Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = Silicosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4749 KB  
Article
The Protective Effect and Molecular Mechanism of Tetrandrine on Male Reproductive Damage Caused by Silicon Dioxide
by Hong-Mei Li, Xiao-Qi Zeng, Qing Chang, Yu-Xin Sheng, Ya-Jia Pu, Yi Wang, Bin Cheng, Hong-Hui Li, Jie Xuan, Ling Zhang and Hai-Ming Xu
Toxics 2026, 14(1), 87; https://doi.org/10.3390/toxics14010087 - 18 Jan 2026
Viewed by 147
Abstract
The long-term inhalation of free silica dust causes silicosis—a prevalent occupational hazard—yet its systemic effect on male reproductive toxicity remains underexplored. Tetrandrine (Tet) is the only plant-derived anti-silicosis drug approved in China. This study investigates silica (SiO2) -induced male reproductive damage [...] Read more.
The long-term inhalation of free silica dust causes silicosis—a prevalent occupational hazard—yet its systemic effect on male reproductive toxicity remains underexplored. Tetrandrine (Tet) is the only plant-derived anti-silicosis drug approved in China. This study investigates silica (SiO2) -induced male reproductive damage and evaluates Tet’s protective effects. Sixty male C57BL/6 mice (6–8 weeks) were divided into control, SiO2 exposure, and SiO2 + Tet groups. SiO2 was administered via intranasal infusion and Tet via gavage. Mice were sacrificed at day 7 (male reproductive injury model corresponding to the pulmonary inflammation stage) and day 42 (male reproductive injury model corresponding to the pulmonary fibrosis stage). Analyses included sperm morphology, testicular transcriptome sequencing, RT-qPCR, and immunofluorescence. At day 7, SiO2 exposure upregulated testicular inflammatory markers, which were partially mitigated by Tet. At day 42, SiO2 increased sperm deformity and testicular fibrosis markers (fibronectin and vimentin); Tet intervention reduced these abnormalities. Transcriptome analysis revealed distinct gene expression patterns at day 7 versus day 42, indicating time-dependent injury mechanisms. Tetrandrine alleviates silica-induced reproductive damage in male mice, suggesting potential therapeutic applications for occupational silica exposure and expanding the understanding of silica toxicity beyond the respiratory system. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Graphical abstract

16 pages, 2642 KB  
Study Protocol
A Study Protocol for Developing a Pragmatic Aetiology-Based Silicosis Prevention and Elimination Approach in Southern Africa
by Norman Nkuzi Khoza, Thokozani Patrick Mbonane, Phoka C. Rathebe and Masilu Daniel Masekameni
Methods Protoc. 2026, 9(1), 12; https://doi.org/10.3390/mps9010012 - 14 Jan 2026
Viewed by 145
Abstract
Workers’ exposure to silica dust is a global occupational and public health concern and is particularly prevalent in Southern Africa, mainly because of inadequate dust control measures. It is worsened by the high prevalence of HIV/AIDS, which exacerbates tuberculosis and other occupational lung [...] Read more.
Workers’ exposure to silica dust is a global occupational and public health concern and is particularly prevalent in Southern Africa, mainly because of inadequate dust control measures. It is worsened by the high prevalence of HIV/AIDS, which exacerbates tuberculosis and other occupational lung diseases. The prevalence of silicosis in the region ranges from 9 to 51%; however, silica dust exposure levels and controls, especially in the informal mining sector, particularly in artisanal small-scale mines (ASMs), leave much to be desired. This is important because silicosis is incurable and can only be eliminated by preventing worker exposure. Additionally, several studies have indicated inadequate occupational health and safety policies, weak inspection systems, inadequate monitoring and control technologies, and inadequate occupational health and hygiene skills. Furthermore, there is a near-absence of silica dust analysis laboratories in southern Africa, except in South Africa. This protocol aims to systematically evaluate the effectiveness of respirable dust and respirable crystalline silica dust exposure evaluation and control methodology for the mining industry. The study will entail testing the effectiveness of current dust control measures for controlling microscale particles using various exposure dose metrics, such as mass, number, and lung surface area concentrations. This will be achieved using a portable Fourier transform infrared spectroscope (FTIR) (Nanozen Industries Inc., Burnaby, BC, Canada), the Nanozen DustCount, which measures both the mass and particle size distribution. The surface area concentration will be analysed by inputting the particle size distribution (PSD) results into the Multiple-Path Particle Dosimetry Model (MPPD) to estimate the retained and cleared doses. The MPPD will help us understand the sub-micron dust deposition and the reduction rate using the controls. To the best of our knowledge, the proposed approach has never been used elsewhere or in our settings. The proposed approach will reduce dependence on highly skilled individuals, reduce the turnaround sampling and analysis time, and provide a reference for regional harmonised occupational exposure limit (OEL) guidelines as a guiding document on how to meet occupational health, safety and environment (OHSE) requirements in ASM settings. Therefore, the outcome of this study will influence policy reforms and protect hundreds of thousands of employees currently working without any form of exposure prevention or protection. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

13 pages, 2350 KB  
Article
Metabolomic Subtyping and Machine Learning-Based Diagnosis Reveal Clinical Heterogeneity in Silicosis
by Jia Si, Hangju Zhu, Xinyu Ji, An-Dong Li, Ye Li, Shidan Wang, Yizhou Yang, Jianye Guo, Xinyu Li, Xiaocheng Peng, Ming Xu, Baoli Zhu, Yuanfang Chen and Lei Han
Metabolites 2026, 16(1), 67; https://doi.org/10.3390/metabo16010067 - 12 Jan 2026
Viewed by 142
Abstract
Background/Objectives: Silicosis remains a major occupational health concern worldwide and is characterized by notable clinical heterogeneity in terms of disease progression and complications. However, the underlying metabolic mechanisms contributing to this heterogeneity remain poorly understood. Methods: We conducted a case–control study involving 156 [...] Read more.
Background/Objectives: Silicosis remains a major occupational health concern worldwide and is characterized by notable clinical heterogeneity in terms of disease progression and complications. However, the underlying metabolic mechanisms contributing to this heterogeneity remain poorly understood. Methods: We conducted a case–control study involving 156 silicosis patients and 132 silica-exposed controls. The plasma samples were analyzed via untargeted metabolomics based on liquid chromatography–mass spectrometry (LC-MS/MS). To explore disease subtypes and potential biomarkers, we applied non-negative matrix factorization (NMF) clustering, weighted gene co-expression network analysis (WGCNA), and machine learning approaches. Results: A total of 860 differentially abundant metabolites, including elevated pathogen-associated compounds, were identified in silicosis patients. Unsupervised NMF clustering revealed two distinct metabolic subtypes with different clinical features. Patients in the NMF2 subgroup had a 5.3-fold greater risk of pulmonary infections (p = 0.026) than those in the NMF1 subgroup. Metabolomic analysis revealed that NMF2 was enriched in arachidonic acid and unsaturated fatty acid metabolism pathways, with prominent LysoPC accumulation, suggesting inflammation-related lipid peroxidation. In contrast, NMF1 was characterized by increased spermidine biosynthesis and urea cycle activity, along with suppressed saturated fatty acid metabolism and reduced LysoPC processing, potentially affecting membrane integrity and promoting fibrosis. A machine learning-derived dual-metabolite panel, tyrosocholic acid and PI (20:4/0:0), achieved AUC values above 0.85 for both silicosis detection and subtype classification. Conclusions: These findings highlight metabolic heterogeneity in silicosis and suggest clinically relevant subtypes, providing a foundation for improved stratification, early detection, and targeted interventions. Full article
(This article belongs to the Section Bioinformatics and Data Analysis)
Show Figures

Figure 1

20 pages, 4347 KB  
Article
Integrated ceRNA Network Analysis in Silica-Induced Pulmonary Fibrosis and Discovery of miRNA Biomarkers
by Jia Wang, Yuting Jin, Qianwei Chen, Fenglin Zhu and Min Mu
Toxics 2026, 14(1), 63; https://doi.org/10.3390/toxics14010063 - 9 Jan 2026
Viewed by 331
Abstract
Silicosis is an irreversible and progressive pulmonary fibrotic disease caused by the long-term inhalation of silica dust. The precise molecular mechanisms underlying the disease remain incompletely understood, and effective early diagnostic biomarkers are still lacking. In this study, we used a silicosis mouse [...] Read more.
Silicosis is an irreversible and progressive pulmonary fibrotic disease caused by the long-term inhalation of silica dust. The precise molecular mechanisms underlying the disease remain incompletely understood, and effective early diagnostic biomarkers are still lacking. In this study, we used a silicosis mouse model and transcriptomic sequencing to identify 2950 mRNAs, 461 lncRNAs, 81 miRNAs, and 44 circRNAs that were differentially expressed in lung tissue. Enrichment analysis revealed that these differentially expressed genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (Akt) signaling pathway, nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathway, and tumor necrosis factor (TNF) signaling pathway. The constructed competing endogenous RNA (ceRNA) network highlighted extensive regulatory interactions among lncRNAs/circRNAs, miRNAs, and mRNAs. Human validation showed that the expression levels of hsa-miR-215-5p and hsa-miR-146b-5p were significantly upregulated in the peripheral blood of early-stage pneumoconiosis patients, while hsa-miR-485-5p was downregulated. Logistic regression analysis revealed that hsa-miR-215-5p (OR = 1.966, 95% CI: 1.6938–2.2796, p < 0.001) and hsa-miR-146b-5p (OR = 1.9367, 95% CI: 1.697–2.201, p < 0.001) were independent risk factors for pneumoconiosis (p < 0.001). ROC curve analysis showed that both miRNAs demonstrated good diagnostic efficacy for pneumoconiosis, with AUC values of 0.9563 and 0.8876, respectively. These results provide novel insights into the complex ceRNA regulatory network involved in silicosis pathogenesis and suggest potential early, non-invasive diagnostic biomarkers. Full article
(This article belongs to the Special Issue Effects of Air Pollutants on Cardiorespiratory Health)
Show Figures

Figure 1

26 pages, 7466 KB  
Article
Investigation of Air Quality and Particle Emission During Wet Granite Edge Finishing on Machine Tool with Half-Beveled and Ogee Profile Tools
by Wael Mateur, Victor Songmene, Ali Bahloul, Mohamed Nejib Saidi and Jules Kouam
J. Manuf. Mater. Process. 2025, 9(12), 397; https://doi.org/10.3390/jmmp9120397 - 1 Dec 2025
Viewed by 470
Abstract
Granite wet edge finishing is widely adopted to improve surface durability and aesthetics while reducing dust dispersion compared to dry processes. However, even under flooded lubrication, fine particles (FP, 0.5–20 µm) and ultrafine particles (UFP, <100 nm) containing crystalline silica are emitted, posing [...] Read more.
Granite wet edge finishing is widely adopted to improve surface durability and aesthetics while reducing dust dispersion compared to dry processes. However, even under flooded lubrication, fine particles (FP, 0.5–20 µm) and ultrafine particles (UFP, <100 nm) containing crystalline silica are emitted, posing health risks such as silicosis and pulmonary or cardiovascular diseases. This study investigates particle emissions during CNC edge finishing of black (containing 0% quartz) and white granites (containing 41% quartz) using two industrially relevant profile tools: Half-Beveled (HB) and Ogee (OG). A full factorial design evaluated the effects of granite type, tool geometry, abrasive grit size, spindle speed, and feed rate. Particle concentrations were measured with Aerodynamic and Scanning Mobility Particle Sizers. Results show that spindle speed (N) is the dominant factor, explaining up to 92% of variance in emissions, whereas feed rate (Vf) played a minor role. Tool geometry had a pronounced effect on UFP release: sharp-edged geometries (HB) promoted localized micro-fracturing and higher emissions, while curved geometries (OG) distributed stresses and reduced particle detachment. White granite generated higher mass emissions due to its high quartz content, while black granite exhibited more stable emission behavior. These findings highlight the dual necessity of optimizing cutting kinematics and selecting appropriate tool profiles to balance surface quality and occupational health in granite processing. Full article
Show Figures

Figure 1

19 pages, 2045 KB  
Article
Evaluation of Emission Reduction Systems in Underground Mining Trucks: A Case Study at an Underground Mine
by Hector Garcia-Gonzalez and Pablo Menendez-Cabo
Clean Technol. 2025, 7(4), 107; https://doi.org/10.3390/cleantechnol7040107 - 1 Dec 2025
Viewed by 515
Abstract
Underground mining environments present elevated occupational health risks, primarily due to substantial exposure to diesel exhaust emissions within confined and poorly ventilated spaces. This study assesses the real-world performance of two advanced retrofit emission control systems—Proventia NOxBuster and Purifilter—installed on underground mining trucks [...] Read more.
Underground mining environments present elevated occupational health risks, primarily due to substantial exposure to diesel exhaust emissions within confined and poorly ventilated spaces. This study assesses the real-world performance of two advanced retrofit emission control systems—Proventia NOxBuster and Purifilter—installed on underground mining trucks operating in a Spanish mine. Emissions of carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2) were quantified using a Testo 350 multigas analyser, while ultrafine particle (UFP) concentrations were measured with an Engine Exhaust Particle Sizer (EEPS-3090) equipped with a thermodiluter. Controlled tests under both idling and acceleration conditions revealed substantial reductions in pollutant emissions: CO decreased by 60–98%, NO by 51–92%, and NO2 by 20–87%, depending on the system and operational phase. UFP concentrations during idling dropped by approximately 90%, from 542,000 particles/cm3 in untreated trucks to below 50,000 particles/cm3 in retrofitted vehicles. Under acceleration, the Proventia NOxBuster achieved reductions exceeding 95%. Conversely, Purifilter-equipped trucks exhibited a counterintuitive increase in UFPs within the 5.6–40 nm range, potentially due to ammonia slip events during selective catalytic reduction (SCR). Despite these discrepancies, both systems demonstrated considerable mitigation potential, albeit highly dependent on exhaust temperature (optimal: 200–450 °C), urea dosing precision, and maintenance protocols. This work underscores the necessity of in situ performance verification, regulatory vigilance, and targeted intervention strategies to protect underground workers effectively. Further investigation is warranted into the long-term health benefits, system durability, and nanoparticle emission dynamics under variable load conditions. Full article
Show Figures

Figure 1

23 pages, 3476 KB  
Review
CT Imaging Features of Pulmonary Sarcoidosis: Typical and Atypical Radiological Features and Their Differential Diagnosis
by Elisa Baratella, Valeria di Luca, Alessandra Oliva, Ilaria Fiorese, Antonio Segalotti, Marina Troian, Stefano Lovadina, Barbara Ruaro, Francesco Salton, Roberta Polverosi and Maria Assunta Cova
Medicina 2025, 61(12), 2094; https://doi.org/10.3390/medicina61122094 - 25 Nov 2025
Viewed by 1558
Abstract
Sarcoidosis is a chronic, idiopathic, multisystemic inflammatory disease characterized by non-caseating granulomas, most commonly affecting the lungs and mediastinal lymph nodes. Radiological imaging plays a fundamental role in the diagnosis, assessment of disease extent, and differentiation from other pulmonary conditions. This narrative review [...] Read more.
Sarcoidosis is a chronic, idiopathic, multisystemic inflammatory disease characterized by non-caseating granulomas, most commonly affecting the lungs and mediastinal lymph nodes. Radiological imaging plays a fundamental role in the diagnosis, assessment of disease extent, and differentiation from other pulmonary conditions. This narrative review offers a comprehensive overview of the imaging features of pulmonary sarcoidosis, focusing on both typical patterns—such as bilateral hilar lymphadenopathy, perilymphatic nodules, and upper lobe-predominant infiltrates—and atypical manifestations—including alveolar opacities, miliary nodules, fibrocystic changes, and lower lobe involvement. Emphasis is placed on the utility of high-resolution computed tomography (HRCT) in detecting early parenchymal changes and complications such as fibrosis, bronchiectasis, and pulmonary hypertension. Differential diagnosis, including tuberculosis, silicosis, metastatic disease, organizing pneumonia, and hypersensitivity pneumonitis, are discussed to aid interpretation. Recognizing the spectrum of radiological presentations is essential for distinguishing sarcoidosis from other interstitial and granulomatous lung diseases. Radiologists play a pivotal role in the multidisciplinary diagnostic process, contributing to timely diagnosis, risk stratification, and optimized patient management. Full article
(This article belongs to the Section Pulmonology)
Show Figures

Figure 1

18 pages, 873 KB  
Article
Assessment of Diesel Engine Exhaust Levels in an Underground Mine Before and After Implementing Diesel Particulate Filters (DPF) and Selective Catalytic Reduction (SCR) Systems
by Pablo Menendez-Cabo and Hector Garcia-Gonzalez
Clean Technol. 2025, 7(4), 104; https://doi.org/10.3390/cleantechnol7040104 - 19 Nov 2025
Viewed by 968
Abstract
Diesel-powered machinery is the primary energy source in underground mining, exposing workers to hazardous diesel exhaust emissions. This study evaluates occupational exposure to diesel particulate matter (DPM) and gaseous pollutants (NO, NO2) at an underground mine before and after implementing Diesel [...] Read more.
Diesel-powered machinery is the primary energy source in underground mining, exposing workers to hazardous diesel exhaust emissions. This study evaluates occupational exposure to diesel particulate matter (DPM) and gaseous pollutants (NO, NO2) at an underground mine before and after implementing Diesel Particulate Filters (DPF) and Selective Catalytic Reduction (SCR) in mining equipment. A comprehensive monitoring campaign was conducted, employing elemental carbon (EC) as a tracer for diesel particulate emissions and electrochemical sensors for gas measurements. Results show a substantial reduction in EC concentrations following the implementation of DPFs, with median EC exposure decreasing from 0.145 mg/m3 in 2021 to 0.034 mg/m3 in 2023, and the proportion of samples exceeding the occupational exposure limit (OEL) falling from 90% to 28%. Similarly, SCR implementation led to a 72% reduction in NO2 levels and a 77.5% decrease in NO concentrations in certain equipment; however, NO levels remained persistently high near loaders, suggesting that additional mitigation measures are required. These findings underscore the efficacy of DPF and SCR technologies in improving air quality and reducing occupational exposure in underground mining environments. Nevertheless, persistent NO concentrations and maintenance-related challenges highlight the need for a holistic emission control approach, integrating ventilation improvements, expanded DPF adoption, alternative propulsion systems, and enhanced maintenance protocols. This study provides critical insights into the effectiveness of advanced emission reduction strategies and informs future regulatory compliance efforts in the mining industry. Full article
Show Figures

20 pages, 1411 KB  
Article
Multimodal Fusion of Chest X-Rays and Blood Biomarkers for Automated Silicosis Staging
by Blanca Priego-Torres, Iris Sopo-Lambea, Ebrahim Khalili, Ana Martín-Carrillo, Antonio Campos-Caro, Antonio León-Jiménez and Daniel Sanchez-Morillo
J. Clin. Med. 2025, 14(22), 8074; https://doi.org/10.3390/jcm14228074 - 14 Nov 2025
Viewed by 733
Abstract
Background/Objectives: Silicosis, a fibrotic lung disease, is re-emerging globally, driven by an aggressive form linked to engineered stone processing that rapidly progresses to progressive massive fibrosis (PMF). The standard diagnostic approach, chest X-ray (CXR), is subject to considerable inter-observer variability, making the [...] Read more.
Background/Objectives: Silicosis, a fibrotic lung disease, is re-emerging globally, driven by an aggressive form linked to engineered stone processing that rapidly progresses to progressive massive fibrosis (PMF). The standard diagnostic approach, chest X-ray (CXR), is subject to considerable inter-observer variability, making the distinction between simple silicosis (SS) and PMF particularly challenging. The purpose of this study was to develop and validate an automated multimodal framework for silicosis staging by integrating artificial intelligence (AI), CXR images, and routine blood biomarkers. Methods: We developed three fusion architectures, early, late, and hybrid, connecting blood biomarker analysis with CXR analysis. Deep learning and conventional (shallow) machine learning models were combined. The models were trained and validated on a cohort of 94 patients with engineered stone silicosis, providing 341 paired CXR and biomarker samples. A patient-aware 5-fold cross-validation was used to ensure the model’s generalizability and prevent patient data leakage between folds. Results: The hybrid and late fusion models achieved the best performance for disease staging, yielding an area under the receiver operating characteristic (ROC) curve (AUC) of 0.85. This multimodal approach outperformed both the unimodal CXR-based model (AUC = 0.83) and the biomarker-based model (AUC = 0.70). Conclusions: This study reveals that AI-based techniques that utilize a multimodal fusion approach have the potential to outperform single-modality methods have the potential to serve as an objective decision support tool for clinicians, leading to more consistent staging and improved patient management. Full article
Show Figures

Figure 1

14 pages, 1132 KB  
Article
Silicosis and Pulmonary Functions Among Residents Exposed to Dust in Saraburi Thailand
by Narongkorn Saiphoklang, Pitchayapa Ruchiwit, Apichart Kanitsap, Pichaya Tantiyavarong, Pasitpon Vatcharavongvan, Srimuang Palungrit, Kanyada Leelasittikul, Apiwat Pugongchai and Orapan Poachanukoon
Diseases 2025, 13(11), 372; https://doi.org/10.3390/diseases13110372 - 13 Nov 2025
Viewed by 868
Abstract
Background: Silicosis is a lung disease caused by inhalation of crystalline silica dust, leading to lung fibrosis, respiratory symptoms, and impaired lung function. This study aimed to determine the prevalence of silicosis, asthma, and chronic obstructive pulmonary disease (COPD), and to identify [...] Read more.
Background: Silicosis is a lung disease caused by inhalation of crystalline silica dust, leading to lung fibrosis, respiratory symptoms, and impaired lung function. This study aimed to determine the prevalence of silicosis, asthma, and chronic obstructive pulmonary disease (COPD), and to identify factors associated with abnormal pulmonary function among residents living in dust-exposed areas in Thailand. Methods: A cross-sectional study was conducted from March 2024 to July 2024 among adults aged 18 years or older in Saraburi, Thailand. Data collected included demographics, comorbidities, respiratory symptoms, risk of silicosis, chest radiographs, and spirometry (forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and bronchodilator responsiveness (BDR)). Silicosis was confirmed based on a history of significant silica exposure and characteristic chest radiographic findings. Results: Among 290 participants (55.9% female, mean age 47.6 ± 16.4 years), the prevalence of silicosis, asthma, and COPD was 0.3%, 4.5%, and 10.3%, respectively. Abnormal chest radiographs were observed in 8.3%, and abnormal lung function in 34.1%, including restrictive lung patterns (16.6%), airway obstruction (9.0%), mixed defects (2.8%), and small-airway disease (5.9%). BDR was observed in 4.8%. Logistic regression identified increasing age as a significant predictor of abnormal lung function. Conclusions: Silicosis prevalence was lower than that of asthma and COPD, but abnormal pulmonary function—especially restrictive defects—was common. Notably, the prevalence of asthma and COPD was higher than previously reported community-based diagnosis rates, suggesting potential underdiagnosis. Older age was associated with a higher likelihood abnormal lung function. These findings highlight the need for targeted surveillance, preventive measures, and public health interventions to mitigate the respiratory impacts of dust exposure in community settings Full article
Show Figures

Figure 1

8 pages, 562 KB  
Article
Assessing Compliance with Evolving Exposure Standards: Respirable Crystalline Silica (RCS) Exposure in Western Australian Mining
by Adelle Liebenberg, Kiam Padamsey, Kerry Staples, Matthew Oosthuizen, Marcus Cattani, Andy McCarthy and Jacques Oosthuizen
Int. J. Environ. Res. Public Health 2025, 22(10), 1567; https://doi.org/10.3390/ijerph22101567 - 15 Oct 2025
Viewed by 843
Abstract
The link between occupational exposure to Respirable Crystalline Silica (RCS) and silicosis, a potentially fatal respiratory disease, has been well-established, leading to global reductions in RCS Exposure Standards (ES). In Western Australia (WA), RCS data have been collected by the Department of Energy, [...] Read more.
The link between occupational exposure to Respirable Crystalline Silica (RCS) and silicosis, a potentially fatal respiratory disease, has been well-established, leading to global reductions in RCS Exposure Standards (ES). In Western Australia (WA), RCS data have been collected by the Department of Energy, Mining, Industry Regulation and Safety (DEMIRS) from 1986 to 2024 (n = 144,141). These results were analysed to assess the impacts of recent changes to the ES on compliance. Findings suggest that the WA mining sector, regardless of commodity type, is compliant with RCS exposures as assessed against the 0.05 mg/m3 ES (2019). Laboratory technicians, exploratory drilling, miscellaneous trades/utilities, trades assistant, sample preparation, and sampler/sample operator are SEGS that had the highest RCS exposures. Exposure assessment did not account for the protection provided by respiratory protective equipment (RPE). In the WA mining sector, a robust respiratory protection regime is enforced that includes respirator fit testing, and this is most likely the case throughout Australia. On the balance of epidemiological evidence, industry compliance over decades, reducing exposure profiles, and robust RPE programmes, it could be argued that further reductions to the RCS exposure standard are not justified. Regulators need to consider the protection provided by respirators in exposure assessment. Full article
Show Figures

Figure 1

21 pages, 1349 KB  
Article
Cytokine Profiles as Predictive Biomarkers of Disease Severity and Progression in Engineered Stone Silicosis: A Machine Learning Approach
by Daniel Sanchez-Morillo, Ana Martín-Carrillo, Blanca Priego-Torres, Iris Sopo-Lambea, Gema Jiménez-Gómez, Antonio León-Jiménez and Antonio Campos-Caro
Diagnostics 2025, 15(18), 2413; https://doi.org/10.3390/diagnostics15182413 - 22 Sep 2025
Cited by 1 | Viewed by 906
Abstract
Background/Objectives: Silicosis caused by dust from engineered stone (ES) exposure is an emerging occupational lung disease that severely impacts respiratory health. This study aimed to analyze the association between cytokine profiles and disease severity and progression in patients with engineered stone silicosis [...] Read more.
Background/Objectives: Silicosis caused by dust from engineered stone (ES) exposure is an emerging occupational lung disease that severely impacts respiratory health. This study aimed to analyze the association between cytokine profiles and disease severity and progression in patients with engineered stone silicosis (ESS) to assess their potential as biomarkers of progression and their usefulness to stratify risk. Methods: A longitudinal study was conducted with a seven-year follow-up (2017-2024) on 72 workers with simple silicosis (SS) or progressive massive fibrosis (PMF), all with a history of cutting, polishing, and finishing ES countertops. Data on lung function and levels of 27 cytokines were collected at four control points. Machine learning (ML) models were built to classify the disease stage and predict its progression. Results: 39% of patients with SS progressed to PMF. Significant differences in the expression of some cytokines were observed between ESS stages, suggesting a role in the evolution of the inflammatory process. Specifically, higher levels of IL-1RA, IL-8, IL-9, and IFN-γ were found at checkpoint 1 in patients with PMF compared to SS. The longitudinal analysis revealed a significant relationship between IL-1RA and MCP-1α and disease duration with MCP-1α also being associated with time and disease grade. Machine learning (ML) models were built using the cytokines selected through a sequential backward feature selection. The Support Vector Machine model achieved an accuracy of 83% in classifying disease stage (SS, PMF), and of 77% in predicting the disease progression. Conclusions: The findings suggest that cytokines can be used as dynamic biomarkers to reflect underlying inflammatory processes and monitor disease evolution. The performance of ML algorithms to predict diagnostic status based on cytokine profiles highlights their clinical value in supporting early diagnosis, monitoring disease progression, and guiding clinical decisions. Full article
(This article belongs to the Collection Artificial Intelligence in Medical Diagnosis and Prognosis)
Show Figures

Figure 1

28 pages, 1786 KB  
Systematic Review
Trends and Future Directions in Mitigating Silica Exposure in Construction: A Systematic Review
by Roohollah Kalatehjari, Funmilayo Ebun Rotimi, Rajitha Sachinthaka and Taofeeq Durojaye Moshood
Buildings 2025, 15(16), 2924; https://doi.org/10.3390/buildings15162924 - 18 Aug 2025
Viewed by 3499
Abstract
Respirable crystalline silica is a well-established occupational hazard in construction work. Despite increased awareness, consistent exposure control remains a challenge, particularly in dynamic and resource-constrained environments. Respirable crystalline silica exposure in construction environments challenges the achievement of the United Nations Sustainable Development Goals [...] Read more.
Respirable crystalline silica is a well-established occupational hazard in construction work. Despite increased awareness, consistent exposure control remains a challenge, particularly in dynamic and resource-constrained environments. Respirable crystalline silica exposure in construction environments challenges the achievement of the United Nations Sustainable Development Goals (SDGs), particularly SDG 3 (Good Health and Well-Being) and SDG 8 (Decent Work and Economic Growth). Respirable crystalline silica particles cause severe health complications, including silicosis, lung cancer, cardiovascular diseases, and autoimmune disorders, representing a significant barrier to achieving SDG 3.9’s target of reducing deaths and illnesses from hazardous chemical exposures by 2030. This systematic review evaluates two decades of advancements (2004–2024) in respirable crystalline silica identification, characterisation, and mitigation within construction, synthesising evidence from 143 studies to assess progress toward sustainable occupational health management. This review documents a paradigmatic shift from traditional exposure assessment toward sophisticated monitoring approaches incorporating real-time detection systems, virtual reality–Computational Fluid Dynamics simulations, and wearable sensor technologies. Engineering controls, including local exhaust ventilation, wet suppression methods, and modified tool designs, have achieved exposure reductions exceeding 90%, directly supporting SDG 8.8’s commitment to safe working environments for all workers, including migrants and those in precarious employment. However, substantial barriers persist, including prohibitive costs, inadequate infrastructure, and regional regulatory disparities that particularly disadvantage lower-resourced countries, contradicting the Sustainable Development Goals’ principles of leaving no one behind. The findings advocate holistic approaches integrating technological innovation with context-specific regulations, enhanced international cooperation, and culturally adapted worker education to achieve equitable occupational health protection supporting multiple Sustainable Development Goals’ objectives by 2030 and also highlighting potential areas for future research. Full article
Show Figures

Figure 1

14 pages, 567 KB  
Review
An Integrated Strategy for Preventing and Rehabilitating Dust-Induced Occupational Bronchopulmonary Diseases: A Scoping Review
by Alexandr E. Gulyayev, Karlygash S. Absattarova, Sayagul A. Kairgeldina, Raushan S. Dosmagambetova, Kanat K. Tekebayev, Madina B. Baurzhan, Nazym Sagandykova and Gaukhar Sh. Dauletova
Adv. Respir. Med. 2025, 93(4), 30; https://doi.org/10.3390/arm93040030 - 13 Aug 2025
Viewed by 1841
Abstract
Background: Occupational bronchopulmonary diseases (OBPDs)—including pneumoconiosis, silicosis, and occupational COPD—remain a pressing public health issue, especially in regions with intensive mining, metallurgy, and construction industries. Caused by chronic inhalation of fibrogenic dusts, these conditions are often diagnosed at late stages, resulting in irreversible [...] Read more.
Background: Occupational bronchopulmonary diseases (OBPDs)—including pneumoconiosis, silicosis, and occupational COPD—remain a pressing public health issue, especially in regions with intensive mining, metallurgy, and construction industries. Caused by chronic inhalation of fibrogenic dusts, these conditions are often diagnosed at late stages, resulting in irreversible lung damage and diminished work capacity. Methods: A scoping review was performed using the Arksey and O’Malley framework, with methodological refinements from the Joanna Briggs Institute. Following PRISMA-ScR guidelines, we searched PubMed, Scopus, and gray literature for publications from 2014 to 2024. After screening 1761 records and full-text review, nine studies were included in the final synthesis, comprising two systematic reviews, two narrative literature reviews, and five observational studies. Results: Key risk factors identified included prolonged exposure to silica and coal dust, tobacco use, and genetic susceptibility. Diagnostic delays were attributed to the underuse of high-resolution CT and exhaled nitric oxide analysis. Several studies highlighted the diagnostic value of oxidative stress and inflammatory markers (e.g., IL-6, TNF-α). Nutritional rehabilitation and polyphenol-enriched herbal therapies were associated with improved respiratory function and quality of life. However, these strategies remain underutilized, particularly in low-resource settings. Conclusions: A coordinated, biomarker-driven approach integrating early diagnosis, dust exposure control, and tailored rehabilitation is urgently needed. Multidisciplinary models may reduce the clinical and socioeconomic burden of OBPDs. Full article
Show Figures

Figure 1

23 pages, 1088 KB  
Review
The Role of Type I Interferons in Tuberculosis and in Tuberculosis-Risk-Associated Comorbidities
by Florence Mutua, Ruey-Chyi Su, Terry Blake Ball and Sandra Kiazyk
Infect. Dis. Rep. 2025, 17(4), 81; https://doi.org/10.3390/idr17040081 - 8 Jul 2025
Cited by 3 | Viewed by 1914
Abstract
The identification of a type I interferon-induced transcriptomic signature in active tuberculosis suggests a potential role for these interferons in the pathogenesis of tuberculosis. Comorbidities such as human immunodeficiency virus, diabetes, systemic lupus erythematosus, end-stage renal disease, and coronavirus disease are epidemiologically linked [...] Read more.
The identification of a type I interferon-induced transcriptomic signature in active tuberculosis suggests a potential role for these interferons in the pathogenesis of tuberculosis. Comorbidities such as human immunodeficiency virus, diabetes, systemic lupus erythematosus, end-stage renal disease, and coronavirus disease are epidemiologically linked to an increased risk for reactivation of latent tuberculosis infection. Notably, type I interferons are also implicated in the pathogenesis of these conditions, with a recognizable type I interferon transcriptomic signature. The mechanisms by which type I interferons in tuberculosis-risk-associated comorbidities may drive the progression of tuberculosis or maintenance of latent infection however remain largely unknown. This review summarizes the existing literature on the increased association between type I interferons, focusing on interferon-α and -β, and the heightened risk of tuberculosis reactivation. It also underscores the similarities in the immunopathogenesis of these comorbidities. A better understanding of these mechanisms is essential to guide the development of host-directed interferon therapies and improving diagnostic biomarkers in M. tuberculosis infection. Full article
Show Figures

Figure 1

Back to TopTop