagles are endowed with intelligent thinking, thus generating new positions closer to the optimum by perceiving the current situation and updating their positions. In the free exploration stage, artificial eagles update their positions by drawing on the current optimal position, ensuring more suitable habitats can be found. Meanwhile, inspired by the consciousness of teamwork, a formation flying method based on distance information is introduced in the last stage to improve stability and success rate. Test results from the CEC2022 suite indicate that the AEOA can obtain better solutions for 11 functions out of all 12 functions compared with 8 other popular algorithms. Faster convergence speed and stronger stability of the AEOA are also proved by quantitative analysis. Finally, the trade hub location and allocation method is proposed by combining the optimization model and the AEOA. By solving two typical simulated cases, this method can select suitable hubs with lower construction costs and achieve reasonable allocation between hubs and the rest of the towns to reduce transportation costs. Thus, it is used to solve the trade hub location and allocation problem of Henan province in China to help the government make sound decisions. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

17 pages, 6890 KiB  
Technical Note
Research on Task Interleaving Scheduling Method for Space Station Protection Radar with Shifting Constraints
by Guiqiang Zhang, Haocheng Zhou, Hong Yang, Jiacheng Hou, Guangyuan Xu and Dawei Wang
Telecom 2025, 6(3), 49; https://doi.org/10.3390/telecom6030049 - 10 Jul 2025
Viewed by 213
Abstract
To ensure the on-orbit safety of crewed spacecraft and avoid the threat of constellations such as Starlink to manned spacecraft, the industry has started to research equipping phased array radars for situational awareness of collision threat. In order to enhance the resource allocation [...] Read more.
To ensure the on-orbit safety of crewed spacecraft and avoid the threat of constellations such as Starlink to manned spacecraft, the industry has started to research equipping phased array radars for situational awareness of collision threat. In order to enhance the resource allocation capability of the space station’s protection radar system, this paper proposes a task scheduling method based on time shifting constraints and pulse interleaving. The time shifting constraint is designed to minimize the deviation between the actual execution and the desired execution time of the task, and it is negatively correlated with the threat degree of the target. Pulse interleaving is intended to utilize the idle time between the transmitted pulse and the received pulse of a task to perform other tasks, thereby improving the utilization of radar resources. Through computer simulation under typical parameters, our proposed method reduces the average time shifting ratio by about 60% compared to traditional task scheduling methods, and the scheduling success ratio is also higher than that of traditional scheduling methods. This demonstrates the effectiveness of the proposed method in enhancing scheduling efficiency and overall system performance. Full article
Show Figures

Figure 1

26 pages, 4569 KiB  
Article
Orbit Determination for Continuously Maneuvering Starlink Satellites Based on an Unscented Batch Filtering Method
by Anqi Lang and Yu Jiang
Sensors 2025, 25(13), 4079; https://doi.org/10.3390/s25134079 - 30 Jun 2025
Viewed by 446
Abstract
Orbit determination for non-cooperative low Earth orbit (LEO) objects undergoing continuous low-thrust maneuvers remains a significant challenge, particularly for large satellite constellations like Starlink. This paper presents a method that integrates the unscented transformation into a batch filtering framework with an optimized rho-minimum [...] Read more.
Orbit determination for non-cooperative low Earth orbit (LEO) objects undergoing continuous low-thrust maneuvers remains a significant challenge, particularly for large satellite constellations like Starlink. This paper presents a method that integrates the unscented transformation into a batch filtering framework with an optimized rho-minimum sigma points sampling strategy. The proposed approach uses a reduced dynamics model that considers Earth’s non-spherical gravity and models the combined effects of low-thrust and atmospheric drag as an equivalent along-track acceleration. Numerical simulations under different measurement noise levels, initial state uncertainties, and across multiple satellites confirm the method’s reliable convergence and favorable accuracy, even in the absence of prior knowledge of the along-track acceleration. The method consistently converges within 10 iterations and achieves 24 h position predictions with root mean square errors of less than 3 km under realistic noise conditions. Additional validation using a higher-fidelity model that explicitly accounts for atmospheric drag demonstrates improved accuracy and robustness. The proposed method can provide accurate orbit knowledge for space situational awareness associated with continuously maneuvering Starlink satellites. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 3796 KiB  
Communication
Design of Space Target Surveillance Constellation Based on Simulation Comparison Method
by Qinying Hu, Desheng Liu and Ziwei Dong
Sensors 2025, 25(13), 3977; https://doi.org/10.3390/s25133977 - 26 Jun 2025
Viewed by 273
Abstract
Aiming at the requirement of space situational awareness on the full-domain and all-time coverage capability of low Earth orbit space targets and focusing on the design of a space-based space target awareness system, a space target awareness constellation design method based on simulation [...] Read more.
Aiming at the requirement of space situational awareness on the full-domain and all-time coverage capability of low Earth orbit space targets and focusing on the design of a space-based space target awareness system, a space target awareness constellation design method based on simulation comparison is put forward. On the basis of systematically analyzing the distribution of space targets’ orbits, the low Earth orbit space target surveillance mission mode, key indicators, and constraints of space target surveillance constellations are designed, and three space target surveillance constellation basic configurations are constructed. This paper randomly samples surveillance objects based on the stratified space target orbit distribution and selects a heterogeneous space target surveillance constellation in sun-synchronous morning–twilight orbit that meets the requirements of the surveillance mission model and capability by using simulations and comparisons. The experiments show that the constellation can provide a satisfactory observation arc segment for cataloging and orbiting more than 80% of low Earth orbit targets. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 6028 KiB  
Article
Improving Orbit Prediction of the Two-Line Element with Orbit Determination Using a Hybrid Algorithm of the Simplex Method and Genetic Algorithm
by Jinghong Liu, Chenyun Wu, Wanting Long, Bo Yuan, Zhengyuan Zhang and Jizhang Sang
Aerospace 2025, 12(6), 527; https://doi.org/10.3390/aerospace12060527 - 11 Jun 2025
Viewed by 438
Abstract
With the rapidly increasing number of satellites and orbital debris, collision avoidance and reentry prediction are very important for space situational awareness. A precise orbital prediction through orbit determination is crucial to enhance the space safety. The two-line element (TLE) data sets are [...] Read more.
With the rapidly increasing number of satellites and orbital debris, collision avoidance and reentry prediction are very important for space situational awareness. A precise orbital prediction through orbit determination is crucial to enhance the space safety. The two-line element (TLE) data sets are publicly available to users worldwide. However, the data sets have uneven qualities and biases, resulting in exponential growth of orbital prediction errors in the along-track direction. A hybrid algorithm of the simplex method and genetic algorithm is proposed to improve orbit determination accuracy using TLEs. The parameters of the algorithm are tuned to achieve the best performance of orbital prediction. Six satellites with consolidated prediction format (CPF) ephemeris and four satellites with precise orbit ephemerides (PODs) are chosen to test the performance of the algorithm. Compared with the results of the least-squares method and simplex method based on Monte Carlo simulation, the new algorithm demonstrated its superiorities in orbital prediction. The algorithm exhibits an accuracy improvement as high as 40.25% for 10 days of orbital prediction compared to that using the single last two-line element. In addition, six satellites are used to evaluate the time efficiency, and the experiments prove that the hybrid algorithm is robust and has computational efficiency. Full article
Show Figures

Figure 1

34 pages, 3932 KiB  
Article
Augmenting Orbital Debris Identification with Neo4j-Enabled Graph-Based Retrieval-Augmented Generation for Multimodal Large Language Models
by Daniel S. Roll, Zeyneb Kurt, Yulei Li and Wai Lok Woo
Sensors 2025, 25(11), 3352; https://doi.org/10.3390/s25113352 - 26 May 2025
Cited by 1 | Viewed by 1379
Abstract
This preliminary study covers the construction and application of a Graph-based Retrieval-Augmented Generation (GraphRAG) system integrating a multimodal LLM, Large Language and Vision Assistant (LLaVA) with graph database software (Neo4j) to enhance LLM output quality through structured knowledge retrieval. This is aimed at [...] Read more.
This preliminary study covers the construction and application of a Graph-based Retrieval-Augmented Generation (GraphRAG) system integrating a multimodal LLM, Large Language and Vision Assistant (LLaVA) with graph database software (Neo4j) to enhance LLM output quality through structured knowledge retrieval. This is aimed at the field of orbital debris detection, proposed to support the current intelligent methods for such detection by introducing the beneficial properties of both LLMs and a corpus of external information. By constructing a dynamic knowledge graph from relevant research papers, context-aware retrieval is enabled, improving factual accuracy and minimizing hallucinations. The system extracts, summarizes, and embeds research papers into a Neo4j graph database, with API-powered LLM-generated relationships enriching interconnections. Querying this graph allows for contextual ranking of relevant documents, which are then provided as context to the LLM through prompt engineering during the inference process. A case study applying the technology to a synthetic image of orbital debris is discussed. Qualitative results indicate that the inclusion of GraphRAG and external information result in successful retrieval of information and reduced hallucinations. Further work to refine the system is necessary, as well as establishing benchmark tests to assess performance quantitatively. This approach offers a scalable and interpretable method for enhanced domain-specific knowledge retrieval, improving the qualitative quality of the LLM’s output when tasked with description-based activities. Full article
(This article belongs to the Special Issue Feature Papers in Smart Sensing and Intelligent Sensors 2025)
Show Figures

Figure 1

29 pages, 31652 KiB  
Article
Low-Carbon Practices and Cultural Adaptation Among Older Chinese Migrants: Insights from Walking Interviews on Environmental Policy and Social Integration
by Qing Ni, Hua Dong and Antonios Kaniadakis
Int. J. Environ. Res. Public Health 2025, 22(6), 832; https://doi.org/10.3390/ijerph22060832 - 25 May 2025
Viewed by 582
Abstract
This study employs walking interviews to examine the low-carbon practices, cultural adaptation, and policy awareness of older Chinese migrants in the UK within their everyday environments. A total of 20 participants were interviewed in public spaces such as parks, supermarkets, and their homes. [...] Read more.
This study employs walking interviews to examine the low-carbon practices, cultural adaptation, and policy awareness of older Chinese migrants in the UK within their everyday environments. A total of 20 participants were interviewed in public spaces such as parks, supermarkets, and their homes. Using contextual thematic analysis, the study identifies key factors influencing their environmental behaviors. The findings reveal the following: (1) Language barriers, economic pressures, and social isolation limit migrants’ understanding of environmental policies. Many participants rely on self-sufficient ethnic community networks rather than engaging with mainstream sources; (2) Generational differences are evident—younger migrants demonstrate greater theoretical awareness of environmental policies, whereas older migrants exhibit stronger low-carbon behaviors through energy conservation and waste reduction; (3) A balance between cultural identity and consumption habits—while some migrants adjust their dietary, spending, and linguistic habits, core cultural values such as frugality and family responsibility remain unchanged. This study highlights the value of walking interviews in capturing situational insights into low-carbon behaviors and cultural adaptation. It provides empirical evidence for government agencies and community organizations, advocating for cross-cultural environmental education and improved policy communication. Recommendations include targeted environmental training, community-based volunteer initiatives, intergenerational environmental education, and policy dissemination through WeChat, Chinese communities, and ethnic networks. These measures can help bridge the generational gap in policy awareness and promote social integration among older Chinese migrants. Full article
Show Figures

Figure 1

24 pages, 3088 KiB  
Article
First In-Orbit Validation of Interferometric GNSS-R Altimetry: Mission Overview and Initial Results
by Yixuan Sun, Yueqiang Sun, Junming Xia, Lingyong Huang, Qifei Du, Weihua Bai, Xianyi Wang, Dongwei Wang, Yuerong Cai, Lichang Duan, Zhenhe Zhai, Bin Guan, Zhiyong Huang, Shizhong Li, Feixiong Huang, Cong Yin and Rui Liu
Remote Sens. 2025, 17(11), 1820; https://doi.org/10.3390/rs17111820 - 23 May 2025
Viewed by 558
Abstract
Sea surface height (SSH) serves as a fundamental geophysical parameter in oceanographic research. In 2023, China successfully launched the world’s first spaceborne interferometric GNSS-R (iGNSS-R) altimeter, which features dual-frequency multi-beam scanning, interferometric processing, and compatibility with three major satellite navigation systems: the BeiDou [...] Read more.
Sea surface height (SSH) serves as a fundamental geophysical parameter in oceanographic research. In 2023, China successfully launched the world’s first spaceborne interferometric GNSS-R (iGNSS-R) altimeter, which features dual-frequency multi-beam scanning, interferometric processing, and compatibility with three major satellite navigation systems: the BeiDou Navigation Satellite System (BDS), the Global Positioning System (GPS), and the Galileo Satellite Navigation System (GAL). This launch marked the first in-orbit validation of the iGNSS-R altimetry technology. This study provides a detailed overview of the iGNSS-R payload design and analyzes its dual-frequency delay mapping (DM) measurements. We developed a refined DM waveform-matching algorithm that precisely extracts the propagation delays between reflected and direct GNSS signals, enabling the retrieval of global sea surface height (SSH) through the interferometric altimetry model. For validation, we employed an inter-satellite crossover approach using Jason-3 and Sentinel-6 radar altimetry as references, achieving an unprecedented SSH accuracy of 17.2 cm at a 40 km resolution. This represents a breakthrough improvement over previous GNSS-R altimetry efforts. The successful demonstration of iGNSS-R technology opens up new possibilities for cost-effective, wide-swath sea level monitoring. It showcases the potential of GNSS-R technology to complement existing ocean observation systems and enhance our understanding of global sea surface dynamics. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

22 pages, 2852 KiB  
Article
The Role of Buddhism in the Language Ecology and Vitality of Tai Phake in Assam (India) and Wutun in Qinghai (China)
by U-tain Wongsathit, Erika Sandman and Chingduang Yurayong
Religions 2025, 16(5), 566; https://doi.org/10.3390/rel16050566 - 28 Apr 2025
Viewed by 661
Abstract
This study examines the role of Buddhism in the vitality of local languages as an asset of indigenous traditions, focusing on two geographically disconnected minority language communities: Tai Phake in the state of Assam, India, and Wutun (Ngandehua) in the Qinghai [...] Read more.
This study examines the role of Buddhism in the vitality of local languages as an asset of indigenous traditions, focusing on two geographically disconnected minority language communities: Tai Phake in the state of Assam, India, and Wutun (Ngandehua) in the Qinghai province of China. The investigation addresses various factors related to the ecology of speech communities discussed in connection with religion. The data are based on longitudinal observations from personal fieldwork in the respective locations over the past two decades. The descriptive and comparative analysis applies an ecology-based typology of minority language situations to assess the contribution of individual factors in three different domains (speakers, language, and setting) to the vitality of the Tai Phake and Wutun languages. The results reveal several areas in which Buddhism as a cultural authority has noticeably contributed to language preservation. The effects of Buddhism are considered significant in enhancing demographic stability, social setting, attitudes, awareness of historical legacy, education in monasteries, and sustainable economics. In contrast, religion does not account for the vitality of these local languages in situations where a low degree of dialectal variation does not complicate intergenerational transmission of language, the minority status of the speech community is unique, and space for language in the institutionalised domain of use is insufficiently provided. Full article
(This article belongs to the Special Issue Religion and Indigenous Traditions)
23 pages, 998 KiB  
Article
Bayesian Adaptive Extended Kalman-Based Orbit Determination for Optical Observation Satellites
by Yang Guo, Qinghao Pang, Xianlong Yin, Xueshu Shi, Zhengxu Zhao, Jian Sun and Jinsheng Wang
Sensors 2025, 25(8), 2527; https://doi.org/10.3390/s25082527 - 17 Apr 2025
Viewed by 484
Abstract
As the number of satellites and amount of space debris in Low-Earth orbit (LEO) increase, high-precision orbit determination is crucial for ensuring the safe operation of spacecraft and maintaining space situational awareness. However, ground-based optical observations are constrained by limited arc-segment angular data [...] Read more.
As the number of satellites and amount of space debris in Low-Earth orbit (LEO) increase, high-precision orbit determination is crucial for ensuring the safe operation of spacecraft and maintaining space situational awareness. However, ground-based optical observations are constrained by limited arc-segment angular data and dynamic noise interference, and the traditional Extended Kalman Filter (EKF) struggles to meet the accuracy and robustness requirements in complex orbital environments. To address these challenges, this paper proposes a Bayesian Adaptive Extended Kalman Filter (BAEKF), which synergistically optimizes track determination through dynamic noise covariance adjustment and Bayesian a posteriori probability correction. Experiments demonstrate that the average root mean square error (RMSE) of BAEKF is reduced by 34.7% compared to the traditional EKF, effectively addressing EKF’s accuracy and stability issues in nonlinear systems. The RMSE values of UKF, RBFNN, and GPR also show improvement, providing a reliable solution for high-precision orbital determination using optical observation. Full article
(This article belongs to the Special Issue Atmospheric Optical Remote Sensing)
Show Figures

Figure 1

Back to TopTop