Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (184)

Search Parameters:
Keywords = Sigma-1R

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 856 KB  
Article
Discovery of Novel Benzamide-Based Sigma-1 Receptor Agonists with Enhanced Selectivity and Safety
by Pascal Carato, Bénédicte Oxombre, Séverine Ravez, Rajaa Boulahjar, Marion Donnier-Maréchal, Amélie Barczyk, Maxime Liberelle, Patrick Vermersch and Patricia Melnyk
Molecules 2025, 30(17), 3584; https://doi.org/10.3390/molecules30173584 - 2 Sep 2025
Viewed by 1369
Abstract
Central nervous system (CNS) disorders such as neurodegenerative diseases, multiple sclerosis, or even brain ischemia represent major therapeutic challenges with limited effective treatments. The sigma-1 receptor (S1R), a unique ligand-operated molecular chaperone enriched at mitochondria-associated membranes, has emerged as a promising drug target [...] Read more.
Central nervous system (CNS) disorders such as neurodegenerative diseases, multiple sclerosis, or even brain ischemia represent major therapeutic challenges with limited effective treatments. The sigma-1 receptor (S1R), a unique ligand-operated molecular chaperone enriched at mitochondria-associated membranes, has emerged as a promising drug target due to its role in neuroprotection and neuroinflammation. Building upon our previously identified S1R ligand (compound 1), we designed and synthesized six novel benzamide derivatives through pharmacomodulation to optimize affinity, selectivity, and safety profiles. Among these, compound 2 demonstrated superior S1R affinity, improved selectivity over the sigma-2 receptor (S2R), and favorable ADME properties, including enhanced permeability and markedly reduced in vitro cardiac toxicity compared to the lead compound. Functional assays confirmed the agonist activity of key derivatives, while safety evaluations revealed low cytotoxicity and minimal off-target receptor interactions. Collectively, these findings support compound 2 as a promising candidate for further preclinical development in S1R-related CNS disorders. Full article
Show Figures

Graphical abstract

17 pages, 829 KB  
Review
Transmembrane Protein 97 (TMEM97): Molecular Target and Treatment in Age-Related Macular Degeneration (AMD)
by Alyssa Stathopoulos, Joshua J. Wang, Stephen F. Martin and Sarah X. Zhang
Biomolecules 2025, 15(9), 1228; https://doi.org/10.3390/biom15091228 - 26 Aug 2025
Viewed by 806
Abstract
Age-related macular degeneration (AMD) is a common eye disease that significantly affects daily activities and impedes the quality of life in aging adults, yet effective treatments to halt or reverse disease progression are currently lacking. Ongoing research aims at understanding the complex mechanisms [...] Read more.
Age-related macular degeneration (AMD) is a common eye disease that significantly affects daily activities and impedes the quality of life in aging adults, yet effective treatments to halt or reverse disease progression are currently lacking. Ongoing research aims at understanding the complex mechanisms underlying AMD pathophysiology involving retinal pigment epithelium (RPE) dysfunction, drusen formation, inflammation, neovascularization, and RPE/photoreceptor degeneration. Sigma 2 receptor/transmembrane protein 97 (σ2R/TMEM97) is a multifunctional protein implicated in cellular processes including cholesterol homeostasis, lysosome-dependent autophagy, calcium homeostasis, and integrated stress response (ISR). Recent genome-wide association studies (GWASs) have identified σ2R/TMEM97 as a novel genetic risk factor strongly associated with AMD development. In this review, we summarize recent research progress on σ2R/TMEM97 in age-related neurodegenerative diseases, highlighting its implication as a molecular target in AMD via regulating oxidative stress, inflammation, lipid uptake, drusen formation, and epithelial–mesenchymal transition (EMT). We also discuss the potential of modulating σ2R/TMEM97 function with novel small-molecule drugs as a promising treatment for dry AMD and the unresolved questions in understanding the mechanistic basis of their actions. Full article
Show Figures

Figure 1

20 pages, 21489 KB  
Article
A GRU-Enhanced Kolmogorov–Arnold Network Model for Sea Surface Temperature Prediction Derived from Satellite Altimetry Product in South China Sea
by Rumiao Sun, Zhengkai Huang, Xuechen Liang, Siyu Zhu and Huilin Li
Remote Sens. 2025, 17(16), 2916; https://doi.org/10.3390/rs17162916 - 21 Aug 2025
Cited by 1 | Viewed by 865
Abstract
High-precision Sea Surface Temperature (SST) prediction is critical for understanding ocean–atmosphere interactions and climate anomaly monitoring. We propose GRU_EKAN, a novel hybrid model where Gated Recurrent Units (GRUs) capture temporal dependencies and the Enhanced Kolmogorov–Arnold Network (EKAN) models complex feature interactions between SST [...] Read more.
High-precision Sea Surface Temperature (SST) prediction is critical for understanding ocean–atmosphere interactions and climate anomaly monitoring. We propose GRU_EKAN, a novel hybrid model where Gated Recurrent Units (GRUs) capture temporal dependencies and the Enhanced Kolmogorov–Arnold Network (EKAN) models complex feature interactions between SST and multivariate ocean predictors. This study integrates GRU with EKAN, using B-spline-parameterized activation functions to model high-dimensional nonlinear relationships between multiple ocean variables (including sea water potential temperature at the sea floor, ocean mixed layer thickness defined by sigma theta, sea water salinity, current velocities, and sea surface height) and SST. L2 regularization addresses multicollinearity among predictors. Experiments were conducted at 25 South China Sea sites using 2011–2021 CMEMS data. The results show that GRU_EKAN achieves a superior mean R2 of 0.85, outperforming LSTM_EKAN, GRU, and LSTM by 5%, 25%, and 23%, respectively. Its average RMSE (0.90 °C), MAE (0.76 °C), and MSE (0.80 °C2) represent reductions of 31.3%, 27.0%, and 53.2% compared to GRU. The model also exhibits exceptional stability and minimal Weighted Quality Evaluation Index (WQE) fluctuation. During the 2019–2020 temperature anomaly events, GRU_EKAN predictions aligned closest with observations and captured abrupt trend shifts earliest. This model provides a robust tool for high-precision SST forecasting in the South China Sea, supporting marine heatwave warnings. Full article
Show Figures

Graphical abstract

17 pages, 916 KB  
Review
Choline—An Essential Nutrient with Health Benefits and a Signaling Molecule
by Brianne C. Burns, Jitendra D. Belani, Hailey N. Wittorf, Eugen Brailoiu and Gabriela C. Brailoiu
Int. J. Mol. Sci. 2025, 26(15), 7159; https://doi.org/10.3390/ijms26157159 - 24 Jul 2025
Viewed by 2859
Abstract
Choline has been recognized as an essential nutrient involved in various physiological functions critical to human health. Adequate daily intake of choline has been established by the US National Academy of Medicine in 1998, considering choline requirements for different ages, sex differences and [...] Read more.
Choline has been recognized as an essential nutrient involved in various physiological functions critical to human health. Adequate daily intake of choline has been established by the US National Academy of Medicine in 1998, considering choline requirements for different ages, sex differences and physiological states (e.g., pregnancy). By serving as a precursor for acetylcholine and phospholipids, choline is important for cholinergic transmission and the structural integrity of cell membranes. In addition, choline is involved in lipid and cholesterol transport and serves as a methyl donor after oxidation to betaine. Extracellular choline is transported across the cell membrane via various transport systems (high-affinity and low-affinity choline transporters) with distinct features and roles. An adequate dietary intake of choline during pregnancy supports proper fetal development, and throughout life supports brain, liver, and muscle functions, while choline deficiency is linked to disease states like fatty liver. Choline has important roles in neurodevelopment, cognition, liver function, lipid metabolism, and cardiovascular health. While its signaling role has been considered mostly indirect via acetylcholine and phosphatidylcholine which are synthesized from choline, emerging evidence supports a role for choline as an intracellular messenger acting on Sigma-1R, a non-opioid intracellular receptor. These new findings expand the cell signaling repertoire and increase the current understanding of the role of choline while warranting more research to uncover the molecular mechanisms and significance in the context of GPCR signaling, the relevance for physiology and disease states. Full article
Show Figures

Figure 1

21 pages, 9564 KB  
Article
Sigma1 Receptor Modulates Plasma Membrane and Mitochondrial Peroxiporins
by Giorgia Pellavio, Giorgia Senise, Chiara Pia Vicenzo and Umberto Laforenza
Cells 2025, 14(14), 1082; https://doi.org/10.3390/cells14141082 - 15 Jul 2025
Viewed by 2868
Abstract
Sigma1 receptor (S1R) and some aquaporins (AQPs) are involved in controlling oxidative stress, but only recently has their possible interaction emerged. S1R acts by interacting with proteins in the plasma membrane and organelles and AQPs by favoring the hydrogen peroxide (H2O [...] Read more.
Sigma1 receptor (S1R) and some aquaporins (AQPs) are involved in controlling oxidative stress, but only recently has their possible interaction emerged. S1R acts by interacting with proteins in the plasma membrane and organelles and AQPs by favoring the hydrogen peroxide (H2O2) cell removal. To date, the possible regulation of peroxiporins by S1R has not been explored. Using H2O2 HyPer7 biosensors and knockdown techniques, we investigated (1) the AQPs and S1R functional involvement in H2O2 diffusion through the plasma membrane and in the outer and inner mitochondrial membranes, and (2) the possible interaction between S1R and AQPs. Our data showed the functional involvement of different AQPs in the diffusion of H2O2: AQP3, AQP6, and AQP8 in the plasma membrane; AQP6 in the outer mitochondrial membrane; and AQP6 and AQP8 in the inner mitochondrial membrane. The knockdown of S1R demonstrated its involvement in the overall diffusion of H2O2 across the three compartments. The double knockdown of S1R and a single AQP indicated that AQP8 and AQP6 could be regulated by S1R. These findings demonstrate the coordinated role of AQPs in the mitochondria and the plasma membranes and that S1R modulates the AQP-facilitated H2O2 cell removal, thus controlling the oxidative status and, most likely, the oxidative stress. Full article
Show Figures

Graphical abstract

18 pages, 3640 KB  
Article
NsrR Represses σE-Dependent Small RNAs and Interacts with RpoE via a Noncanonical Mechanism in Escherichia coli
by Joseph I. Aubee, Jalisa Nurse, Dale Lewis, Chin-Hsien Tai and Karl M. Thompson
Int. J. Mol. Sci. 2025, 26(13), 6318; https://doi.org/10.3390/ijms26136318 - 30 Jun 2025
Viewed by 493
Abstract
The envelope stress response in Escherichia coli is primarily governed by the sigma factor RpoE (σE), which activates protective genes upon membrane perturbation. Under non-stress conditions, σE is sequestered by its anti-sigma factor RseA. In this study, we identify an [...] Read more.
The envelope stress response in Escherichia coli is primarily governed by the sigma factor RpoE (σE), which activates protective genes upon membrane perturbation. Under non-stress conditions, σE is sequestered by its anti-sigma factor RseA. In this study, we identify an unexpected role for the nitric-oxide-sensing repressor NsrR in dampening σE activity and repressing σE-dependent small RNAs, including rybB, micA, and micL. Overexpression of nsrR represses transcription from σE-dependent promoters and phenocopies σE inactivation, resulting in filamentous morphology and growth defects. Conversely, ΔnsrR de-represses σE targets, with additive effects in rseA mutants—supporting an RseA-independent regulatory role. Time-course analysis shows NsrR represses σE activity, with kinetics comparable to those of RseA. While in vitro assays failed to detect robust NsrR binding to σE target promoters, NsrR directly interacts with σE in bacterial two-hybrid assays. Structural modeling using AlphaFold3 supports a plausible NsrR–RpoE interaction interface. These findings suggest that NsrR functions as a noncanonical anti-sigma-like modulator of σE, integrating redox and envelope stress signals to maintain membrane homeostasis. Full article
Show Figures

Figure 1

27 pages, 1432 KB  
Review
Neurosteroids Progesterone and Dehydroepiandrosterone: Molecular Mechanisms of Action in Neuroprotection and Neuroinflammation
by Tatiana A. Fedotcheva and Nikolay L. Shimanovsky
Pharmaceuticals 2025, 18(7), 945; https://doi.org/10.3390/ph18070945 - 23 Jun 2025
Cited by 1 | Viewed by 2025
Abstract
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic [...] Read more.
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic brain injury, fragile X syndrome, and chemical neurotoxicity. However, only the allopregnanolone analogs brexanolone and zuranolone have been recently approved by the FDA for the treatment of depression. The aim of this review was to evaluate whether the endogenous neurosteroids can be used in clinical practice as neuroprotectors. Neurosteroids are multitarget compounds with strong anti-inflammatory, immunomodulatory, and cytoprotective action; they stimulate the synthesis and release of BDNF and increase remyelination and regeneration. In addition to nuclear and membrane steroid hormone receptors, such as PR, mPR, PGRMC1,2, ER, AR, CAR, and PXR, they can bind to GABAA receptors, NMDA receptors, Sigma-1 and -2 receptors (σ1-R/σ2-R). Among these, mPRs, PGRMC1,2, sigma receptors, and mitochondrial proteins attract comprehensive attention because of strong binding with the P4 and DHEA, but subsequent signaling is poorly studied. Other plasma membrane and mitochondrial proteins are involved in the rapid nongenomic neuroprotective action of neurosteroids. P-glycoprotein, BCL-2 proteins, and the components of the mitochondrial permeability transition pore (mPTP) play a significant role in the defense against the injuries of the brain and the peripheral nervous system. The role of these proteins in the molecular mechanisms of action in neuroprotection and neuroinflammation has not yet been clearly established. The aspects of their participation in these pathological processes are discussed. New formulations, such as lipophilic emulsions, nanogels, and microneedle array patches, are attractive strategies to overcome the low bioavailability of these neurosteroids for the amelioration and treatment of various nervous disorders. Full article
Show Figures

Figure 1

13 pages, 333 KB  
Article
Reframing Classical Mechanics: An AKSZ Sigma Model Perspective
by Thomas Basile, Nicolas Boulanger and Arghya Chattopadhyay
Universe 2025, 11(6), 196; https://doi.org/10.3390/universe11060196 - 19 Jun 2025
Viewed by 386
Abstract
The path-integral re-formulation due to E. Gozzi, M. Regini, M. Reuter, and W. D. Thacker of Koopman and von Neumann’s original operator formulation of a classical Hamiltonian system on a symplectic manifold M is identified as a gauge slice of a one-dimensional Alexandrov–Kontsevich–Schwarz–Zaboronsky [...] Read more.
The path-integral re-formulation due to E. Gozzi, M. Regini, M. Reuter, and W. D. Thacker of Koopman and von Neumann’s original operator formulation of a classical Hamiltonian system on a symplectic manifold M is identified as a gauge slice of a one-dimensional Alexandrov–Kontsevich–Schwarz–Zaboronsky sigma model with target T*(T[1]M×R[1]). Full article
(This article belongs to the Section Field Theory)
26 pages, 3807 KB  
Article
Evaluation of IMERG Precipitation Product Downscaling Using Nine Machine Learning Algorithms in the Qinghai Lake Basin
by Ke Lei, Lele Zhang and Liming Gao
Water 2025, 17(12), 1776; https://doi.org/10.3390/w17121776 - 13 Jun 2025
Viewed by 905
Abstract
High-quality precipitation data are vital for hydrological research. In regions with sparse observation stations, reliable gridded data cannot be obtained through interpolation, while the coarse resolution of satellite products fails to meet the demands of small watershed studies. Downscaling satellite-based precipitation products offers [...] Read more.
High-quality precipitation data are vital for hydrological research. In regions with sparse observation stations, reliable gridded data cannot be obtained through interpolation, while the coarse resolution of satellite products fails to meet the demands of small watershed studies. Downscaling satellite-based precipitation products offers an effective solution for generating high-resolution data in such areas. Among these techniques, machine learning plays a pivotal role, with performance varying according to surface conditions and algorithmic mechanisms. Using the Qinghai Lake Basin as a case study and rain gauge observations as reference data, this research conducted a systematic comparative evaluation of nine machine learning algorithms (ANN, CLSTM, GAN, KNN, MSRLapN, RF, SVM, Transformer, and XGBoost) for downscaling IMERG precipitation products from 0.1° to 0.01° resolution. The primary objective was to identify the optimal downscaling method for the Qinghai Lake Basin by assessing spatial accuracy, seasonal performance, and residual sensitivity. Seven metrics were employed for assessment: correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), standard deviation ratio (Sigma Ratio), Kling-Gupta Efficiency (KGE), and bias. On the annual scale, KNN delivered the best overall results (KGE = 0.70, RMSE = 17.09 mm, Bias = −3.31 mm), followed by Transformer (KGE = 0.69, RMSE = 17.20 mm, Bias = −3.24 mm). During the cold season, KNN and ANN both performed well (KGE = 0.63; RMSE = 5.97 mm and 6.09 mm; Bias = −1.76 mm and −1.75 mm), with SVM ranking next (KGE = 0.63, RMSE = 6.11 mm, Bias = −1.63 mm). In the warm season, Transformer yielded the best results (KGE = 0.74, RMSE = 23.35 mm, Bias = −1.03 mm), followed closely by ANN and KNN (KGE = 0.74; RMSE = 23.38 mm and 23.57 mm; Bias = −1.08 mm and −1.03 mm, respectively). GAN consistently underperformed across all temporal scales, with annual, cold-season, and warm-season KGE values of 0.61, 0.43, and 0.68, respectively—worse than the original 0.1° IMERG product. Considering the ability to represent spatial precipitation gradients, KNN emerged as the most suitable method for IMERG downscaling in the Qinghai Lake Basin. Residual analysis revealed error concentrations along the lakeshore, and model performance declined when residuals exceeded specific thresholds—highlighting the need to account for model-specific sensitivity during correction. SHAP analysis based on ANN, KNN, SVM, and Transformer identified NDVI (0.218), longitude (0.214), and latitude (0.208) as the three most influential predictors. While longitude and latitude affect vapor transport by representing land–sea positioning, NDVI is heavily influenced by anthropogenic activities and sandy surfaces in lakeshore regions, thus limiting prediction accuracy in these areas. This work delivers a high-resolution (0.01°) precipitation dataset for the Qinghai Lake Basin and provides a practical basis for selecting suitable downscaling methods in similar environments. Full article
Show Figures

Figure 1

21 pages, 8482 KB  
Article
Comparative Genomics of Sigma Factors in Acidithiobacillia Sheds Light into the Transcriptional Regulatory Networks Involved in Biogeochemical Dynamics in Extreme Acidic Environments
by Pedro Sepúlveda-Rebolledo, Carolina González-Rosales, Mark Dopson, Ernesto Pérez-Rueda, David S. Holmes and Jorge H. Valdés
Microorganisms 2025, 13(6), 1199; https://doi.org/10.3390/microorganisms13061199 - 24 May 2025
Viewed by 1016
Abstract
Extreme acidophiles from the Acidithiobacillia class thrive in highly acidic environments where they rely on diverse regulatory mechanisms for adaptation. These mechanisms include sigma factors, transcription factors (TFs), and transcription factor binding sites (TFBS), which control essential pathways. Comparative genomics and bioinformatics analyses [...] Read more.
Extreme acidophiles from the Acidithiobacillia class thrive in highly acidic environments where they rely on diverse regulatory mechanisms for adaptation. These mechanisms include sigma factors, transcription factors (TFs), and transcription factor binding sites (TFBS), which control essential pathways. Comparative genomics and bioinformatics analyses identified sigma factors and TFs in Acidithiobacillia, showing similarities but key differences from reference neutrophiles. This study highlights sigma54-dependent one- and two-component systems that are crucial for survival in energy acquisition from sulfur compounds and hydrogen as well as nutrient assimilation. Furthermore, the data suggested evolutionary divergence in regulatory elements distinguishes S-oxidizing from Fe-S-oxidizing members of Acidithiobacillia. Conservation of gene clusters, synteny, and phylogenetic analyses supported the expected phenotypes in each species. Notable examples include HupR’s role in hydrogenase-2 oxidation in Fe-S-oxidizers, TspR/TspS regulation of the sulfur oxidation complex, and FleR/FleS control of flagellar motility in S-oxidizers. These regulatory mechanisms act as master controllers of bacterial activity, reflecting adaptation to distinct metabolic needs within Acidithiobacillia. Full article
(This article belongs to the Special Issue Bioinformatics and Omic Data Analysis in Microbial Research)
Show Figures

Figure 1

28 pages, 9306 KB  
Review
Repurposing Sigma-1 Receptor-Targeting Drugs for Therapeutic Advances in Neurodegenerative Disorders
by Kiarash Eskandari, Sara-Maude Bélanger, Véronik Lachance and Saïd Kourrich
Pharmaceuticals 2025, 18(5), 700; https://doi.org/10.3390/ph18050700 - 9 May 2025
Cited by 3 | Viewed by 2556
Abstract
Neurodegenerative disorders, such as Alzheimer’s, Parkinson’s, and Huntington’s disease, due to their multifaced and complicated nature, remain uncurable and impose substantial financial and human burdens on society. Therefore, developing new innovative therapeutic strategies is vital. In this context, drug repurposing has emerged as [...] Read more.
Neurodegenerative disorders, such as Alzheimer’s, Parkinson’s, and Huntington’s disease, due to their multifaced and complicated nature, remain uncurable and impose substantial financial and human burdens on society. Therefore, developing new innovative therapeutic strategies is vital. In this context, drug repurposing has emerged as a promising avenue to expedite the development of treatments for these challenging conditions. One particularly compelling target in this regard is the chaperone protein sigma-1 receptor (S1R), which has garnered significant attention for its neuroprotective properties. Interestingly, several medications, including fluvoxamine (an antidepressant), dextromethorphan (a cough suppressant), and amantadine (an antiviral), which were initially developed for unrelated indications, have shown encouraging results in neurodegenerative therapy through S1R activation. These findings suggest that existing drugs in pharmacopeias can play an essential role in alleviating neurodegenerative symptoms by modulating S1R, thereby offering a faster route and cost-effective path to clinical applications compared to the de novo development of entirely new compounds. Furthermore, as a synergistic benefit, combining S1R-targeting drugs with other therapeutic agents may also improve treatment efficacy. In this review, we highlight key repurposed drugs targeting S1R and explore their mechanisms of action, shedding light on their emerging therapeutic potential in the fight against neurodegeneration. Full article
(This article belongs to the Special Issue Current Advances in Therapeutic Potential of Sigma Receptor Ligands)
Show Figures

Figure 1

40 pages, 11910 KB  
Article
Six Sigma-Based Frequency Response Analysis for Power Transformer Winding Deformation
by Bonginkosi A. Thango
Appl. Sci. 2025, 15(7), 3951; https://doi.org/10.3390/app15073951 - 3 Apr 2025
Viewed by 995
Abstract
Winding deformities in distribution transformers pose significant risks to operational reliability and system safety. Frequency response analysis (FRA) is a well-established technique for identifying mechanical faults; however, its diagnostic reliability is hindered by subjectivity in interpreting response signatures. This study proposes a novel [...] Read more.
Winding deformities in distribution transformers pose significant risks to operational reliability and system safety. Frequency response analysis (FRA) is a well-established technique for identifying mechanical faults; however, its diagnostic reliability is hindered by subjectivity in interpreting response signatures. This study proposes a novel diagnostic technique, termed FRA6σ, which integrates Six Sigma (6σ) statistical tools with FRA to enable objective fault detection. The methodology employs control charts (X¯ chart, R¯-chart) to monitor deviations from baseline signatures and utilizes process capability indices (Cp and Cpk) to quantify the severity of deviations. Three transformer cases were evaluated across five defined frequency regions (10 Hz to 2 MHz), each associated with distinct physical fault types. The FRA6σ approach successfully identified early-stage faults across all cases. In one instance, axial and radial winding deformation was detected with a Cp of 1.0 and corresponding range chart violations, preceding any visible damage. Another case revealed inter-turn insulation degradation in the 100 kHz–1 MHz band with Cpk values below 0.9, prompting immediate intervention. Compared to traditional FRA interpretation, the proposed method improved diagnostic sensitivity by 31.25% and enabled fault detection earlier based on retrospective physical inspection benchmarks. The integration of Six Sigma with FRA provides a structured, quantifiable, and repeatable approach to transformer fault diagnostics. FRA6σ enhances early detection of winding deformities and dielectric issues, offering a robust alternative to subjective analysis and supporting predictive maintenance strategies in power systems. Full article
Show Figures

Figure 1

15 pages, 2006 KB  
Article
Pre-Harvest Strategy for Improving Harvest and Post-Harvest Performance of Kale and Chicory Baby Leaves
by Anna Bonasia, Corrado Lazzizera, Antonio Elia and Giulia Conversa
Plants 2025, 14(6), 863; https://doi.org/10.3390/plants14060863 - 10 Mar 2025
Cited by 1 | Viewed by 1034
Abstract
A greenhouse trial was conducted in Southern Italy to examine the effects of foliar applications of two substances, methyl-jasmonate (MeJA) and a zeolite, on the harvest and post-harvest performance of two hydroponically grown baby leaf genotypes (leafy chicory ‘Cicoria costa rossa’; kale ‘Cavolo [...] Read more.
A greenhouse trial was conducted in Southern Italy to examine the effects of foliar applications of two substances, methyl-jasmonate (MeJA) and a zeolite, on the harvest and post-harvest performance of two hydroponically grown baby leaf genotypes (leafy chicory ‘Cicoria costa rossa’; kale ‘Cavolo nero’). MeJA is a phyto-hormone primarily studied for fruit and post-harvest applications, while zeolite is typically used for pest and disease biological control. MeJA (Sigma-Aldrich Merck KGaA, Darmstadt, Germany), and a commercial zeolite (Big-Zeo, Agricola Internazionale s.r.l., Pisa, Italy) (BigZeo) were sprayed twice at the second and fourth true leaf stages (BigZeo, 5 kg ha−1; MeJA, 250 µM). Bio-physiological (yield, dry matter DM, chlorophyll CHL, weight loss WL) and qualitative (nitrate, carotenoids, phenols, flavonoids, anthocyanins, antioxidant activity) traits were evaluated in both raw and fresh-cut (7 day-cold-stored) products. Treatments did not significantly affect yield (1.0 kg m−2), while plant responses to the substances concerning other traits were genotype-dependent. MeJA enhanced greenness (CHL), texture (DM), and antioxidant activity (by increasing carotenoids and flavonoids) in chicory. In contrast, zeolite improved greenness, texture, and antioxidant activity (by increasing carotenoids, anthocyanins, and phenols), and reduced nitrate in kale. Treatments did not affect weight loss (2.2 g 100 g−1 f.w., on average). After 7 days of storage, MeJA-treated chicory and zeolite-treated kale exhibited improved textural and nutritional quality. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

11 pages, 823 KB  
Article
Methodology to Determine the Stress Distribution Based on Fatigue Data with Bilinear Behavior and Its P–S–N Field and Testing Plan
by Osvaldo Monclova-Quintana, Manuel R. Piña-Monarrez, María M. Hernández-Ramos and Jesús F. Ortiz-Yáñez
Appl. Sci. 2025, 15(5), 2295; https://doi.org/10.3390/app15052295 - 21 Feb 2025
Cited by 1 | Viewed by 705
Abstract
In this paper, based on the Weibull Inverse Power Law, we present a methodology to determine the following: (1) the failure percentiles, referred to as the P–S–N field, of an S–N curve for a 42CrMo4 steel material exhibiting bilinear ( [...] Read more.
In this paper, based on the Weibull Inverse Power Law, we present a methodology to determine the following: (1) the failure percentiles, referred to as the P–S–N field, of an S–N curve for a 42CrMo4 steel material exhibiting bilinear (s1 and s2) behavior (e.g., a competence failure mode); (2) the Weibull family that characterizes the entire bilinear behavior; and (3) the zero-vibration test plan that meets the required vibration reliability index of Rt=0.97 with a reliability confidence level of CL=0.75. From the application, based on the formulated normal–Weibull relationship, we determine the failure percentiles for the normal (one, two, and three) sigma levels, as well as those failure percentiles corresponding to the capability (Cp) and ability (Cpk) indices. Finally, we present the formulation to determine the Rt index and the CL level associated with each normal percentile, along with their numerical values. Full article
(This article belongs to the Special Issue Fatigue Strength of Machines and Systems)
Show Figures

Figure 1

12 pages, 1869 KB  
Article
2-{N-[ω-(1-Benzylpiperidin-4-yl)alkyl]amino}-6-[(prop-2-yn-1-yl)amino]pyridine-3,5-dicarbonitriles Showing High Affinity for σ1/2 Receptors
by Winnie Deuther-Conrad, Dirk Schepmann, Isabel Iriepa, Francisco López-Muñoz, Mourad Chioua, Bernhard Wünsch, Abdelouahid Samadi and José Marco-Contelles
Int. J. Mol. Sci. 2025, 26(3), 1266; https://doi.org/10.3390/ijms26031266 - 31 Jan 2025
Viewed by 1778
Abstract
Sigma receptors (σRs) represent very attractive biological targets for the development of potential agents for the treatment of several neurological disorders. In the search for new small molecule drugs against neuropathic pain, we identified 2-{[2-(1-benzylpiperidin-4-yl)ethyl]amino}-6-[methyl(prop-2-yn-1-yl)amino]pyridine-3,5-dicarbonitrile (5) as a polyfunctionalized small pyridine [...] Read more.
Sigma receptors (σRs) represent very attractive biological targets for the development of potential agents for the treatment of several neurological disorders. In the search for new small molecule drugs against neuropathic pain, we identified 2-{[2-(1-benzylpiperidin-4-yl)ethyl]amino}-6-[methyl(prop-2-yn-1-yl)amino]pyridine-3,5-dicarbonitrile (5) as a polyfunctionalized small pyridine with potent dual-target activities against acetylcholinesterase (AChE) (IC50 = 13 nM) and butyrylcholinesterase (BuChE) (IC50 = 3.1 µM), exhibiting high σ1R affinity (Ki(hσ1R) = 1.45 nM) and 290-fold selectivity over the σ2R subtype. These results are in good agreement with those found in the molecular modeling of compound 5. This is possibly due to the preferred combination in this molecule of a linker n = 2 connecting the N-Bn-piperidine motif to the C2 pyridine, without a phenyl group at C4, and a N-Me-substituted propargyl amine in the chain located at C6. Full article
Show Figures

Figure 1

Back to TopTop