Transmembrane Protein 97 (TMEM97): Molecular Target and Treatment in Age-Related Macular Degeneration (AMD)
Abstract
1. Introduction
2. AMD: Clinical Manifestations, Treatment, and Pathophysiology
3. Transmembrane Protein 97 (TMEM97): A Gene Encoding Sigma 2 (σ2) Receptor
4. Role of σ2R/TMEM97 in Cellular Homeostasis
4.1. σ2R/TMEM97 and Cholesterol Homeostasis
4.2. σ2R/TMEM97 and Autophagy
4.3. σ2R/TMEM97 and Calcium Homeostasis
4.4. σ2R/TMEM97 and Integrated Stress Response (ISR)
4.5. σ2R/TMEM97 and Wnt/β-Catenin Signaling
5. Role of σ2R/TMEM97 in Neurodegenerative Diseases
6. Role of σ2R/TMEM97 in AMD
7. σ2R/TMEM97 Modulators: Potential Treatment for Neurodegenerative Disease and Beyond
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Fleckenstein, M.; Keenan, T.D.L.; Guymer, R.H.; Chakravarthy, U.; Schmitz-Valckenberg, S.; Klaver, C.C.; Wong, W.T.; Chew, E.Y. Age-related macular degeneration. Nat. Rev. Dis. Primers 2021, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.S. Age-Related Macular Degeneration Preferred Practice Pattern(R). Ophthalmology 2020, 127, P1–P65. [Google Scholar] [CrossRef]
- Solomon, S.D.; Lindsley, K.; Vedula, S.S.; Krzystolik, M.G.; Hawkins, B.S. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst. Rev. 2019, 3, CD005139. [Google Scholar] [CrossRef]
- FDA Approves SYFOVRE™ (Pegcetacoplan Injection) as the First and Only Treatment for Geographic Atrophy (GA), a Leading Cause of Blindness. Available online: https://investors.apellis.com/news-releases/news-release-details/fda-approves-syfovretm-pegcetacoplan-injection-first-and-only (accessed on 6 August 2025).
- Apellis Wins FDA Approval for First Geographic Atrophy Drug. Available online: https://www.fiercepharma.com/pharma/apellis-wins-fda-approval-first-geographic-atrophy-drug (accessed on 6 August 2025).
- Storey, P.P.; Patel, D.; Garg, S. Endophthalmitis following intravitreal injection of anti-vascular endothelial growth factor agents. Can. J. Ophthalmol. 2020, 55, 286–292. [Google Scholar] [CrossRef]
- Deng, Y.; Qiao, L.; Du, M.; Qu, C.; Wan, L.; Li, J.; Huang, L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes. Dis. 2022, 9, 62–79. [Google Scholar] [CrossRef]
- Chen, C.; Cano, M.; Wang, J.J.; Li, J.; Huang, C.; Yu, Q.; Herbert, T.P.; Handa, J.T.; Zhang, S.X. Role of unfolded protein response dysregulation in oxidative injury of retinal pigment epithelial cells. Antioxid. Redox Signal. 2014, 20, 2091–2106. [Google Scholar] [CrossRef]
- Huang, C.; Wang, J.J.; Ma, J.H.; Jin, C.; Yu, Q.; Zhang, S.X. Activation of the UPR Protects Against Cigarette Smoke-induced RPE Apoptosis through Up-Regulation of Nrf2. J. Biol. Chem. 2015, 290, 5367–5380. [Google Scholar] [CrossRef]
- McLaughlin, T.; Medina, A.; Perkins, J.; Yera, M.; Wang, J.J.; Zhang, S.X. Cellular stress signaling and the unfolded protein response in retinal degeneration: Mechanisms and therapeutic implications. Mol. Neurodegener. 2022, 17, 25. [Google Scholar] [CrossRef]
- McLaughlin, T.; Falkowski, M.; Park, J.W.; Keegan, S.; Elliott, M.; Wang, J.J.; Zhang, S.X. Loss of XBP1 accelerates age-related decline in retinal function and neurodegeneration. Mol. Neurodegener. 2018, 13, 16. [Google Scholar] [CrossRef]
- Zhang, S.X.; Wang, J.J.; Starr, C.R.; Lee, E.J.; Park, K.S.; Zhylkibayev, A.; Medina, A.; Lin, J.H.; Gorbatyuk, M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog. Retin. Eye Res. 2024, 98, 101231. [Google Scholar] [CrossRef]
- Acar, I.E.; Galesloot, T.E.; Luhmann, U.F.O.; Fauser, S.; Gayan, J.; den Hollander, A.I.; Nogoceke, E. Whole Genome Sequencing Identifies Novel Common and Low-Frequency Variants Associated with Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2023, 64, 24. [Google Scholar] [CrossRef]
- Saksens, N.T.; Geerlings, M.J.; Bakker, B.; Schick, T.; Daha, M.R.; Fauser, S.; Boon, C.J.; de Jong, E.K.; Hoyng, C.B.; den Hollander, A.I. Rare Genetic Variants Associated with Development of Age-Related Macular Degeneration. JAMA Ophthalmol. 2016, 134, 287–293. [Google Scholar] [CrossRef]
- Fritsche, L.G.; Igl, W.; Bailey, J.N.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; Gorski, M.; et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 2016, 48, 134–143. [Google Scholar] [CrossRef]
- Ratnapriya, R.; Sosina, O.A.; Starostik, M.R.; Kwicklis, M.; Kapphahn, R.J.; Fritsche, L.G.; Walton, A.; Arvanitis, M.; Gieser, L.; Pietraszkiewicz, A.; et al. Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nat. Genet. 2019, 51, 606–610. [Google Scholar] [CrossRef]
- Alon, A.; Schmidt, H.R.; Wood, M.D.; Sahn, J.J.; Martin, S.F.; Kruse, A.C. Identification of the gene that codes for the sigma(2) receptor. Proc. Natl. Acad. Sci. USA 2017, 114, 7160–7165. [Google Scholar] [CrossRef]
- Parente, M.; Tonini, C.; Caputo, S.; Fiocchetti, M.; Pallottini, V. Mechanisms of Sigma-2/TMEM97 Involvement in Cholesterol Metabolism. J. Cell. Biochem. 2024, 125, e30645. [Google Scholar] [CrossRef]
- Ebrahimi-Fakhari, D.; Wahlster, L.; Bartz, F.; Werenbeck-Ueding, J.; Praggastis, M.; Zhang, J.; Joggerst-Thomalla, B.; Theiss, S.; Grimm, D.; Ory, D.S.; et al. Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Hum. Mol. Genet. 2016, 25, 3588–3599. [Google Scholar] [CrossRef]
- Cantonero, C.; Camello, P.J.; Salido, G.M.; Rosado, J.A.; Redondo, P.C. TMEM97 facilitates the activation of SOCE by downregulating the association of cholesterol to Orai1 in MDA-MB-231 cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158906. [Google Scholar] [CrossRef]
- Yousuf, M.S.; Sahn, J.J.; Yang, H.; David, E.T.; Shiers, S.; Mancilla Moreno, M.; Iketem, J.; Royer, D.M.; Garcia, C.D.; Zhang, J.; et al. Highly specific sigma(2)R/TMEM97 ligand FEM-1689 alleviates neuropathic pain and inhibits the integrated stress response. Proc. Natl. Acad. Sci. USA 2023, 120, e2306090120. [Google Scholar] [CrossRef]
- Oyer, H.M.; Sanders, C.M.; Kim, F.J. Small-Molecule Modulators of Sigma1 and Sigma2/TMEM97 in the Context of Cancer: Foundational Concepts and Emerging Themes. Front. Pharmacol. 2019, 10, 1141. [Google Scholar] [CrossRef]
- Colom-Cadena, M.; Toombs, J.; Simzer, E.; Holt, K.; McGeachan, R.; Tulloch, J.; Jackson, R.J.; Catterson, J.H.; Spires-Jones, M.P.; Rose, J.; et al. Transmembrane protein 97 is a potential synaptic amyloid beta receptor in human Alzheimer’s disease. Acta Neuropathol. 2024, 147, 32. [Google Scholar] [CrossRef]
- Jin, J.; Arbez, N.; Sahn, J.J.; Lu, Y.; Linkens, K.T.; Hodges, T.R.; Tang, A.; Wiseman, R.; Martin, S.F.; Ross, C.A. Neuroprotective Effects of sigma(2)R/TMEM97 Receptor Modulators in the Neuronal Model of Huntington’s Disease. ACS Chem. Neurosci. 2022, 13, 2852–2862. [Google Scholar] [CrossRef]
- Vazquez-Rosa, E.; Watson, M.R.; Sahn, J.J.; Hodges, T.R.; Schroeder, R.E.; Cintron-Perez, C.J.; Shin, M.K.; Yin, T.C.; Emery, J.L.; Martin, S.F.; et al. Neuroprotective Efficacy of a Sigma 2 Receptor/TMEM97 Modulator (DKR-1677) after Traumatic Brain Injury. ACS Chem. Neurosci. 2019, 10, 1595–1602. [Google Scholar] [CrossRef]
- Shen, H.; Li, J.; Heisler-Taylor, T.; Makin, R.; Yang, H.; Mavlyutov, T.A.; Gelfand, B.; Cebulla, C.M.; Guo, L.W. TMEM97 ablation aggravates oxidant-induced retinal degeneration. Cell Signal. 2021, 86, 110078. [Google Scholar] [CrossRef]
- Wang, H.; Peng, Z.; Li, Y.; Sahn, J.J.; Hodges, T.R.; Chou, T.H.; Liu, Q.; Zhou, X.; Jiao, S.; Porciatti, V.; et al. sigma(2)R/TMEM97 in retinal ganglion cell degeneration. Sci. Rep. 2022, 12, 20753. [Google Scholar] [CrossRef]
- Malagise, E.; Keeling, E.; Knezovich, N.; Waybright, L.; Watto, E.; Caggiono, A.O.; Ratnayaka, A.; Hamby, M.E. Sigma-2 receptor modulators rescue POS trafficking deficits in RPE cell-based models of dry AMD. Investig. Ophthalmol. Vis. Sci. 2022, 63, 3182-F0456. [Google Scholar]
- Li, J.; Shen, H.; Guo, L.W. Transmembrane protein TMEM97 and epigenetic reader BAHCC1 constitute an axis that supports pro-inflammatory cytokine expression. Cell Signal. 2024, 116, 111069. [Google Scholar] [CrossRef]
- Li, J.; Nagasaka, Y.; Shen, H.; Zhou, X.; Ma, J.; Trevisan-Silva, D.; Sherman, N.E.; Ambati, J.; Gelfand, B.D.; Guo, L.-W. TMEM97 governs partial epithelial-mesenchymal transition of retinal pigment epithelial cells via the CTNND2-ADAM10 axis. Mol. Ther. Nucleic Acids 2025, 36, 102460. [Google Scholar] [CrossRef]
- Schultz, N.M.; Bhardwaj, S.; Barclay, C.; Gaspar, L.; Schwartz, J. Global Burden of Dry Age-Related Macular Degeneration: A Targeted Literature Review. Clin. Ther. 2021, 43, 1792–1818. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research, G. The Age-Related Eye Disease Study (AREDS): Design implications. AREDS report no. 1. Control. Clin. Trials 1999, 20, 573–600. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study 2 Research, G. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 2013, 309, 2005–2015. [Google Scholar] [CrossRef]
- Parmar, U.P.S.; Surico, P.L.; Mori, T.; Singh, R.B.; Cutrupi, F.; Premkishore, P.; Gallo Afflitto, G.; Di Zazzo, A.; Coassin, M.; Romano, F. Antioxidants in Age-Related Macular Degeneration: Lights and Shadows. Antioxidants 2025, 14, 152. [Google Scholar] [CrossRef]
- Iveric Bio Receives U.S. FDA Approval for IZERVAY™ (Avacincaptad Pegol Intravitreal Solution), a New Treatment for Geographic Atrophy. Available online: https://newsroom.astellas.us/2023-08-04-Iveric-Bio-Receives-U-S-FDA-Approval-for-IZERVAY-TM-avacincaptad-pegol-intravitreal-solution-,-a-New-Treatment-for-Geographic-Atrophy#:~:text=Iveric%20Bio%20Receives%20U.S.%20FDA,Geographic%20Atrophy%20%2D%20Aug%204%2C%202023 (accessed on 6 August 2025).
- U.S. FDA Approves Expanded Label for Astellas’ IZERVAY™ (Avacincaptad Pegol Intravitreal Solution) for Geographic Atrophy. Available online: https://www.astellas.com/en/news/29641 (accessed on 6 August 2025).
- Klein, R.; Klein, B.E.; Knudtson, M.D.; Meuer, S.M.; Swift, M.; Gangnon, R.E. Fifteen-year cumulative incidence of age-related macular degeneration: The Beaver Dam Eye Study. Ophthalmology 2007, 114, 253–262. [Google Scholar] [CrossRef]
- Curcio, C.A.; Millican, C.L.; Bailey, T.; Kruth, H.S. Accumulation of cholesterol with age in human Bruch’s membrane. Investig. Ophthalmol. Vis. Sci. 2001, 42, 265–274. [Google Scholar]
- Curcio, C.A. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD160–AMD181. [Google Scholar] [CrossRef]
- Chakravarthy, U.; Wong, T.Y.; Fletcher, A.; Piault, E.; Evans, C.; Zlateva, G.; Buggage, R.; Pleil, A.; Mitchell, P. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol. 2010, 10, 31. [Google Scholar] [CrossRef]
- Yan, Q.; Ding, Y.; Liu, Y.; Sun, T.; Fritsche, L.G.; Clemons, T.; Ratnapriya, R.; Klein, M.L.; Cook, R.J.; Liu, Y.; et al. Genome-wide analysis of disease progression in age-related macular degeneration. Hum. Mol. Genet. 2018, 27, 929–940. [Google Scholar] [CrossRef]
- Chen, M.; Xu, H. Parainflammation, chronic inflammation, and age-related macular degeneration. J. Leukoc. Biol. 2015, 98, 713–725. [Google Scholar] [CrossRef]
- Martin, W.R.; Eades, C.G.; Thompson, J.A.; Huppler, R.E.; Gilbert, P.E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 1976, 197, 517–532. [Google Scholar] [CrossRef]
- Hellewell, S.B.; Bowen, W.D. A sigma-like binding site in rat pheochromocytoma (PC12) cells: Decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res. 1990, 527, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Hellewell, S.B.; Bruce, A.; Feinstein, G.; Orringer, J.; Williams, W.; Bowen, W.D. Rat liver and kidney contain high densities of sigma 1 and sigma 2 receptors: Characterization by ligand binding and photoaffinity labeling. Eur. J. Pharmacol. 1994, 268, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Su, T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007, 131, 596–610. [Google Scholar] [CrossRef]
- Nicholson, H.; Mesangeau, C.; McCurdy, C.R.; Bowen, W.D. Sigma-2 Receptors Play a Role in Cellular Metabolism: Stimulation of Glycolytic Hallmarks by CM764 in Human SK-N-SH Neuroblastoma. J. Pharmacol. Exp. Ther. 2016, 356, 232–243. [Google Scholar] [CrossRef]
- Abate, C.; Niso, M.; Infantino, V.; Menga, A.; Berardi, F. Elements in support of the ‘non-identity’ of the PGRMC1 protein with the sigma2 receptor. Eur. J. Pharmacol. 2015, 758, 16–23. [Google Scholar] [CrossRef]
- Chu, U.B.; Mavlyutov, T.A.; Chu, M.L.; Yang, H.; Schulman, A.; Mesangeau, C.; McCurdy, C.R.; Guo, L.W.; Ruoho, A.E. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes. EBioMedicine 2015, 2, 1806–1813. [Google Scholar] [CrossRef]
- Riad, A.; Zeng, C.; Weng, C.C.; Winters, H.; Xu, K.; Makvandi, M.; Metz, T.; Carlin, S.; Mach, R.H. Sigma-2 Receptor/TMEM97 and PGRMC-1 Increase the Rate of Internalization of LDL by LDL Receptor through the Formation of a Ternary Complex. Sci. Rep. 2018, 8, 16845. [Google Scholar] [CrossRef]
- Cantonero, C.; Camello, P.J.; Abate, C.; Berardi, F.; Salido, G.M.; Rosado, J.A.; Redondo, P.C. NO1, a New Sigma 2 Receptor/TMEM97 Fluorescent Ligand, Downregulates SOCE and Promotes Apoptosis in the Triple Negative Breast Cancer Cell Lines. Cancers 2020, 12, 257. [Google Scholar] [CrossRef]
- Alon, A.; Lyu, J.; Braz, J.M.; Tummino, T.A.; Craik, V.; O’Meara, M.J.; Webb, C.M.; Radchenko, D.S.; Moroz, Y.S.; Huang, X.P.; et al. Structures of the sigma(2) receptor enable docking for bioactive ligand discovery. Nature 2021, 600, 759–764. [Google Scholar] [CrossRef]
- Guo, L.; Zhen, X. Sigma-2 receptor ligands: Neurobiological effects. Curr. Med. Chem. 2015, 22, 989–1003. [Google Scholar] [CrossRef]
- Vilner, B.J.; John, C.S.; Bowen, W.D. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res. 1995, 55, 408–413. [Google Scholar]
- Wheeler, K.T.; Wang, L.M.; Wallen, C.A.; Childers, S.R.; Cline, J.M.; Keng, P.C.; Mach, R.H. Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br. J. Cancer 2000, 82, 1223–1232. [Google Scholar] [CrossRef]
- Wang, J.H.; Urrutia-Cabrera, D.; Lees, J.G.; Mesa Mora, S.; Nguyen, T.; Hung, S.S.C.; Hewitt, A.W.; Lim, S.Y.; Edwards, T.L.; Wong, R.C.B. Development of a CRISPRi Human Retinal Pigmented Epithelium Model for Functional Study of Age-Related Macular Degeneration Genes. Int. J. Mol. Sci. 2023, 24, 3417. [Google Scholar] [CrossRef]
- Sanchez-Pulido, L.; Ponting, C.P. TM6SF2 and MAC30, new enzyme homologs in sterol metabolism and common metabolic disease. Front. Genet. 2014, 5, 439. [Google Scholar] [CrossRef]
- Bartz, F.; Kern, L.; Erz, D.; Zhu, M.; Gilbert, D.; Meinhof, T.; Wirkner, U.; Erfle, H.; Muckenthaler, M.; Pepperkok, R.; et al. Identification of cholesterol-regulating genes by targeted RNAi screening. Cell Metab. 2009, 10, 63–75. [Google Scholar] [CrossRef]
- Zeng, C.; Riad, A.; Mach, R.H. The Biological Function of Sigma-2 Receptor/TMEM97 and Its Utility in PET Imaging Studies in Cancer. Cancers 2020, 12, 1877. [Google Scholar] [CrossRef] [PubMed]
- Havla, J.; Moser, M.; Sztatecsny, C.; Lotz-Havla, A.S.; Maier, E.M.; Hizli, B.; Schinner, R.; Kumpfel, T.; Strupp, M.; Bremova-Ertl, T.; et al. Retinal axonal degeneration in Niemann-Pick type C disease. J. Neurol. 2020, 267, 2070–2082. [Google Scholar] [CrossRef]
- Claudepierre, T.; Paques, M.; Simonutti, M.; Buard, I.; Sahel, J.; Maue, R.A.; Picaud, S.; Pfrieger, F.W. Lack of Niemann-Pick type C1 induces age-related degeneration in the mouse retina. Mol. Cell Neurosci. 2010, 43, 164–176. [Google Scholar] [CrossRef]
- Liu, S.; Yao, S.; Yang, H.; Liu, S.; Wang, Y. Autophagy: Regulator of cell death. Cell Death Dis. 2023, 14, 648. [Google Scholar] [CrossRef]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef]
- Xu, J.; Gu, J.; Pei, W.; Zhang, Y.; Wang, L.; Gao, J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J. 2024, 291, 3762–3785. [Google Scholar] [CrossRef]
- Limegrover, C.S.; Yurko, R.; Izzo, N.J.; LaBarbera, K.M.; Rehak, C.; Look, G.; Rishton, G.; Safferstein, H.; Catalano, S.M. Sigma-2 receptor antagonists rescue neuronal dysfunction induced by Parkinson’s patient brain-derived alpha-synuclein. J. Neurosci. Res. 2021, 99, 1161–1176. [Google Scholar] [CrossRef]
- Zeng, C.; Weng, C.C.; Schneider, M.E., Jr.; Puentes, L.; Riad, A.; Xu, K.; Makvandi, M.; Jin, L.; Hawkins, W.G.; Mach, R.H. TMEM97 and PGRMC1 do not mediate sigma-2 ligand-induced cell death. Cell Death Discov. 2019, 5, 58. [Google Scholar] [CrossRef]
- Riad, A.; Lengyel-Zhand, Z.; Zeng, C.; Weng, C.C.; Lee, V.M.; Trojanowski, J.Q.; Mach, R.H. The Sigma-2 Receptor/TMEM97, PGRMC1, and LDL Receptor Complex Are Responsible for the Cellular Uptake of Abeta42 and Its Protein Aggregates. Mol. Neurobiol. 2020, 57, 3803–3813. [Google Scholar] [CrossRef]
- Zhang, N.; Pan, H.; Liang, X.; Xie, J.; Han, W. The roles of transmembrane family proteins in the regulation of store-operated Ca(2+) entry. Cell. Mol. Life Sci. 2022, 79, 118. [Google Scholar] [CrossRef]
- Costa-Mattioli, M.; Walter, P. The integrated stress response: From mechanism to disease. Science 2020, 368, aat5314. [Google Scholar] [CrossRef]
- Sahn, J.J.; Mejia, G.L.; Ray, P.R.; Martin, S.F.; Price, T.J. Sigma 2 Receptor/Tmem97 Agonists Produce Long Lasting Antineuropathic Pain Effects in Mice. ACS Chem. Neurosci. 2017, 8, 1801–1811. [Google Scholar] [CrossRef]
- Ding, H.; Gui, X.H.; Lin, X.B.; Chen, R.H.; Cai, H.R.; Fen, Y.; Sheng, Y.L. Prognostic Value of MAC30 Expression in Human Pure Squamous Cell Carcinomas of the Lung. Asian Pac. J. Cancer Prev. 2016, 17, 2705–2710. [Google Scholar]
- Zhao, Z.R.; Zhang, L.J.; He, X.Q.; Zhang, Z.Y.; Zhang, F.; Li, F.; Pei, Y.B.; Hu, Y.M.; Wang, M.W.; Sun, X.F. Significance of mRNA and protein expression of MAC30 in progression of colorectal cancer. Chemotherapy 2011, 57, 394–401. [Google Scholar] [CrossRef]
- Yan, B.Y.; Wang, D.W.; Zhu, Z.L.; Yang, Y.H.; Wang, M.W.; Cui, D.S.; Zhang, H.; Sun, X.F. Overexpression of MAC30 in the cytoplasm of oral squamous cell carcinoma predicts nodal metastasis and poor differentiation. Chemotherapy 2010, 56, 424–428. [Google Scholar] [CrossRef]
- Moparthi, S.B.; Arbman, G.; Wallin, A.; Kayed, H.; Kleeff, J.; Zentgraf, H.; Sun, X.F. Expression of MAC30 protein is related to survival and biological variables in primary and metastatic colorectal cancers. Int. J. Oncol. 2007, 30, 91–95. [Google Scholar] [CrossRef]
- Wilcox, C.B.; Feddes, G.O.; Willett-Brozick, J.E.; Hsu, L.C.; DeLoia, J.A.; Baysal, B.E. Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: Implications for pathogenesis of ovarian cancer. BMC Cancer 2007, 7, 223. [Google Scholar] [CrossRef]
- Zhu, H.; Su, Z.; Ning, J.; Zhou, L.; Tan, L.; Sayed, S.; Song, J.; Wang, Z.; Li, H.; Sun, Q.; et al. Transmembrane protein 97 exhibits oncogenic properties via enhancing LRP6-mediated Wnt signaling in breast cancer. Cell Death Dis. 2021, 12, 912. [Google Scholar] [CrossRef]
- Xu, X.Y.; Zhang, L.J.; Yu, Y.Q.; Zhang, X.T.; Huang, W.J.; Nie, X.C.; Song, G.Q. Down-regulated MAC30 expression inhibits proliferation and mobility of human gastric cancer cells. Cell Physiol. Biochem. 2014, 33, 1359–1368. [Google Scholar] [CrossRef]
- Hong, V.M.; Rade, A.D.; Yan, S.M.; Bhaskara, A.; Yousuf, M.S.; Chen, M.; Martin, S.F.; Liebl, D.J.; Price, T.J.; Kolber, B.J. Loss of Sigma-2 Receptor/TMEM97 Is Associated with Neuropathic Injury-Induced Depression-Like Behaviors in Female Mice. eNeuro 2024, 11, ENEURO.0488-23.2024. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.L.; Alleyne, A.R.; Eans, S.O.; Cirino, T.J.; Stacy, H.M.; Mottinelli, M.; Intagliata, S.; McCurdy, C.R.; McLaughlin, J.P. Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain. Molecules 2022, 27, 3617. [Google Scholar] [CrossRef]
- Intagliata, S.; Sharma, A.; King, T.I.; Mesangeau, C.; Seminerio, M.; Chin, F.T.; Wilson, L.L.; Matsumoto, R.R.; McLaughlin, J.P.; Avery, B.A.; et al. Discovery of a Highly Selective Sigma-2 Receptor Ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with Drug-Like Properties and Antinociceptive Effects In Vivo. AAPS J. 2020, 22, 94. [Google Scholar] [CrossRef]
- Chuang, J.Z.; Yang, N.; Nakajima, N.; Otsu, W.; Fu, C.; Yang, H.H.; Lee, M.P.; Akbar, A.F.; Badea, T.C.; Guo, Z.; et al. Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration. Nat. Commun. 2022, 13, 374. [Google Scholar] [CrossRef]
- Son, K.-N.; Lee, H.; Lee, S.M.; Pierre-Jacques, D.; Shah, D.; Cologna, S.M.; Aakalu, V.K. Identifying the crucial binding domain of histatin-1 to recombinant TMEM97 in activating chemotactic migration in human corneal epithelial cells. Biochem. Biophys. Res. Commun. 2024, 739, 150991. [Google Scholar] [CrossRef]
- Lizama, B.N.; Keeling, E.; Cho, E.; Malagise, E.M.; Knezovich, N.; Waybright, L.; Watto, E.; Look, G.; Di Caro, V.; Caggiano, A.O.; et al. Sigma-2 receptor modulator CT1812 alters key pathways and rescues retinal pigment epithelium (RPE) functional deficits associated with dry age-related macular degeneration (AMD). Sci. Rep. 2025, 15, 4256. [Google Scholar] [CrossRef]
- Walby, G.D.; Gu, Q.; Yang, H.; Martin, S.F. Structure-Affinity relationships of novel sigma(2)R/TMEM97 ligands. Bioorg. Chem. 2024, 145, 107191. [Google Scholar] [CrossRef]
- Keefe, R.S.E.; Harvey, P.D.; Khan, A.; Saoud, J.B.; Staner, C.; Davidson, M.; Luthringer, R. Cognitive Effects of MIN-101 in Patients With Schizophrenia and Negative Symptoms: Results from a Randomized Controlled Trial. J. Clin. Psychiatry 2018, 79. [Google Scholar] [CrossRef]
- Scott, L.L.; Sahn, J.J.; Ferragud, A.; Yen, R.C.; Satarasinghe, P.N.; Wood, M.D.; Hodges, T.R.; Shi, T.; Prakash, B.A.; Friese, K.M.; et al. Small molecule modulators of sigma2R/Tmem97 reduce alcohol withdrawal-induced behaviors. Neuropsychopharmacology 2018, 43, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Quadir, S.G.; Tanino, S.M.; Rohl, C.D.; Sahn, J.J.; Yao, E.J.; Cruz, L.D.R.; Cottone, P.; Martin, S.F.; Sabino, V. The Sigma-2 receptor / transmembrane protein 97 (sigma2R/TMEM97) modulator JVW-1034 reduces heavy alcohol drinking and associated pain states in male mice. Neuropharmacology 2021, 184, 108409. [Google Scholar] [CrossRef]
- Izzo, N.J.; Staniszewski, A.; To, L.; Fa, M.; Teich, A.F.; Saeed, F.; Wostein, H.; Walko, T., 3rd; Vaswani, A.; Wardius, M.; et al. Alzheimer’s therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits. PLoS ONE 2014, 9, e111898. [Google Scholar] [CrossRef]
- Izzo, N.J.; Yuede, C.M.; LaBarbera, K.M.; Limegrover, C.S.; Rehak, C.; Yurko, R.; Waybright, L.; Look, G.; Rishton, G.; Safferstein, H.; et al. Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer’s disease modification. Alzheimer’s Dement. 2021, 17, 1365–1382. [Google Scholar] [CrossRef]
- Yi, B.; Sahn, J.J.; Ardestani, P.M.; Evans, A.K.; Scott, L.L.; Chan, J.Z.; Iyer, S.; Crisp, A.; Zuniga, G.; Pierce, J.T.; et al. Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer’s disease. J. Neurochem. 2017, 140, 561–575. [Google Scholar] [CrossRef]
- Mavlyutov, T.A.; Li, J.; Liu, X.; Shen, H.; Yang, H.; McCurdy, C.R.; Pattnaik, B.; Guo, L.W. Retinal Photoreceptor Protection in an AMD-Related Mouse Model by Selective Sigma-1 or Sigma-2 Receptor Modulation. Genes 2022, 13, 2386. [Google Scholar] [CrossRef]
Pathology | Model | Pathway | Effect on Pathway | Resources |
---|---|---|---|---|
Schizophrenia | σ2R/TMEM97 modulator MIN-101 clinical trail | Cognitive performance | Increases | [87] |
Alcohol dependence | σ2R/TMEM97 modulator JVW-1034 in a rodent model | Alcohol-withdrawal-induced excessive alcohol consumption, alcohol intake, and associated pain states | Decreases | [88,89] |
Alzheimer’s disease | σ2R/TMEM97 modulator CT01344 in cell and mouse models | Amyloid beta (Aβ) accumulation and synaptotoxicity | Decreases | [90] |
Alzheimer’s disease | σ2R/TMEM97 modulator CT1812 in preclinical cell and mouse models, clinical trial, and human stem cells | Amyloid beta (Aβ) accumulation and synaptotoxicity | Decreases | [25,91] |
Alzheimer’s disease | σ2R/TMEM97 modulator SAS-0132 in a transgenic mouse model of Alzheimer’s disease | Neuroprotection, cognitive performance, and inflammation | Decreases | [92] |
Parkinson’s disease | σ2R/TMEM97 modulation in rat neuron and glial cell culture | α-synuclein accumulation and neurotoxicity | Decreases | [67] |
Huntington’s disease | σ2R/TMEM97 modulation in a neuron cell model | Neuronal toxicity | Decreases | [26] |
Traumatic brain injury | σ2R/TMEM97 modulator DKR-1677 in mouse models of traumatic brain injury | Neuronal degeneration | Decreases | [27] |
Ischemic retinal ganglion cell (RGC) injury | σ2R/TMEM97 modulator DKR-1677 in an ischemia-induced RGC degeneration mouse model | Ischemic injury causing RGC degeneration | Decreases | [29] |
Neuropathic pain | σ2R/TMEM97 modulators FEM-1689, UKH-1114, Z1665845742, and Z4857158944 in a spared nerve injury mouse model; knockout in neuron cell and mouse models | Activation of integrated stress response (ISR) drives neuropathic pain | Decreases | [23,54,72] |
Neuropathic pain | σ2R/TMEM97 modulator CM398 in mouse model | Formalin and thermal models; chronic nerve constriction injury | Decreases | [81,82] |
AMD | σ2R/TMEM97 modulator CM398 in mouse model | Photoreceptor loss | Decreases | [93] |
AMD | σ2R/TMEM97 modulator CT1812 in a mouse model and a human RPE model | Aβ-mediated and oxidative stress-mediated photoreceptor outer segment (POS) trafficking | Decreases | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stathopoulos, A.; Wang, J.J.; Martin, S.F.; Zhang, S.X. Transmembrane Protein 97 (TMEM97): Molecular Target and Treatment in Age-Related Macular Degeneration (AMD). Biomolecules 2025, 15, 1228. https://doi.org/10.3390/biom15091228
Stathopoulos A, Wang JJ, Martin SF, Zhang SX. Transmembrane Protein 97 (TMEM97): Molecular Target and Treatment in Age-Related Macular Degeneration (AMD). Biomolecules. 2025; 15(9):1228. https://doi.org/10.3390/biom15091228
Chicago/Turabian StyleStathopoulos, Alyssa, Joshua J. Wang, Stephen F. Martin, and Sarah X. Zhang. 2025. "Transmembrane Protein 97 (TMEM97): Molecular Target and Treatment in Age-Related Macular Degeneration (AMD)" Biomolecules 15, no. 9: 1228. https://doi.org/10.3390/biom15091228
APA StyleStathopoulos, A., Wang, J. J., Martin, S. F., & Zhang, S. X. (2025). Transmembrane Protein 97 (TMEM97): Molecular Target and Treatment in Age-Related Macular Degeneration (AMD). Biomolecules, 15(9), 1228. https://doi.org/10.3390/biom15091228