Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Soil Nail Wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3691 KiB  
Article
Model Box Test and Numerical Simulation Analysis of Supporting Performance of Loess-Based Composite Slurry Soil Nailing Wall
by Zhao Long, Shuaihua Ye, Xiaohui Li and Zhiyuan Guo
Buildings 2025, 15(12), 2090; https://doi.org/10.3390/buildings15122090 - 17 Jun 2025
Viewed by 254
Abstract
In this paper, the reinforced cement soil nailing support technology is adopted, and the soil nailing and surface layer of loess-based composite slurry are prepared by using loess and cement. A scale model box test is conducted to examine the changes in surface [...] Read more.
In this paper, the reinforced cement soil nailing support technology is adopted, and the soil nailing and surface layer of loess-based composite slurry are prepared by using loess and cement. A scale model box test is conducted to examine the changes in surface layer displacement and axial force in the soil nailing during excavation and loading. The step-by-step excavation process of the foundation pit, reinforced with a loess-based composite slurry soil nailing wall. It was simulated using ABAQUS finite element software (MATLAB R2022b). The results show that as the depth of the foundation pit continues to increase, the displacement of the surface layer increases first and then decreases, and the peak displacement appears in the middle of the foundation pit. During excavation, the axial force at the middle of each row of soil nails is greater than the axial force at the end, and the axial force will increase with the increase in depth. Throughout the loading process, the axial force in the soil nail diminishes as the depth of the foundation pit increases. Initially, the change is slow, but later it escalates considerably. As the excavation depth of the foundation pit increases, the safety factor of the foundation pit will gradually decrease, and finally stabilize at about 2.4, indicating that the loess-based cement slurry soil nailing wall support has high safety. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

25 pages, 18710 KiB  
Article
Evaluation of the Performance of Soil-Nailed Walls in Weathered Sandstones Utilizing Instrumental Data
by Anıl Yeni, Murat Ergenokon Selçuk and Ömer Ündül
Appl. Sci. 2025, 15(6), 2908; https://doi.org/10.3390/app15062908 - 7 Mar 2025
Viewed by 922
Abstract
Used for soil and weathered rocks, soil nails are rigid reinforcements positioned at certain angles on the ground to provide slope stability. A rigid reinforcement element placed in a well filled with cement grout mix after completing drilling will generate adherence stress between [...] Read more.
Used for soil and weathered rocks, soil nails are rigid reinforcements positioned at certain angles on the ground to provide slope stability. A rigid reinforcement element placed in a well filled with cement grout mix after completing drilling will generate adherence stress between the grout-mixed nail bar and soil. Due to this stress, load is transferred to the soil along the soil–grout interaction surface. In the case discussed herein, the slope at the parcel border needed to be made steeper in order to accommodate the construction of a facility in the Taşkısığı region of Sakarya province. Soil-nailed walls, which are inexpensive and suitable for weathered rocks, were needed as a support system because the slope was too steep to support itself. Support system performance was measured using two inclinometers and two soil nail pull-out tests conducted on different sections observed during and after construction. Contrary to the design-phase prediction, it was determined that the stresses started to dampen in the region closer to the slope-facing zone. Field measurement data and numerical analysis revealed that higher parameters than necessary were selected. In this context, sensitivity and parameter analyses were carried out using the Hoek–Brown constitutive model. The GSI value was re-evaluated and found to be compatible with the observation results obtained from the field performance. Since the retaining wall performance observed was higher than expected, geometric parametric analysis of the structural elements was performed; high safety coefficients were found across variations. The effects of the inclination of the slope, nail length, nail spacing, and nail slope design parameters on the safety coefficient and horizontal displacement were examined. The optimal design suggested nail lengths of 4.00 m, a spacing of 1.60 m, and slopes of 20°. It was discovered that the effect of the inclination degree of the slope on the safety coefficient was lower than expected. The results revealed that a more economical design with a similar safety factor can be obtained by shortening the lengths of the nails. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 2291 KiB  
Article
Comparative Analysis of Carbon Emissions from Filled Embankment and Excavated Graben Schemes of Railway Subgrade Engineering
by Zhongshuai Shen, Xueying Bao, Zilong Li and Xiangru Lv
Sustainability 2024, 16(19), 8384; https://doi.org/10.3390/su16198384 - 26 Sep 2024
Cited by 2 | Viewed by 1442
Abstract
To quantitatively compare the carbon emissions between the filled embankment scheme and the excavated graben scheme of railway subgrade engineering, first, according to the life cycle assessment theory, the two schemes were separated into four stages: building materials production, building materials transportation, construction, [...] Read more.
To quantitatively compare the carbon emissions between the filled embankment scheme and the excavated graben scheme of railway subgrade engineering, first, according to the life cycle assessment theory, the two schemes were separated into four stages: building materials production, building materials transportation, construction, and operation and maintenance. The carbon emission factor method was then used to compute the carbon emissions of the filled embankment scheme and the excavated graben scheme. The results indicate that the carbon emissions of the filled embankment scheme are 8783.76 t, 801.71 t, 627.78 t, and 1021.33 t at each stage, and 11,234.58 t over its total life cycle. The carbon emissions at each stage of the excavated graben scheme are 954.96 t, 52.62 t, 772.69 t, and 178.03 t, respectively, and 1958.30 t over its total life cycle. Finally, the carbon abatement potential of the excavated graben scheme with less carbon emissions was investigated by changing the soil nail wall slope to an ecological slope. The results show that after changing the soil nail wall slope of the excavated graben scheme to an ecological slope, the excavated graben scheme’s carbon sequestration of the total life cycle is 3274.38 t. Full article
Show Figures

Figure 1

21 pages, 17813 KiB  
Article
Parametric Investigation of Corner Effect on Soil Nailed Walls and Prediction Using Machine Learning Methods
by Semiha Poyraz and İsa Vural
Appl. Sci. 2024, 14(16), 7331; https://doi.org/10.3390/app14167331 - 20 Aug 2024
Cited by 1 | Viewed by 1717
Abstract
The performance of soil nailed walls is evaluated based on lateral displacements, especially in high walls. In this study, the displacement behavior of nailed walls, which are frequently preferred in retaining wall systems in hard clayey soils, was examined by taking into account [...] Read more.
The performance of soil nailed walls is evaluated based on lateral displacements, especially in high walls. In this study, the displacement behavior of nailed walls, which are frequently preferred in retaining wall systems in hard clayey soils, was examined by taking into account the corner effect. The nailed wall model was created using Plaxis 2D v.23, and the performance of the model was verified with the results of inclinometer measurements taken on-site. To assess the influence of excavation pit dimensions on the corner effect, 25 three-dimensional and 25 plane–strain slice models were created using Plaxis 3D v.23, and the effect of excavation pit dimensions on the plane–strain ratio (PSR) was determined. Then, analysis studies were carried out by creating 336 3D and 336 plane–strain slice models with variable parameters, such as slope angle (β), wall angle (α), nail length (L/H), excavation depth (H), and distance from the corner (xH). Its effects on PSR were determined. The interactions of the parameters with each other and PSR estimation were evaluated using machine learning (ML) methods: artificial neural networks (ANN), classifical and regression tree (CART), support vector regression (SVR), extreme gradient boosting (XGBoost). The proposed ML prediction methods and PSR results were compared with performance metrics and reliable results were obtained. Full article
Show Figures

Figure 1

20 pages, 7186 KiB  
Article
Numerical Analysis of Bearing Capacity in Deep Excavation Support Structures: A Comparative Study of Nailing Systems and Helical Anchors
by Seyyed Alireza Taghavi, Farhad Mahmoudi Jalali, Reza Moezzi, Reza Yeganeh Khaksar, Stanisław Wacławek, Mohammad Gheibi and Andres Annuk
Eng 2024, 5(2), 657-676; https://doi.org/10.3390/eng5020037 - 18 Apr 2024
Cited by 2 | Viewed by 2220
Abstract
The increasing demand for deep excavations in construction projects emphasizes the necessity of robust support structures to ensure safety and stability. Support structures are critical in stabilizing excavation pits, with a primary focus on enhancing their bearing capacity. This paper employs finite element [...] Read more.
The increasing demand for deep excavations in construction projects emphasizes the necessity of robust support structures to ensure safety and stability. Support structures are critical in stabilizing excavation pits, with a primary focus on enhancing their bearing capacity. This paper employs finite element modeling techniques to conduct a numerical analysis of nails and helical anchors’ bearing capacity. To reinforce the stability of pit walls, selecting an appropriate method for guard structure construction is imperative. The chosen method should efficiently redistribute forces induced by soil mass weight, displacements, and potential loads in the pit vicinity to the ground. Various techniques, including trusses, piles, cross-bracing systems, nailing, and anchorage systems, are utilized for this purpose. The study evaluates numerical models for two guard structure configurations: nailing systems and helical anchorage. It examines the impact of parameters such as displacement, helical helix count, helix diameter variations, and the integration of nailing systems with helices. Comparative analyses are conducted, including displacement comparisons between different nailing systems and helical anchor systems, along with laboratory-sampled data. The research yields significant insights, with a notable finding highlighting the superior performance of helical bracings compared to nailing systems. The conclusions drawn from this study provide specific outcomes that contribute valuable knowledge to the field of deep excavation support structures, guiding future design and implementation practices. Full article
(This article belongs to the Special Issue Feature Papers in Eng 2024)
Show Figures

Figure 1

20 pages, 32643 KiB  
Article
A Numerical Study of a Soil-Nail-Supported Excavation Pit Subjected to a Vertically Loaded Strip Footing at the Crest
by Meen-Wah Gui and Ravendra P. Rajak
Buildings 2024, 14(4), 927; https://doi.org/10.3390/buildings14040927 - 28 Mar 2024
Cited by 3 | Viewed by 1785
Abstract
Soil nailing is a prevalent and cost-effective technique employed to reinforce and enhance the stability of precarious natural or cut slopes; however, its application as a primary support system to prevent collapses or cave-ins during foundation excavation could be more frequent. To better [...] Read more.
Soil nailing is a prevalent and cost-effective technique employed to reinforce and enhance the stability of precarious natural or cut slopes; however, its application as a primary support system to prevent collapses or cave-ins during foundation excavation could be more frequent. To better understand the behavior of such a support system, this study simulated a full-scale nail-supported excavation for the foundation pit of a 20-story building to examine the effect of placing a strip footing with various combinations of configurations on the crest of the excavation pit. The results are discussed in terms of the nail axial force, wall horizontal deflection, basal heave, and safety factor against sliding. The results show that the footing width and setback distance are the two most significant factors dominating the wall horizontal deflection. This study also reveals that the maximum axial force is closely related to the apparent active earth pressure, which accounts for the presence of a tension crack, at nail depth. Such a finding allows engineers to assess and mitigate the risks of structural failure more effectively and optimize the design of nail-retaining structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2670 KiB  
Article
Integrating Combination Weighting of Game Theory and Fuzzy Comprehensive Evaluation for Selecting Deep Foundation Pit Support Scheme
by Tianlu Jin, Peixing Zhang, Yuanda Niu and Xiaofeng Lv
Buildings 2024, 14(3), 619; https://doi.org/10.3390/buildings14030619 - 27 Feb 2024
Cited by 9 | Viewed by 1976
Abstract
Deep foundation pit support systems are important for reducing construction risks, to ensure the effectiveness and safety of support engineering, so the selection of a suitable support program is the inevitable requirement for the smooth construction of a foundation pit project. In order [...] Read more.
Deep foundation pit support systems are important for reducing construction risks, to ensure the effectiveness and safety of support engineering, so the selection of a suitable support program is the inevitable requirement for the smooth construction of a foundation pit project. In order to improve the rationality of the support scheme, the analytic hierarchy process and the improved Entropy method are comprehensively used to determine the subjective and objective weights of the indexes, and the comprehensive weights are corrected based on the idea of game theory. Subsequently, fuzzy comprehensive evaluation is used for scheme selection, thereby constructing a model for optimizing deep foundation pit support schemes. The model is applied to a municipal pipe gallery project in Area A and the optimal support scheme is determined to be the soil nail wall and supporting piles and anchor ropes. The safety of the support scheme and the effectiveness of the selection model are verified through simulation and construction monitoring. Practice has proved the applicability and superiority of the model in dealing with construction projects characterized by ambiguity and insufficient data. In addition, the advantages and disadvantages of the mainstream evaluation methods of the current deep foundation pit support selection, applicable situations, and the influence mechanism of the geological environment are discussed in this paper, which helps to establish a more comprehensive framework for the selection of the support schemes. Full article
Show Figures

Figure 1

14 pages, 3601 KiB  
Article
Investigation of Shear Strength Reduction Method in Slope Stability of Reinforced Slopes by Anchor and Nail
by SeyedSaber Hosseini, Farshad Astaraki, Seyed Mohammad Reza Imam, Jafar Chalabii and Majid Movahedi Rad
Buildings 2024, 14(2), 432; https://doi.org/10.3390/buildings14020432 - 5 Feb 2024
Cited by 9 | Viewed by 2547
Abstract
Since the stability of slopes in infrastructures such as road and railroad embankments, excavations, and, in general, earthwork is important, analyzing the stability of these slopes has been one of the main focuses of geotechnical engineers. Although analyzing both reinforced and unreinforced slopes [...] Read more.
Since the stability of slopes in infrastructures such as road and railroad embankments, excavations, and, in general, earthwork is important, analyzing the stability of these slopes has been one of the main focuses of geotechnical engineers. Although analyzing both reinforced and unreinforced slopes is needed, reinforced slopes require special attention as the reinforcement elements significantly affect the calculations. Hence, the current study’s aim is to find out the differences between obtained safety factors using the Limit Equilibrium Method (LEM) and Shear Strength Reduction Method (SSRM). For this purpose, first, the origin differences in terms of Safety Factor (SF) are theoretically determined according to basic formulas for the aforementioned techniques. Then, to verify the formula, several numerical modelings are carried out using in situ measured geotechnical data to better understand the differences in terms of safety factors. The results indicate that for the reinforced slope with an SF value of higher than 1, the SSRM provides a higher SF in comparison with the other techniques, and the origin of this difference is the definitions of the SF in the different methods. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 27775 KiB  
Article
Geotechnical Characterization of Quito’s North-Central Zone as Applied to Deep Excavation in the Urban Setting
by Vicente E. Capa, F. Javier Torrijo, Pedro A. Calderón and Carlos Hidalgo Signes
Sustainability 2023, 15(10), 8272; https://doi.org/10.3390/su15108272 - 19 May 2023
Cited by 1 | Viewed by 4114
Abstract
This paper describes an in-depth soil characterization study in the La Carolina financial district of Quito (Ecuador). As there was very little information available on the geotechnical structure of Quito’s volcanic soil, particularly in this area, where large-scale property development has taken place, [...] Read more.
This paper describes an in-depth soil characterization study in the La Carolina financial district of Quito (Ecuador). As there was very little information available on the geotechnical structure of Quito’s volcanic soil, particularly in this area, where large-scale property development has taken place, the aim was to provide information on soil parameters to engineers working on large geotechnical and civil engineering projects based on the results of a thorough and comprehensive study of such properties. A series of field tests were performed at three different sites, where thin-walled tube samples were collected for lab testing to estimate the index properties and mechanical parameters. These index properties were then combined with conventional two-way drainage oedometer tests and stress-path triaxial testing to evaluate compressibility, stiffness and strength. The subsoil was found to be partly composed of slightly overconsolidated volcanic soils. X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses were also conducted to determine mineralogical and microstructural features and evaluate their influence on the mechanical behavior of the volcanic soil. This type of research is frequently applied to the study of landslides in urban environments, where it is essential to understand their failure mechanisms, especially in slopes generated by the construction of important engineering works. Therefore, based on this geotechnical characterization study, parameters were subsequently determined for the Mohr–Coulomb (MC), Hardening Soil (HS), and Hardening Soil with Small-Strain Stiffness (HSsmall) soil constitutive models, and these were applied to a numerical study of the Soil Nailing system behavior for the construction of a five-level underground car parking structure of an important building located in the north-central sector of the city of Quito. It was verified that the HSsmall and HS constitutive soil models better reproduce the behavior of this type of structure. Finally, the multiple geotechnical parameters determined in this study significantly contribute to the analysis of these structures in this soil type. Full article
Show Figures

Figure 1

16 pages, 9130 KiB  
Article
Pullout Behavior of Nail Reinforcement in Nailed Soil Slope
by Mahmoud H. Mohamed, Mohd Ahmed and Javed Mallick
Appl. Sci. 2021, 11(14), 6419; https://doi.org/10.3390/app11146419 - 12 Jul 2021
Cited by 6 | Viewed by 3017
Abstract
The pullout resistance and displacement performance of reinforcement have significant effects on the safe and economic design of a reinforced-soil system. In this study, the nail pullout tests are conducted to assess the pullout behavior of soil nail reinforcement at different levels in [...] Read more.
The pullout resistance and displacement performance of reinforcement have significant effects on the safe and economic design of a reinforced-soil system. In this study, the nail pullout tests are conducted to assess the pullout behavior of soil nail reinforcement at different levels in the soil slope of granular materials. The similitude laboratory models of a reinforced soil system with a scale of 1:10 are prepared. The construction sequence used in a full scale slope was precisely followed in the laboratory model. The models consist of a Perspex wall box filled with sand and steel bars as a reinforcement. The models of sand beds are formed using an automatic sand raining system. Devices and instruments are installed to record the nails pullout resistance and displacement. The tests are carried out at variable footing pressures to get the pullout force of the nails based on a strain control technique. The finite element models of nailed soil slope are also analyzed to validate the laboratory model results. It infers from the numerical model results that the laboratory models underestimate the pullout behavior of nail reinforcement in nailed soil slope. The pull-out force in nail reinforcement increases as the displacement increases and then decreases slightly and becomes constant with an increase in displacement in the case of deeper placed nails, but it becomes constant immediately for upper nails. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 8075 KiB  
Article
Probabilistic Seismic Demand Analysis of Soil Nail Wall Structures Using Bayesian Linear Regression Approach
by Mahdi Bayat, Amir Homayoon Kosarieh and Mehran Javanmard
Sustainability 2021, 13(11), 5782; https://doi.org/10.3390/su13115782 - 21 May 2021
Cited by 6 | Viewed by 2389
Abstract
This paper presents the seismic analytic fragility curve of soil nail wall structures. The numerical modeling procedure of the soil nail wall is presented and discussed in detail. Nonlinear elements have been used to provide an accurate finite element modeling of the soil [...] Read more.
This paper presents the seismic analytic fragility curve of soil nail wall structures. The numerical modeling procedure of the soil nail wall is presented and discussed in detail. Nonlinear elements have been used to provide an accurate finite element modeling of the soil nail wall. The effect of different soil modeling approaches is studied. Detailed procedures to select an efficient intensity measure are presented. Analytical fragility curves for the different performance levels of the soil nail wall are developed. Detailed techniques have been used to generate accurate soil modeling, such as the Mohr-Coulomb model (MC), Hardening Soil model (HS), and Hardening Soil model with Stiffness effect from small strains (HSS), and these are studied. Incremental dynamic analysis (IDA) is implemented to capture the response of the wall from linear to nonlinear levels. The efficiency of the two common intensity measures is studied (PGA and Sa(T1,5%)). It has been demonstrated that HSS and HS models are more reliable techniques for soil modeling. Two common intensity measures are studied, and the efficiency and the sufficiency of them are compared. It has been suggested that Sa(T1,5%) is a more efficient intensity measure than PGA for soil nail structures due to less depression in the IDA results. Different performance levels were defined to develop analytical fragility curves for different damage states. Full article
Show Figures

Figure 1

15 pages, 4865 KiB  
Article
Numerical Investigation of a Foundation Pit Supported by a Composite Soil Nailing Structure
by Wei Han, Genxiao Li, Zhaohui Sun, Hengjie Luan, Chuanzheng Liu and Xianlong Wu
Symmetry 2020, 12(2), 252; https://doi.org/10.3390/sym12020252 - 6 Feb 2020
Cited by 28 | Viewed by 4357
Abstract
In special geology conditions such as silt-soil, foundation pits are prone to instability and severe deformation. In this paper, a composite soil nailing structure was studied and its effect on a silt-soil symmetrical foundation pit investigated. The factors affecting the stability of the [...] Read more.
In special geology conditions such as silt-soil, foundation pits are prone to instability and severe deformation. In this paper, a composite soil nailing structure was studied and its effect on a silt-soil symmetrical foundation pit investigated. The factors affecting the stability of the pit as well as its deformation characteristics were also explored. The results show that excavation depth of the foundation pit has a significant impact on its stability. The soil outside the foundation pit is in the form of a parabola, and the uplift of the soil mainly occurs at the bottom. The horizontal displacement of soil on the side wall of the foundation pit presents a “bulk belly” form. In addition, the axial force of soil nails is larger in the middle part, and smaller at both ends in the shape of a spindle. Moreover, the horizontal displacement is positively correlated with the inclination and spacing of the soil nails, but negatively correlated with the diameter and depth of the mixing pile inlay. Furthermore, the inclination and spacing of the soil nails, the diameter, and embedded depth of the mixing pile have their own critical values for stability of the foundation pit. Specifically, in this paper, with respect to soil nails, inclination should be below 30° and prestress value should not exceed 20 kN. With respect to the mixing pile, the diameter should be less than 1.5 m; when the embedded depth of the mixing pile exceeds the critical depth, the limiting effect of the mixing pile on horizontal displacement is not significant. This research provides important takeaways for the design of a composite soil nailing structure for symmetrical foundation pits. Full article
Show Figures

Figure 1

22 pages, 7552 KiB  
Article
Application of UAV Photogrammetry in Displacement Measurement of the Soil Nail Walls Using Local Features and CPDA Method
by Farid Esmaeili, Hamid Ebadi, Mohammad Saadatseresht and Farzin Kalantary
ISPRS Int. J. Geo-Inf. 2019, 8(1), 25; https://doi.org/10.3390/ijgi8010025 - 11 Jan 2019
Cited by 9 | Viewed by 4950
Abstract
The high cost of land across urban areas has made the excavation a typical practice to construct multiple underground stories. Various methods have been used to restrain the excavated walls and keep them from a possible collapse, including nailing and anchorage. The excavated [...] Read more.
The high cost of land across urban areas has made the excavation a typical practice to construct multiple underground stories. Various methods have been used to restrain the excavated walls and keep them from a possible collapse, including nailing and anchorage. The excavated wall monitoring, especially during the drilling and restraining operations, is necessary for preventing the risk of such incidents as an excavated wall collapse. In the present research, an unmanned aerial vehicle (UAV) photogrammetry-based algorithm was proposed for accurate, fast and low-cost monitoring of excavated walls. Different stages of the proposed methodology included design of the UAV photogrammetry network for optimal imaging, local feature extraction from the acquired images, a special optimal matching method and finally, displacement estimation through a combined adjustment method. Results of implementations showed that, using the proposed methodology, one can achieve a precision of ±7 mm in positioning local features on the excavated walls. Moreover, the wall displacement could be measured at an accuracy of ±1 cm. Having high flexibility, easy implementation, low cost and fast pace; the proposed methodology provides an appropriate alternative to micro-geodesic procedures and the use of instrumentations for excavated wall displacement monitoring. Full article
(This article belongs to the Special Issue Applications and Potential of UAV Photogrammetric Survey)
Show Figures

Graphical abstract

Back to TopTop