Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = Saudi genome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 943 KiB  
Article
Detection and Molecular Characterization of Rift Valley Fever Virus in Apparently Healthy Cattle in Uganda
by Eugene Arinaitwe, Kaitlyn Waters, Bonto Faburay, Gladys K. Nakanjako, David Kalenzi Atuhaire, Mathias Afayoa, Frank Norbert Mwiine and Joseph Erume
Pathogens 2025, 14(7), 720; https://doi.org/10.3390/pathogens14070720 - 20 Jul 2025
Viewed by 481
Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by the Rift Valley fever virus (RVFV), affecting humans, livestock, and wild ruminants. This study aimed to characterize and assess the genetic diversity of RVFV strains circulating among livestock in Uganda. Blood samples were [...] Read more.
Rift Valley fever (RVF) is a zoonotic disease caused by the Rift Valley fever virus (RVFV), affecting humans, livestock, and wild ruminants. This study aimed to characterize and assess the genetic diversity of RVFV strains circulating among livestock in Uganda. Blood samples were collected between January 2021 and May 2024 from apparently healthy cattle, goats, and sheep in four districts. The samples were first screened for RVFV antibodies using ELISA; antibody-positive samples were subsequently tested for viral RNA using reverse transcriptase quantitative PCR (RT-qPCR). The PCR-positive samples underwent targeted amplicon sequencing, and phylogenetic analyses of the small (S) and large (L) genome segments were conducted to determine viral lineages. Of the 833 ELISA-positive samples, 10 (all from cattle) tested positive for RVFV RNA using RT-qPCR. Consensus sequences were successfully generated for six S segments and one L genome segment. A phylogenetic analysis revealed that all sequences belonged to lineage C, showing close genetic similarity to RVFV strains previously identified in Uganda, Kenya, Sudan, Madagascar, and Saudi Arabia. Limited genetic diversity was observed at both the nucleotide and amino acid levels. The detection of RVFV in apparently healthy cattle suggests ongoing, low-level viral circulation in Uganda. These findings offer important insights for guiding RVF surveillance, control, and policymaking in the country. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

21 pages, 3463 KiB  
Article
Hybrid Genome and Clinical Impact of Emerging Extensively Drug-Resistant Priority Bacterial Pathogen Acinetobacter baumannii in Saudi Arabia
by J. Francis Borgio
Life 2025, 15(7), 1094; https://doi.org/10.3390/life15071094 - 12 Jul 2025
Viewed by 416
Abstract
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain [...] Read more.
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain (IRMCBCU95U) isolated from a transtracheal aspirate sample from a female patient with end-stage renal disease in Saudi Arabia. The whole genome of IRMCBCU95U (4.3 Mbp) was sequenced using Oxford Nanopore long-read sequencing to identify and compare the antibiotic-resistance profile and genomic features of A. baumannii IRMCBCU95U. The antibiogram of A. baumannii IRMCBCU95U revealed resistance to multiple antibiotics, including cefepime, ceftazidime, ciprofloxacin, imipenem, meropenem and piperacillin/tazobactam. A comparative genomic analysis between IRMCBCU95U and A. baumannii K09-14 and ATCC 19606 identified significant genetic heterogeneity and mosaicism among the strains. This analysis also demonstrated the hybrid nature of the genome of IRMCBCU95U and indicates that horizontal gene transfer may have occurred between these strains. The IRMCBCU95U genome has a diverse range of genes associated with antimicrobial resistance and mobile genetic elements (ISAba1 and IS26) associated with the spread of multidrug resistance. The presence of virulence-associated genes that are linked to iron acquisition, motility and transcriptional regulation confirmed that IRMCBCU95U is a priority human pathogen. The plasmid fragment IncFIB(pNDM-Mar) observed in the strain is homologous to the plasmid in Klebsiella pneumoniae (439 bp; similarity: 99.09%), which supports its antimicrobial resistance. From these observations, it can be concluded that the clinical A. baumannii IRMCBCU95U isolate is an emerging extensively drug-resistant human pathogen with a novel combination of resistance genes and a plasmid fragment. The complex resistome of IRMCBCU95U highlights the urgent need for genomic surveillance in hospital settings in Saudi Arabia to fight against the spread of extensively drug-resistant A. baumannii. Full article
Show Figures

Figure 1

26 pages, 5272 KiB  
Article
Molecular Screening Reveals De Novo Loss-of-Function NR4A2 Variants in Saudi Children with Autism Spectrum Disorders: A Single-Center Study
by Najwa M. Alharbi, Wejdan F. Baaboud, Heba Shawky, Aisha A. Alrofaidi, Reem M. Farsi, Khloud M. Algothmi, Shahira A. Hassoubah, Fatemah S. Basingab, Sheren A. Azhari, Mona G. Alharbi, Reham Yahya and Safiah Alhazmi
Int. J. Mol. Sci. 2025, 26(12), 5468; https://doi.org/10.3390/ijms26125468 - 7 Jun 2025
Viewed by 560
Abstract
Dysregulated expression of nuclear receptor superfamily 4 group A member 2 (NR4A2) has recently been associated with autistic spectrum disorder (ASD), speech impairment, and neurodevelopmental delay (NDD); however, its precise role in the prevalence and etiopathogenesis of ASD has not been [...] Read more.
Dysregulated expression of nuclear receptor superfamily 4 group A member 2 (NR4A2) has recently been associated with autistic spectrum disorder (ASD), speech impairment, and neurodevelopmental delay (NDD); however, its precise role in the prevalence and etiopathogenesis of ASD has not been fully elucidated. Herein, we aimed to explore the role of NR4A2 variants in the genetic underpinnings of ASD among Saudi children of different age ranges and phenotype severities. A total of 338 children with ASD from 315 unrelated families (293 simplex, 2 quads, and 1 quintet) were screened for NR4A2 variants via exome sequencing (ES) of the genomic DNA extracted from peripheral blood mononuclear cells (PBMCs), after which the probands with identified NR4A2 variants were further subjected to trio genetic analyses. ES analysis revealed 10 de novo NR4A2 variants (5 indels/nonsense, 2 missense, and 3 variants affecting splicing) in 8 unrelated probands (2.37%) and 2 affected siblings from 8 unrelated families (6 simplex (2.04%) and 2 quads (8.7%)). Three NR4A2 variants were notably recurrent among both affected and unaffected carriers. All identified indels and two splicing variants met the criteria for pathogenic/loss-of-function (LoF) variants according to the ACMG classification (PVS1), whereas the missense variants were classified as of uncertain significance (VUS). This study is among the first to identify such a high frequency of recurrent variants in an ASD cohort, suggesting their significant contribution to the etiopathogenesis of ASD within this population. Full article
Show Figures

Figure 1

21 pages, 1567 KiB  
Article
Whole Exome Sequencing in 26 Saudi Patients Expands the Mutational and Clinical Spectrum of Diabetic Nephropathy
by Imadeldin Elfaki, Rashid Mir, Sanaa Almowallad, Rehab F. Almassabi, Wed Albalawi, Aziz Dhaher Albalawi, Ajaz A. Bhat, Jameel Barnawi, Faris J. Tayeb, Mohammed M. Jalal, Malik A. Altayar and Faisal H. Altemani
Medicina 2025, 61(6), 1017; https://doi.org/10.3390/medicina61061017 - 29 May 2025
Viewed by 689
Abstract
Background and Objectives: Type 2 diabetes mellitus (T2DM) is a health problem all over the world due to its serious complications such as diabetic nephropathy, diabetic neuropathy, diabetic retinopathy, cardiovascular diseases, and limb amputation. The risk factors for T2DM are environmental, lifestyle, [...] Read more.
Background and Objectives: Type 2 diabetes mellitus (T2DM) is a health problem all over the world due to its serious complications such as diabetic nephropathy, diabetic neuropathy, diabetic retinopathy, cardiovascular diseases, and limb amputation. The risk factors for T2DM are environmental, lifestyle, and genetic. The genome-wide association studies (GWASs) have revealed the linkage of certain loci with diabetes mellitus (DM) and its complications. The objective of this study was to examine the association of genetic loci with diabetic nephropathy (DN) in the Saudi population. Materials and Methods: Whole exome sequencing (WES) and bioinformatics analysis, such as Genome Analysis Toolkit, Samtools, SnpEff, Polymorphism Phenotyping v2, and Sorting Intolerant from Tolerant (SIFT), were used to examine the association of gene variations with DN in 26 Saudi patients (18 males and 8 females). Results: The present study showed that there are loci that are probably linked to DM and DN. The genes showed variations that include COCH, PRPF31, PIEZO2, RABL5, CCT5, PLIN3, PDE4A, SH3BP2, GPR108, GPR108, MUC6, CACNA1D, and MAFA. The physiological processes that are potentially affected by these gene variations include insulin signaling and secretion, the inflammatory pathway, and mitochondrial function. Conclusion: The variations in these genes and the dysregulation of these processes may be linked to the development of DM and DN. These findings require further verification in future studies with larger sample sizes and protein functional studies. The results of this study will assist in identifying the genes involved in DM and DN (for example, through genetic counseling) and help in prevention and treatment of individuals or populations at risk of this disease and its complications. Full article
Show Figures

Figure 1

16 pages, 458 KiB  
Review
A Brief Review of Inherited Neuropathies: A Perspective from Saudi Arabia
by Ahmed K. Bamaga, Anas S. Alyazidi and Feryal K. Alali
Brain Sci. 2025, 15(4), 403; https://doi.org/10.3390/brainsci15040403 - 17 Apr 2025
Viewed by 908
Abstract
Inherited neuropathies are a heterogeneous group of disorders that affect the peripheral nervous system, leading to motor, sensory, and autonomic dysfunction. These disorders are classified into various subgroups, including hereditary sensory and motor neuropathies, distal hereditary motor neuropathies, hereditary sensory and autonomic neuropathies, [...] Read more.
Inherited neuropathies are a heterogeneous group of disorders that affect the peripheral nervous system, leading to motor, sensory, and autonomic dysfunction. These disorders are classified into various subgroups, including hereditary sensory and motor neuropathies, distal hereditary motor neuropathies, hereditary sensory and autonomic neuropathies, and more complex forms. Advances in genetic testing, particularly next-generation sequencing (NGS), have significantly improved the identification of these disorders. Emerging therapies, such as gene therapy, small molecule therapies, and antisense oligonucleotides, offer promising treatment options. However, current treatments remain limited, and their clinical benefits in humans are not yet fully established. This review provides a comprehensive overview of recent developments and evolving therapeutic options for hereditary neuropathies, focusing on gene therapy, small molecule therapies, and antisense oligonucleotides. It also highlights the current state of inherited neuropathies in Saudi Arabia, emphasizing the need for national guidelines, patient registries, and collaborative research efforts. By integrating advanced genomic technologies and fostering international collaboration, we can improve the diagnosis, management, and treatment outcomes for patients with inherited neuropathies. Full article
(This article belongs to the Special Issue Diagnosis, Therapy and Rehabilitation in Neuromuscular Diseases)
Show Figures

Figure 1

17 pages, 2978 KiB  
Article
Unraveling the Complex Genomic Interplay of Sickle Cell Disease Among the Saudi Population: A Case-Control GWAS Analysis
by Ali Alghubayshi, Dayanjan Wijesinghe, Deemah Alwadaani, Farjah H. Algahtani, Salah Abohelaika, Mohsen Alzahrani, Hussain H. Al Saeed, Abdullah Al Zayed, Suad Alshammari, Yaseen Alhendi, Barrak Alsomaie, Abdulmonem Alsaleh and Mohammad A. Alshabeeb
Int. J. Mol. Sci. 2025, 26(6), 2817; https://doi.org/10.3390/ijms26062817 - 20 Mar 2025
Viewed by 1528
Abstract
Sickle cell disease (SCD) is a severe inherited blood disorder characterized by abnormal hemoglobin (HbS) that leads to varying degrees of severity, including chronic hemolysis, episodic vaso-occlusion, and damage to multiple organs, causing significant morbidity and mortality. While SCD is a monogenic disease, [...] Read more.
Sickle cell disease (SCD) is a severe inherited blood disorder characterized by abnormal hemoglobin (HbS) that leads to varying degrees of severity, including chronic hemolysis, episodic vaso-occlusion, and damage to multiple organs, causing significant morbidity and mortality. While SCD is a monogenic disease, its complications are influenced by polygenic factors. SCD prevalence is notably high in regions including the Middle East, with Saudi Arabia reporting significant cases, particularly in the Eastern Province. Most genetic factors associated with SCD outcomes have been identified in populations predominantly from Africa or of African ancestry. This study aims to identify genetic variants that characterize Saudi SCD patients with the potential to influence disease outcomes in this population. A multicenter case-control genome-wide association study (GWAS) was conducted involving 350 adult Saudi SCD patients and 202 healthy controls. Participants were genotyped using the Affymetrix Axiom array, covering 683,030 markers. Rigorous quality control measures were applied to ensure data integrity. Fisher’s exact was used to identify genetic variants with a significant difference in allele frequency (p < 5 × 10−8). Functional annotations and regulatory functions of variants were determined using the Ensembl Variant Effect Predictor (VEP) and RegulomeDB databases. The GWAS identified numerous significant genetic variants characterizing SCD cases in the Saudi population. These variants, distributed across multiple chromosomes, were found in genes with known functional consequences. A substantial proportion of the markers were detected in the olfactory receptor cluster, TRIM family, and HBB locus genes. Many of the identified genes were reported in previous studies showing significant associations with various SCD outcomes, including hemoglobin regulation, inflammation, immune response, and vascular function. The findings highlight the genetic complexity underlying SCD and its clinical manifestations. The identified variants suggest potential molecular biomarkers and therapeutic targets, enhancing our understanding of the molecular basis of SCD in the Saudi population. This is the first genetic analysis characterizing SCD patients compared to healthy individuals, uncovering genetic markers that could serve as diagnostic biomarkers and therapeutic targets. Given the known molecular mechanisms of the detected genetic loci, these provide a foundation for precision medicine in SCD management, highlighting the need for further studies to validate these results and explore their clinical implications. Full article
Show Figures

Figure 1

18 pages, 4366 KiB  
Article
Microbiome Analysis of Rhizosphere Soil of Wild Succulent Shrubs Zygophyllum coccineum and Haloxylon salicornicum
by Abdulaziz Alharbi and Medhat Rehan
Agronomy 2025, 15(3), 717; https://doi.org/10.3390/agronomy15030717 - 16 Mar 2025
Viewed by 638
Abstract
Zygophyllum coccineum L. and Haloxylon salicornicum are dominant plant species in the natural habitats of Saudi Arabia. The soil microbiome is indispensable for nutrient cycling and stress resilience. In the present study, the analysis of soil nutrients under the two plants displayed variable [...] Read more.
Zygophyllum coccineum L. and Haloxylon salicornicum are dominant plant species in the natural habitats of Saudi Arabia. The soil microbiome is indispensable for nutrient cycling and stress resilience. In the present study, the analysis of soil nutrients under the two plants displayed variable differences in total N, K, Zn, Mn and Cu, with significant differences in both K and Mn (p ≤ 0.05). In general, the available soil nutrients were higher under Haloxylon than Zygophyllum plants, reflecting higher N, K, Fe and Cu contents in the leaves of the Haloxylon plant. Metagenomic analysis of soil microbiome revealed that the top abundant bacteria at the phylum level were Actinobacteriota, Chloroflexi and Proteobacteria, whereas the uppermost fungal communities were Ascomycota, followed by Basidiomycota. The predicted abundant enzymes in the bacterial communities included Phosphoadenylyl-sulfate reductase, Serine-type D-Ala-carboxypeptidase, ADP-glyceromanno-heptose 6-epimerase and glutathione hydrolase. The fungal communities associated with Haloxylon possessed more than 48 enzymes that differed in their richness from the communities of Zygophyllum. Pentose-P and Sulphate-Cys pathways disclosed the extreme abundant pathways in Zygophyllum bacterial communities, while the nonoxipent pathway was overabundant in the Haloxylon fungal communities. While genomic predictions provide insights into functional potential, integrating these data with environmental parameters remains key to managing soil health. Full article
(This article belongs to the Special Issue Soil Microbiomes and Their Roles in Soil Health and Fertility)
Show Figures

Figure 1

17 pages, 4373 KiB  
Article
High-Throughput Whole-Exome Sequencing and Large-Scale Computational Analysis to Identify the Genetic Biomarkers to Predict the Vedolizumab Response Status in Inflammatory Bowel Disease Patients from Saudi Arabia
by Hanin Aljohani, Doaa Anbarserry, Mahmoud Mosli, Amani Ujaimi, Duaa Bakhshwin, Ramu Elango and Sameer Alharthi
Biomedicines 2025, 13(2), 459; https://doi.org/10.3390/biomedicines13020459 - 13 Feb 2025
Viewed by 1253
Abstract
Background/Objectives: Vedolizumab (VDZ) is the new monoclonal drug targeting α4β7 integrin for patients with moderate/severe IBD. Between 30 and 45% of patients fail to respond to VDZ after 14–16 weeks of treatment. The aim of the study was to explore the genetic [...] Read more.
Background/Objectives: Vedolizumab (VDZ) is the new monoclonal drug targeting α4β7 integrin for patients with moderate/severe IBD. Between 30 and 45% of patients fail to respond to VDZ after 14–16 weeks of treatment. The aim of the study was to explore the genetic profile of vedolizumab-treated Arab IBD patients in Saudi Arabia to identify the potential biomarkers to differentiate the responders from non-responders. Methods: A cohort of 16 patients with IBD, including 4 with Crohn’s disease and 12 with ulcerative colitis, were recruited. Following 16 weeks of VDZ treatment, nine were found to be responders and seven non-responders. Blood samples were collected for the whole exome sequencing of DNA from all patients. The variants in the whole-exome sequencing data were analyzed with a variety of bioinformatics tools and databases, such as Polyphen2, Mutation Taster, CADD, FATHMM, Open Target Platform, TOPPFun, STRING, and GTEx. Results: More than 1.6 million variants from 16 samples were analyzed. The rare variant analysis prioritized NOD2, IL23, IL10, IL27, and TRAF1 genes in non-responders. NOD2, IL23, IL10, IL27, and TRAF1 were found to be the significant IBD risk factors in multiple genome-wide association studies, and their pro-inflammatory activity might contribute to the inherent resistance to VDZ. Rare variants of CARD9, TYK2, IL4, and NLRP1 genes present in VDZ responders enhance the anti-inflammatory/immune modulation effects. Conclusions: This investigation is the first to apply whole-exome sequencing to identify the potential drug response biomarkers for the IBD drug VDZ in Saudi Arabia. Full article
Show Figures

Figure 1

18 pages, 5346 KiB  
Article
Metagenome Analysis Identified Novel Microbial Diversity of Sandy Soils Surrounded by Natural Lakes and Artificial Water Points in King Salman Bin Abdulaziz Royal Natural Reserve, Saudi Arabia
by Yahya S. Al-Awthan, Rashid Mir, Fuad A. Alatawi, Abdulaziz S. Alatawi, Fahad M. Almutairi, Tamer Khafaga, Wael M. Shohdi, Amal M. Fakhry and Basmah M. Alharbi
Life 2024, 14(12), 1692; https://doi.org/10.3390/life14121692 - 20 Dec 2024
Viewed by 4992
Abstract
Background: Soil microbes play a vital role in the ecosystem as they are able to carry out a number of vital tasks. Additionally, metagenomic studies offer valuable insights into the composition and functional potential of soil microbial communities. Furthermore, analyzing the obtained data [...] Read more.
Background: Soil microbes play a vital role in the ecosystem as they are able to carry out a number of vital tasks. Additionally, metagenomic studies offer valuable insights into the composition and functional potential of soil microbial communities. Furthermore, analyzing the obtained data can improve agricultural restoration practices and aid in developing more effective environmental management strategies. Methodology: In November 2023, sandy soil samples were collected from ten sites of different geographical areas surrounding natural lakes and artificial water points in the Tubaiq conservation area of King Salman Bin Abdulaziz Royal Natural Reserve (KSRNR), Saudi Arabia. In addition, genomic DNA was extracted from the collected soil samples, and 16S rRNA sequencing was conducted using high-throughput Illumina technology. Several computational analysis tools were used for gene prediction and taxonomic classification of the microbial groups. Results: In this study, sandy soil samples from the surroundings of natural and artificial water resources of two distinct natures were used. Based on 16S rRNA sequencing, a total of 24,563 OTUs were detected. The metagenomic information was then categorized into 446 orders, 1036 families, 4102 genera, 213 classes, and 181 phyla. Moreover, the phylum Pseudomonadota was the most dominant microbial community across all samples, representing an average relative abundance of 34%. In addition, Actinomycetes was the most abundant class (26%). The analysis of clustered proteins assigned to COG categories provides a detailed understanding of the functional capabilities and adaptation of microbial communities in soil samples. Amino acid metabolism and transport were the most abundant categories in the soil environment. Conclusions: Metagenome analysis of sandy soils surrounding natural lakes and artificial water points in the Tubaiq conservation area of KSRNR (Saudi Arabia) has unveils rich microbial activity, highlighting the complex interactions and ecological roles of microbial communities in these environments. Full article
(This article belongs to the Special Issue Trends in Microbiology 2025)
Show Figures

Figure 1

13 pages, 1900 KiB  
Article
Prognostic Significance of DSCC1, a Biomarker Associated with Aggressive Features of Breast Cancer
by Abrar I. Aljohani
Medicina 2024, 60(12), 1929; https://doi.org/10.3390/medicina60121929 - 23 Nov 2024
Viewed by 1097
Abstract
Background and Objectives: Invasive breast cancer (BC) was traditionally investigated visually, and no technique could identify the key molecular drivers of patient survival. However, essential molecular drivers of invasive BC have now been discovered using innovative genomic, transcriptomic, and proteomic methodologies. Nevertheless, [...] Read more.
Background and Objectives: Invasive breast cancer (BC) was traditionally investigated visually, and no technique could identify the key molecular drivers of patient survival. However, essential molecular drivers of invasive BC have now been discovered using innovative genomic, transcriptomic, and proteomic methodologies. Nevertheless, few evaluations of the prognostic factors of BC in Saudi Arabia have been performed. Evaluating the biomarkers associated with the development of early-stage BC could help determine the risk of metastasis and guide treatment decisions. In a previous study, using large BC cohorts and artificial neural network techniques, DNA replication and sister chromatid cohesion 1 (DSCC1) was found to be one of the principal genes in invasive BC samples. To date, no studies have addressed the prognostic significance of DSCC1 in invasive BC and its association with aggressive tumor behavior. This research aimed to address this gap. Materials and Methods: The association of clinicopathological features and patient outcomes with DSCC1 expression at the mRNA level was assessed using the Molecular Taxonomy Breast Cancer International Consortium (METABRIC; n = 1980) and The Cancer Genome Atlas (TCGA; n = 854) cohorts. DSCC1 was also evaluated at the protein level using immunohistochemistry on samples from invasive BC patients (n = 100) presenting to King Abdul Aziz Specialist Hospital in Saudi Arabia. The association of clinicopathological parameters (including patient age, tumor grade, tumor size, and patient outcome) with protein level was also evaluated. Results: In both METABRIC and TCGA cohorts, high expression of DSCC1 was significantly associated with high histological grade, large tumor size, lymphovascular invasion positivity, and hormone receptor negativity (all p < 0.001). A high DSCC1 mRNA level was associated with poor outcomes (p < 0.001 for METABRIC, p = 0.23 for TCGA). At the protein level, high DSCC1 expression was associated with high histological grade (p = 0.001), lymph node presence (p = 0.008), hormone receptor negativity (p = 0.005), high Ki67 expression (p = 0.036), and shorter survival (p = 0.008). Conclusions: This study confirmed the prognostic significance of DSCC1 in invasive BC patients. DSCC1 could be a therapeutic target in BC cases with poor outcomes. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

13 pages, 6462 KiB  
Article
Genomic and Bioinformatics Analysis of Familial Partial Lipodystrophy Type 3 Identified in a Patient with Novel PPARγ Mutation and Robust Response to Pioglitazone
by Abdulrahman Hummadi, Saeed Yafei, Dhayf Alrahman Mutawwam, Raed Abutaleb, Yahia Solan, Abdullah Khawaji, Ali Jaber Alhagawy, Turki Algohani, Mamdouh Khardali, Mohammed Hakami, Abdulrraheem Daghriri, Wegdan Hezam and Nourah Kariri
Int. J. Mol. Sci. 2024, 25(22), 12060; https://doi.org/10.3390/ijms252212060 - 10 Nov 2024
Cited by 2 | Viewed by 2496
Abstract
Familial partial lipodystrophies (FPLDs) are very rare inherited disorders characterized by partial loss of adipose tissue from the upper and lower extremities. At least seven subtypes of FPLD have been identified and are mostly dominantly inherited. FPLD type 3 is caused by mutations [...] Read more.
Familial partial lipodystrophies (FPLDs) are very rare inherited disorders characterized by partial loss of adipose tissue from the upper and lower extremities. At least seven subtypes of FPLD have been identified and are mostly dominantly inherited. FPLD type 3 is caused by mutations in the PPARγ gene, which encodes for the protein peroxisome proliferator-activated receptor gamma (PPARγ). We identified a Saudi female with PFLD3 presented with partial lipoatrophy, uncontrolled diabetes, severe hypertriglyceridemia, and recurrent pancreatitis. The clinical and biochemical findings in this proband were described before and after treatment with Pioglitazone in addition to the conventional treatment. DNA extraction and whole exome sequencing (WES) were performed to detect the variant. The mutant gene was subjected to Sanger analysis to confirm the results. We applied five specific computational prediction tools to assess the pathogenicity of variation, namely the MT, DANN, CADD, BayesDel, and fitCons tools. We assessed protein modeling and stability with the AlphaFold-generated structures for both wild-type and mutant proteins. Finally, we conducted molecular docking using the AutoDock Vina virtual docking. Upon whole exome sequencing, a c.1024C>T p.(Gln342Ter) missense mutation was detected in the PPARγ gene associated with FPLD3. This variant is a novel mutation that has not been described in all genome databases. Sanger analysis confirmed the heterogenicity and pathogenicity of this variant. All five computational prediction tools indicate that this variant is considered highly pathogenic. Our patient showed a dramatic response to Pioglitazone, a synthetic PPARγ agonist. From structural modeling, we found that the enhanced binding affinity of the mutant PPARγ protein to Pioglitazone likely improves the activation of PPARγ, enhancing its transcriptional activity and resulting in better clinical outcomes. These findings extend the spectrum of PPARγ mutations responsible for FPLD3 and highlight the potential for personalized treatment strategies based on genetic mutations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 4847 KiB  
Article
Increased MAGE-C Family Gene Expression Levels as a Biomarker of Colon Cancer Through the Demethylation Mechanism
by Mikhlid H. Almutairi, Waad A. Alsoraie, Turki M. Alrubie, Ahmad S. Alkhaldi, Nada S. Alhajri, Monira A. Alaujan, Manar H. Almutairi and Bader O. Almutairi
Pharmaceuticals 2024, 17(11), 1447; https://doi.org/10.3390/ph17111447 - 29 Oct 2024
Viewed by 1577
Abstract
Background/Objectives: Colon cancer (CC) in Saudi Arabia is associated with a high death rate and is commonly identified at a more progressive stage. Therefore, it is critical to identify and characterize potential novel cancer-specific biomarkers to enhance early CC diagnosis. The goal was [...] Read more.
Background/Objectives: Colon cancer (CC) in Saudi Arabia is associated with a high death rate and is commonly identified at a more progressive stage. Therefore, it is critical to identify and characterize potential novel cancer-specific biomarkers to enhance early CC diagnosis. The goal was to assess their potential use as cancer biomarkers for the early detection and improvement of CC treatment. Methods: MAGE-C1, MAGE-C2, and MAGE-C3 family gene expression levels were examined using RT-PCR and qRT-PCR assays in 26 adjacent normal colon (NC) and CC tissue samples from male and female Saudi patients. Using several cell lines and the qRT-PCR technique, epigenetic control was also investigated to determine whether reduced treatment with 5-aza-2′-deoxycytidine, which reduces DNA methyltransferase, can increase the expression of the MAGE-C gene. The expression levels, promoter methylation, and prognostic significance of MAGE-C1, MAGE-C2, and MAGE-C3 genes across various cancers were analyzed using The Cancer Genome Atlas (TCGA) data. Additionally, the prognostic significance of these genes was assessed through Kaplan–Meier survival analysis. Results: The RT-PCR results showed that MAGE-C1, MAGE-C2, and MAGE-C3 gene expressions were significantly higher in the CC and NC tissues. The MAGE-C1 expression level was the highest in CC tissues (p < 0.0001), followed by MAGE-C3 (p = 0.0004) and MAGE-C2 (p = 0.0020) in descending order. The 5-aza-2′-deoxycytidine treatment significantly increased the mRNA expression levels of the MAGE-C1, MAGE-C2, and MAGE-C3 genes in HCT116, Caco-2, MCF-7, and MCF-10A cells. Expression analyses of TCGA samples revealed significant upregulation of these genes in several cancer types, with notable differences between normal, tumor, and metastatic tissues. Promoter methylation indicates hypomethylation in cancerous tissues. Survival analyses show that high expression levels of MAGE-C1 correlate with better prognosis, while MAGE-C3 is associated with poorer outcomes. Conclusions: These results demonstrate that MAGE-C genes are viable prospective biomarkers of CC controlled by hypomethylating drugs, consequently offering a possible treatment target for CC in a specific population. Full article
(This article belongs to the Special Issue New Therapeutic Opportunities for Epigenetic Drugs)
Show Figures

Figure 1

18 pages, 3661 KiB  
Article
Targeting Polyprotein to Design Potential Multiepitope Vaccine against Omsk Hemorrhagic Fever Virus (OHFV) by Evaluating Allergenicity, Antigenicity, and Toxicity Using Immunoinformatic Approaches
by Abdullah M. Alnuqaydan and Alaa Abdulaziz Eisa
Biology 2024, 13(9), 738; https://doi.org/10.3390/biology13090738 - 20 Sep 2024
Cited by 3 | Viewed by 1555
Abstract
Omsk Hemorrhagic Fever Virus (OHFV) is an RNA virus with a single-stranded, positive-sense genome. It is classified under the Flaviviridae family. The genome of this virus is 98% similar to the Alkhurma hemorrhagic fever virus (AHFV), which belongs to the same family. Cases [...] Read more.
Omsk Hemorrhagic Fever Virus (OHFV) is an RNA virus with a single-stranded, positive-sense genome. It is classified under the Flaviviridae family. The genome of this virus is 98% similar to the Alkhurma hemorrhagic fever virus (AHFV), which belongs to the same family. Cases of the virus have been reported in various regions of Saudi Arabia. Both OHFV and AHFV have similarities in pathogenic polyprotein targets. No effective and licensed vaccines are available to manage OHFV infections. Therefore, an effective and safe vaccine is required that can activate protective immunity against OHFV. The current study aimed to design a multiepitope subunit vaccine against the OHFV utilizing several immunoinformatic tools. The polyprotein of OHFV was selected and potent antigenic, non-allergenic, and nontoxic cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were chosen. After screening, eight (8) CTL, five (5) HTL, and six (6) B cell epitopes were joined with each other using different linkers. Adjuvant human beta defensin-2 was also linked to the epitopes to increase vaccine antigenic and immunogenic efficiency. The designed vaccine was docked with Toll-like receptor 4 (TLR4) as it activates and induces primary and secondary immune responses against OHFV. Codon optimization was carried out, which resulted in a CAI value of 0.99 and 53.4% GC contents. In addition, the construct was blindly docked to the TLR4 immune receptor and subjected to conformational dynamics simulation analysis to interpret the intricate affinity and comprehend the time-dependent behavior. Moreover, it was predicted that immune responses to the developed vaccine construct reported formation of strong humoral and cellular immune cells. Therefore, the proposed vaccine may be considered in experimental assays to combat OHFV infections. Laboratory experiments for the above predictions are essential in order to evaluate the effectiveness, safety, and protective properties of the subject in question. Full article
Show Figures

Figure 1

23 pages, 2745 KiB  
Article
Genomic Diversity and Recombination Analysis of the Spike Protein Gene from Selected Human Coronaviruses
by Sayed Sartaj Sohrab, Fatima Alsaqaf, Ahmed Mohamed Hassan, Ahmed Majdi Tolah, Leena Hussein Bajrai and Esam Ibraheem Azhar
Biology 2024, 13(4), 282; https://doi.org/10.3390/biology13040282 - 22 Apr 2024
Viewed by 2834
Abstract
Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002–2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from [...] Read more.
Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002–2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from Wuhan City, China, in late December 2019. The HCoV-Spike (S) gene has the highest mutation/insertion/deletion rate and has been the most utilized target for vaccine/antiviral development. In this manuscript, we discuss the genetic diversity, phylogenetic relationships, and recombination patterns of selected HCoVs with emphasis on the S protein gene of MERS-CoV and SARS-CoV-2 to elucidate the possible emergence of new variants/strains of coronavirus in the near future. The findings showed that MERS-CoV and SARS-CoV-2 have significant sequence identity with the selected HCoVs. The phylogenetic tree analysis formed a separate cluster for each HCoV. The recombination pattern analysis showed that the HCoV-NL63-Japan was a probable recombinant. The HCoV-NL63-USA was identified as a major parent while the HCoV-NL63-Netherland was identified as a minor parent. The recombination breakpoints start in the viral genome at the 142 nucleotide position and end at the 1082 nucleotide position with a 99% CI and Bonferroni-corrected p-value of 0.05. The findings of this study provide insightful information about HCoV-S gene diversity, recombination, and evolutionary patterns. Based on these data, it can be concluded that the possible emergence of new strains/variants of HCoV is imminent. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Figure 1

16 pages, 1908 KiB  
Article
Hemp Seed Oil Inhibits the Adipogenicity of the Differentiation-Induced Human Mesenchymal Stem Cells through Suppressing the Cannabinoid Type 1 (CB1)
by Albatul S. Almousa, Pandurangan Subash-Babu, Ibrahim O. Alanazi, Ali A. Alshatwi, Huda Alkhalaf, Eman Bahattab, Atheer Alsiyah and Mohammad Alzahrani
Molecules 2024, 29(7), 1568; https://doi.org/10.3390/molecules29071568 - 31 Mar 2024
Cited by 3 | Viewed by 2624
Abstract
Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and [...] Read more.
Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O′ and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes. Full article
Show Figures

Graphical abstract

Back to TopTop