Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Solanum esculentum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1208 KiB  
Review
Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance
by Abdelrahman Shawky, Abdulrahman Hatawsh, Nabil Al-Saadi, Raed Farzan, Nour Eltawy, Mariz Francis, Sara Abousamra, Yomna Y. Ismail, Kotb Attia, Abdulaziz S. Fakhouri and Mohamed Abdelrahman
Plants 2024, 13(16), 2269; https://doi.org/10.3390/plants13162269 - 15 Aug 2024
Cited by 3 | Viewed by 5859
Abstract
Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, [...] Read more.
Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress. Full article
Show Figures

Figure 1

13 pages, 2340 KiB  
Article
Proteome Analysis of Serum Purified Using Solanum tuberosum and Lycopersicon esculentum Lectins
by Daisuke Nakajima, Ryo Konno, Yasuomi Miyashita, Masaki Ishikawa, Osamu Ohara and Yusuke Kawashima
Int. J. Mol. Sci. 2024, 25(2), 1315; https://doi.org/10.3390/ijms25021315 - 21 Jan 2024
Cited by 1 | Viewed by 2807
Abstract
Serum and plasma exhibit a broad dynamic range of protein concentrations, posing challenges for proteome analysis. Various technologies have been developed to reduce this complexity, including high-abundance depletion methods utilizing antibody columns, extracellular vesicle enrichment techniques, and trace protein enrichment using nanobead cocktails. [...] Read more.
Serum and plasma exhibit a broad dynamic range of protein concentrations, posing challenges for proteome analysis. Various technologies have been developed to reduce this complexity, including high-abundance depletion methods utilizing antibody columns, extracellular vesicle enrichment techniques, and trace protein enrichment using nanobead cocktails. Here, we employed lectins to address this, thereby extending the scope of biomarker discovery in serum or plasma using a novel approach. We enriched serum proteins using 37 different lectins and subjected them to LC–MS/MS analysis with data-independent acquisition. Solanum tuberosum lectin (STL) and Lycopersicon esculentum lectin (LEL) enabled the detection of more serum proteins than the other lectins. STL and LEL bind to N-acetylglucosamine oligomers, emphasizing the significance of capturing these oligomer-binding proteins when analyzing serum trace proteins. Combining STL and LEL proved more effective than using them separately, allowing us to identify over 3000 proteins from serum through single-shot proteome analysis. We applied the STL/LEL trace-protein enrichment method to the sera of systemic lupus erythematosus model mice. This revealed differences in >1300 proteins between the systemic lupus erythematosus model and control mouse sera, underscoring the utility of this method for biomarker discovery. Full article
(This article belongs to the Special Issue New Insights into Proteomics in Disease)
Show Figures

Figure 1

16 pages, 10726 KiB  
Article
The Impact of the Soil Survival of the Pathogen of Fusarium Wilt on Soil Nutrient Cycling Mediated by Microorganisms
by Xuecheng Yan, Shuhan Guo, Kexiang Gao, Shuaibin Sun, Chenglin Yin and Yehan Tian
Microorganisms 2023, 11(9), 2207; https://doi.org/10.3390/microorganisms11092207 - 31 Aug 2023
Cited by 11 | Viewed by 3310
Abstract
Fusarium wilt of Momordica charantia in the greenhouse is one of the most severe crop diseases in Shandong Province, P.R. China. This study aimed to investigate the mechanisms of accumulation and long-term survival of the pathogen in naturally pathogenic soils. Soil physicochemical properties [...] Read more.
Fusarium wilt of Momordica charantia in the greenhouse is one of the most severe crop diseases in Shandong Province, P.R. China. This study aimed to investigate the mechanisms of accumulation and long-term survival of the pathogen in naturally pathogenic soils. Soil physicochemical properties were tested after applying a highly virulent strain of Fusarium wilt to M. charantia in an artificial disease nursery. The functional structure of soil microorganisms was analyzed through amplicon sequencing. The highly virulent strain SG−15 of F. oxysporum f. sp. momordicae was found to cause Fusarium wilt in M. charantia in Shandong Province. The strain SG−15 could not infect 14 non-host crops, including Solanum melongena and Lycopersicon esculentum, but it had varying degrees of pathogenicity towards 11 M. charantia varieties. In the artificial disease nursery for Fusarium wilt of M. charantia, the F. oxysporum was distributed in the soil to a depth of 0–40 cm and was mainly distributed in crop residues at 0–10 cm depth. During crop growth, F. oxysporum primarily grows and reproduces in susceptible host plants, rather than disease-resistant hosts and non-host crops. The colonization of the pathogen of Fusarium wilt significantly changed the soil physicochemical properties, the functional structure of soil microorganisms and the circulation of soil elements such as carbon, nitrogen, phosphorus and sulfur. Soil pH value, organic matter content, available iron content, available manganese content, FDA hydrolase activity and polyphenol oxidase activity were significantly correlated with the relative abundance of Fusarium wilt pathogens in the soil. In general, this study suggests that susceptible host plants facilitate the accumulation of Fusarium wilt pathogens in the soil. These pathogens can mediate the decomposition process of plant residues, particularly those of diseased plants, and indirectly or directly affect soil’s chemical properties. Full article
(This article belongs to the Special Issue Plant-Pathogenic Fungi)
Show Figures

Figure 1

13 pages, 324 KiB  
Article
Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1
by Claudia Aparecida de Lima Toledo, Franciely da Silva Ponce, Moisés Daniel Oliveira, Eduardo Santana Aires, Santino Seabra Júnior, Giuseppina Pace Pereira Lima and Regiane Cristina de Oliveira
Insects 2021, 12(12), 1105; https://doi.org/10.3390/insects12121105 - 10 Dec 2021
Cited by 17 | Viewed by 3696
Abstract
Infestation by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes damage to tomatoes with production losses of up to 100%, affecting the physiological and biochemical aspects of host plants. The objective of this study was to analyze the influence of infestation of cryptic species of [...] Read more.
Infestation by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes damage to tomatoes with production losses of up to 100%, affecting the physiological and biochemical aspects of host plants. The objective of this study was to analyze the influence of infestation of cryptic species of B. tabaci MED and MEAM1 on the physiological and biochemical aspects of tomato. Tomato plants ‘Santa Adélia Super’ infested with B. tabaci (MED and MEAM1), and non-infested plants were evaluated for differences in gas exchange, chlorophyll - a fluorescence of photosystem II (PSII), and biochemical factors (total phenols, total flavonoids, superoxide dismutase—SOD, peroxidase—POD, and polyphenol oxidase—PPO). Plants infested with B. tabaci MED showed low rates of CO2 assimilation and stomatal conductance of 55% and 52%, respectively. The instantaneous carboxylation efficiency was reduced by 40% in MED and by 60% in MEAM1 compared to the control. Regarding biochemical aspects, plants infested by MED cryptic species showed high activity of POD and PPO enzymes and total phenol content during the second and third instars when compared to control plants. Our results indicate that B. tabaci MED infestation in tomato plants had a greater influence than B. tabaci MEAM1 infestation on physiological parameters (CO2 assimilation rate (A), stomatal conductance (gs), and apparent carboxylation efficiency (A/Ci)) and caused increased activity of POD and PPO enzymes, indicating plant resistance to attack. In contrast, B. tabaci MEAM1 caused a reduction in POD enzyme activity, favoring offspring performance. Full article
(This article belongs to the Collection Integrated Pest Management Strategies for Horticultural Crops)
15 pages, 3666 KiB  
Article
Biomass Valorization: Sustainable Methods for the Production of Hemicellulolytic Catalysts from Thermoanaerobacterium thermostercoris strain BUFF
by Ilaria Finore, Ida Romano, Luigi Leone, Paola Di Donato, Barbara Nicolaus, Annarita Poli and Licia Lama
Resources 2021, 10(11), 115; https://doi.org/10.3390/resources10110115 - 10 Nov 2021
Cited by 7 | Viewed by 3405
Abstract
Processing and selection of fruits and vegetables generate high quantities of wastes that represent an economic and environmental issue for the agroindustry sector. According to the so-called “biorefinery” approach, this biomass can be exploited for the recovery of value-added molecules. In this study, [...] Read more.
Processing and selection of fruits and vegetables generate high quantities of wastes that represent an economic and environmental issue for the agroindustry sector. According to the so-called “biorefinery” approach, this biomass can be exploited for the recovery of value-added molecules. In this study, the residues of industrial processing of tomato (Lycopersicon esculentum variety “Hybrid Rome”), fennel (Foeniculum vulgare), potato (Solanum tuberosum) and carrot (Daucus carota) were used as sole carbon sources to support cheap and sustainable microbial growth as well as the production of secondary metabolites (hydrogen and ethanol) by Thermoanaerobacterium thermostercoris strain BUFF, a thermophilic anaerobic microorganism isolated from buffalo-dung compost. Moreover, the use of hemicellulolytic enzymes of T. thermostercoris was assayed in the bioconversion reaction of the polymer fraction extracted from the rhizome of giant reed (Arundo donax) and of the leaves and stems of cardoon (Cynara cardunculus), dedicated non-food crops employed in energy supply. Full article
Show Figures

Figure 1

19 pages, 3404 KiB  
Article
Evaluation of Hybrid Constructed Wetland Performance and Reuse of Treated Wastewater in Agricultural Irrigation
by Michal Šereš, Petra Innemanová, Tereza Hnátková, Miloš Rozkošný, Alexandros Stefanakis, Jaroslav Semerád and Tomáš Cajthaml
Water 2021, 13(9), 1165; https://doi.org/10.3390/w13091165 - 23 Apr 2021
Cited by 24 | Viewed by 6553
Abstract
Agriculture is being negatively affected by the decrease in precipitation that has been observed over the last few years. Even in the Czech Republic, farmers are being urged to irrigate their fields despite the fact that sources of water for irrigation are rapidly [...] Read more.
Agriculture is being negatively affected by the decrease in precipitation that has been observed over the last few years. Even in the Czech Republic, farmers are being urged to irrigate their fields despite the fact that sources of water for irrigation are rapidly being depleted. This problem might be partially solved via the reuse of treated wastewater in certain agricultural sectors. However, the public perception of the reuse of wastewater remains negative primarily due to unknown risks to the environment and public health. To overcome this barrier, a semi-operated irrigation field was established at Kostelec nad Ohří in the Central Bohemian region of the Czech Republic and planted with common garden crops such as tomatoes (Lycopersicon esculentum), potatoes (Solanum tuberosum) and lettuces (Lactuca sativa L.) irrigated with two different water sources, i.e., treated wastewater from a local nature-based treatment system, a hybrid constructed wetland (HCW), and local fresh water from well. The HCW was put into operation in 2017 and was reconstructed in 2018 and includes both horizontal and vertical flow beds; the trial irrigation field was added in the same year. The reconstruction of the facility significantly enhanced the removal efficiency with respect to all monitored parameters, e.g., biochemical oxygen demand (BOD5), chemical oxygen demand (COD), N–NH4+, total N and the suspended solids (TSS), except for total P. The HCW also ensured the significant removal of several observed pathogenic microorganisms (E. coli, intestinal enterococci and thermotolerant coliforms). During the 2018 and 2019 growing seasons, we observed the significantly enhanced growth of the crops irrigated with wastewater from the HCW due to the fertilizing effect. The risks associated with the contamination of crops irrigated with treated water are not negligible and it is necessary to pay sufficient attention to them, especially when introducing irrigation with wastewater into practice. Full article
Show Figures

Graphical abstract

13 pages, 1615 KiB  
Article
Chemical Characterization of Plant Extracts and Evaluation of their Nematicidal and Phytotoxic Potential
by Raúl Velasco-Azorsa, Héctor Cruz-Santiago, Ignacio Cid del Prado-Vera, Marco Vinicio Ramirez-Mares, María del Rocío Gutiérrez-Ortiz, Norma Francenia Santos-Sánchez, Raúl Salas-Coronado, Claudia Villanueva-Cañongo, Karla Isabel Lira-de León and Beatriz Hernández-Carlos
Molecules 2021, 26(8), 2216; https://doi.org/10.3390/molecules26082216 - 12 Apr 2021
Cited by 25 | Viewed by 5033
Abstract
Nacobbus aberrans ranks among the “top ten” plant-parasitic nematodes of phytosanitary importance. It causes significant losses in commercial interest crops in America and is a potential risk in the European Union. The nematicidal and phytotoxic activities of seven plant extracts against N. aberrans [...] Read more.
Nacobbus aberrans ranks among the “top ten” plant-parasitic nematodes of phytosanitary importance. It causes significant losses in commercial interest crops in America and is a potential risk in the European Union. The nematicidal and phytotoxic activities of seven plant extracts against N. aberrans and Solanum lycopersicum were evaluated in vitro, respectively. The chemical nature of three nematicidal extracts (EC50,48h ≤ 113 µg mL−1) was studied through NMR analysis. Plant extracts showed nematicidal activity on second-stage juveniles (J2): (≥87%) at 1000 µg mL−1 after 72 h, and their EC50 values were 71.4–468.1 and 31.5–299.8 µg mL−1 after 24 and 48 h, respectively. Extracts with the best nematicidal potential (EC50,48h < 113 µg mL−1) were those from Adenophyllum aurantium, Alloispermum integrifolium, and Tournefortia densiflora, which inhibited L. esculentum seed growth by 100% at 20 µg mL−1. Stigmasterol (1), β-sitosterol (2), and α-terthienyl (3) were identified from A. aurantium, while 1, 2, lutein (4), centaurin (5), patuletin-7-β-O-glucoside (6), pendulin (7), and penduletin (8) were identified from A. integrifolium. From T. densiflora extract, allantoin (9), 9-O-angeloyl-retronecine (10), and its N-oxide (11) were identified. The present research is the first to report the effect of T. densiflora, A. integrifolium, and A. aurantium against N. aberrans and chemically characterized nematicidal extracts that may provide alternative sources of botanical nematicides. Full article
Show Figures

Graphical abstract

14 pages, 1194 KiB  
Article
Post-Harvest Use of Ultraviolet Light (UV) and Light Emitting Diode (LED) to Enhance Bioactive Compounds in Refrigerated Tomatoes
by Nieves Baenas, Celia Iniesta, Rocío González-Barrio, Vanesa Nuñez-Gómez, María Jesús Periago and Francisco Javier García-Alonso
Molecules 2021, 26(7), 1847; https://doi.org/10.3390/molecules26071847 - 25 Mar 2021
Cited by 28 | Viewed by 3840
Abstract
Different strategies have been developed to increase the concentration of bioactive compounds in tomatoes during post-harvest, with ultraviolet light (UV) and light emitting diodes (LEDs) being interesting tools. The aim of this study was to evaluate the effect of ultraviolet (UVA at 366 [...] Read more.
Different strategies have been developed to increase the concentration of bioactive compounds in tomatoes during post-harvest, with ultraviolet light (UV) and light emitting diodes (LEDs) being interesting tools. The aim of this study was to evaluate the effect of ultraviolet (UVA at 366 nm and UVC at 254 nm) pre-treatment (1 kJ/m2) and red–blue LED light (25.4 µmol/m2/s) on the concentration of carotenoids, (poly)phenols and hydrophilic/lipophilic antioxidant capacity during 7 days of refrigeration storage of green tomatoes (Solanum lycopersicum L.) cultivar “Raf”. In addition, special attention was paid to quality parameters (weight loss, colour, acidity, soluble solids and ripening index). Tomatoes exposed to LED light at 6 °C for 7 days increased up to three times the total carotenoids content (mainly β-carotene and E-lycopene) compared to tomatoes refrigerated in the dark, while UV treatments alone did not significantly affect the carotenoid content. Besides, exposure to LEDs increased the hydrophilic and lipophilic antioxidant capacity of tomatoes by 30%, without affecting phenolic contents. Thus, LED treatments alone during refrigerated storage fostered ripening and improved the nutritional value of tomatoes, without compromising quality parameters. Further studies must be carried out to evaluate the impact on sensory attributes and consumer acceptance. Full article
Show Figures

Figure 1

9 pages, 192 KiB  
Article
High Tunnel Production of Tomatoes for Season Extension in Southeast Alabama
by Bradley Reeder, Wheeler Foshee, Eugene Blythe, Raymond Kessler, Joseph Kemble, Edgar Vinson, William Dozier and Larry Wells
Horticulturae 2020, 6(4), 94; https://doi.org/10.3390/horticulturae6040094 - 1 Dec 2020
Cited by 2 | Viewed by 2605
Abstract
A series of experiments was conducted to evaluate variety selection and planting date for spring and fall season extension of tomato (Solanum lycopersicum L. (syn.: Lycoperisicon esculentum Mill.)) production in high tunnels in southeast Alabama. ‘BHN 640’, ‘Florida 91’, ‘Sun Leaper’, and [...] Read more.
A series of experiments was conducted to evaluate variety selection and planting date for spring and fall season extension of tomato (Solanum lycopersicum L. (syn.: Lycoperisicon esculentum Mill.)) production in high tunnels in southeast Alabama. ‘BHN 640’, ‘Florida 91’, ‘Sun Leaper’, and ‘Carolina Gold’ were evaluated for early spring production in 2004. These varieties did not differ in total yield of marketable fruit; however, ‘BHN 640’ and ‘Sun Leaper’ produced higher early yields compared with the other varieties. ‘BHN 640’ and ‘Florida 91’ were evaluated for late-season extension in fall 2004. ‘BHN 640’ produced higher yields of large, medium, total marketable, and unmarketable fruit grades than ‘Florida 91’. In a study conducted in early 2005, higher yields of marketable fruit were produced from the first planting date (31 January) compared with the final of four planting date (25 Mar.). In summary, results indicated that season extension of tomato production in high tunnels was possible, with harvests three weeks earlier in the spring and 12 weeks later in the fall compared with typical field harvest dates. These early yields can command prices from $3.30 to $4.40US per kg of fruit. Full article
(This article belongs to the Section Vegetable Production Systems)
31 pages, 14054 KiB  
Article
Three New Alien Taxa for Europe and a Chorological Update on the Alien Vascular Flora of Calabria (Southern Italy)
by Valentina Lucia Astrid Laface, Carmelo Maria Musarella, Ana Cano Ortiz, Ricardo Quinto Canas, Serafino Cannavò and Giovanni Spampinato
Plants 2020, 9(9), 1181; https://doi.org/10.3390/plants9091181 - 11 Sep 2020
Cited by 32 | Viewed by 5876
Abstract
Knowledge on alien species is needed nowadays to protect natural habitats and prevent ecological damage. The presence of new alien plant species in Italy is increasing every day. Calabria, its southernmost region, is not yet well known with regard to this aspect. Thanks [...] Read more.
Knowledge on alien species is needed nowadays to protect natural habitats and prevent ecological damage. The presence of new alien plant species in Italy is increasing every day. Calabria, its southernmost region, is not yet well known with regard to this aspect. Thanks to fieldwork, sampling, and observing many exotic plants in Calabria, here, we report new data on 34 alien taxa. In particular, we found three new taxa for Europe (Cascabela thevetia, Ipomoea setosa subsp. pavonii, and Tecoma stans), three new for Italy (Brugmansia aurea, NarcissusCotinga’, and NarcissusErlicheer’), one new one for the Italian Peninsula (Luffa aegyptiaca), and 21 new taxa for Calabria (Allium cepa, Asparagus setaceus, Bassia scoparia, Beta vulgaris subsp. vulgaris, Bidens formosa, Casuarina equisetifolia, Cedrus atlantica, Chlorophytum comosum, Cucurbita maxima subsp. maxima, Dolichandra unguis-cati, Fagopyrum esculentum, Freesia alba, Juglans regia, Kalanchoë delagoënsis, Passiflora caerulea, Portulaca grandiflora, Prunus armeniaca, Prunus dulcis, Solanum tuberosum, Tradescantia sillamontana, and Washingtonia filifera). Furthermore, we provide the first geolocalized record of Araujia sericifera, the confirmation of Oxalis stricta, and propose a change of status for four taxa (Cenchrus setaceus, Salpichroa origanifolia, Sesbania punicea, and Nothoscordum gracile) for Calabria. The updated knowledge on the presence of new alien species in Calabria, in Italy and in Europe could allow for the prevention of other new entries and to eliminate this potential ecological threat to natural habitats. Full article
(This article belongs to the Special Issue Threatened Vegetation and Environmental Management)
Show Figures

Figure 1

23 pages, 401 KiB  
Review
Phenotyping in Arabidopsis and Crops—Are We Addressing the Same Traits? A Case Study in Tomato
by Paolo Korwin Krukowski, Jan Ellenberger, Simone Röhlen-Schmittgen, Andrea Schubert and Francesca Cardinale
Genes 2020, 11(9), 1011; https://doi.org/10.3390/genes11091011 - 27 Aug 2020
Cited by 7 | Viewed by 4979
Abstract
The convenient model Arabidopsis thaliana has allowed tremendous advances in plant genetics and physiology, in spite of only being a weed. It has also unveiled the main molecular networks governing, among others, abiotic stress responses. Through the use of the latest genomic tools, [...] Read more.
The convenient model Arabidopsis thaliana has allowed tremendous advances in plant genetics and physiology, in spite of only being a weed. It has also unveiled the main molecular networks governing, among others, abiotic stress responses. Through the use of the latest genomic tools, Arabidopsis research is nowadays being translated to agronomically interesting crop models such as tomato, but at a lagging pace. Knowledge transfer has been hindered by invariable differences in plant architecture and behaviour, as well as the divergent direct objectives of research in Arabidopsis vs. crops compromise transferability. In this sense, phenotype translation is still a very complex matter. Here, we point out the challenges of “translational phenotyping” in the case study of drought stress phenotyping in Arabidopsis and tomato. After briefly defining and describing drought stress and survival strategies, we compare drought stress protocols and phenotyping techniques most commonly used in the two species, and discuss their potential to gain insights, which are truly transferable between species. This review is intended to be a starting point for discussion about translational phenotyping approaches among plant scientists, and provides a useful compendium of methods and techniques used in modern phenotyping for this specific plant pair as a case study. Full article
(This article belongs to the Special Issue TILLING and CRISPR to design the varieties of tomorrow)
Show Figures

Graphical abstract

11 pages, 4772 KiB  
Article
MALDI-TOF MS-Based Analysis of Seed Proteins from Catalogue Varieties of Solanum lycopersicum/Lycopersicon esculentum
by Michael Reeve
Horticulturae 2019, 5(3), 48; https://doi.org/10.3390/horticulturae5030048 - 26 Jun 2019
Cited by 3 | Viewed by 4796
Abstract
Matrix-assisted laser-desorption and ionization time-of-flight mass spectroscopy (MALDI-TOF MS) is a flexible technique for the analysis of protein-containing biological samples. Simple and inexpensive methods have previously been developed for MALDI-TOF MS sample preparation that are able to discriminate between Impatiens species that are [...] Read more.
Matrix-assisted laser-desorption and ionization time-of-flight mass spectroscopy (MALDI-TOF MS) is a flexible technique for the analysis of protein-containing biological samples. Simple and inexpensive methods have previously been developed for MALDI-TOF MS sample preparation that are able to discriminate between Impatiens species that are closely related and also between regional biotypes of the invasive weed Impatiens glandulifera (Himalayan balsam) with leaf material and also seed material. The current article investigates whether MALDI-TOF MS, through acid-soluble protein ‘fingerprinting’, can be used to analyze plant seeds that result from intensive commercial plant-breeding activity. As an initial proof-of-concept study, tomato seeds from eleven seed-catalogue varieties (F1 Pink Baby Plum, F1 Fantasio, F1 Lizzano, F1 Sungold, F1 Tumbler, Faworyt, Golden Sunrise, Hundreds and Thousands, Indigo Rose, Moneymaker, and Red Alert), listed as Solanum lycopersicum or under the synonym Lycopersicon esculentum were analyzed using MALDI-TOF MS. Whilst peak-rich and highly-reproducible spectra were obtained, with very high Bruker comparison scores and low MALDI-TOF MS variance, sample-preparation variance, and seed-to-seed variance, the spectral differences between varieties were only slightly greater than the above combined variances, indicating very close similarity between all eleven varieties studied. These results are discussed in comparison with those previously observed with the naturally-evolving invasive species I. glandulifera. Full article
Show Figures

Figure 1

6 pages, 699 KiB  
Communication
Is Root Catalase a Bifunctional Catalase-Peroxidase?
by Vasileia Chioti and George Zervoudakis
Antioxidants 2017, 6(2), 39; https://doi.org/10.3390/antiox6020039 - 25 May 2017
Cited by 13 | Viewed by 10130
Abstract
Plant catalases exhibit spatial and temporal distribution of their activity. Moreover, except from the typical monofunctional catalase, a bifunctional catalase-peroxidase has been reported. The aim of this study was to investigate whether the leaf and root catalases from six different plant species ( [...] Read more.
Plant catalases exhibit spatial and temporal distribution of their activity. Moreover, except from the typical monofunctional catalase, a bifunctional catalase-peroxidase has been reported. The aim of this study was to investigate whether the leaf and root catalases from six different plant species (Lactuca sativa, Cichorium endivia, Apium graveolens, Petroselinum crispum, Lycopersicon esculentum, and Solanum melongena) correspond to the monofunctional or the bifunctional type based on their sensitivity to the inhibitor 3-amino-1,2,4-triazole (3-AT). The leaf catalases from all species seem to be monofunctional since they are very sensitive to 3-AT. On the other hand, the root enzymes from Lactuca sativa, Cichorium endivia, Lycopersicon esculentum, and Solanum melongena seem to be bifunctional catalase-peroxidases, considering that they are relatively insensitive to 3-AT, whereas the catalases from Apium graveolens and Petroselinum crispum display the same monofunctional characteristics as the leaves’ enzymes. The leaf catalase activity is usually higher (Lactuca sativa, Petroselinum crispum, and Solanum melongena) or similar (Cichorium endivia and Apium graveolens) to the root one, except for the enzyme from Lycopersicon esculentum, while in all plant species the leaf protein concentration is significantly higher than the root protein concentration. These results suggest that there are differences between leaf and root catalases—differences that may correspond to their physiological role. Full article
Show Figures

Figure 1

30 pages, 956 KiB  
Review
Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective
by Klára Kosová, Pavel Vítámvás, Milan Oldřich Urban, Miroslav Klíma, Amitava Roy and Ilja Tom Prášil
Int. J. Mol. Sci. 2015, 16(9), 20913-20942; https://doi.org/10.3390/ijms160920913 - 1 Sep 2015
Cited by 126 | Viewed by 10794
Abstract
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an [...] Read more.
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. Full article
(This article belongs to the Special Issue Abiotic Stress and Gene Networks in Plants)
Show Figures

Graphical abstract

33 pages, 1252 KiB  
Article
Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves
by Galina Brychkova, Dmitry Yarmolinsky, Albert Batushansky, Vladislav Grishkevich, Inna Khozin-Goldberg, Aaron Fait, Rachel Amir, Robert Fluhr and Moshe Sagi
Plants 2015, 4(3), 573-605; https://doi.org/10.3390/plants4030573 - 14 Aug 2015
Cited by 19 | Viewed by 10306
Abstract
Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum [...] Read more.
Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants. Full article
(This article belongs to the Special Issue Plant Senescence)
Show Figures

Graphical abstract

Back to TopTop