Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = Salicornia L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3567 KiB  
Article
Exploring Salinity Tolerance in Three Halophytic Plants: Physiological and Biochemical Responses to Agronomic Management in a Half-Strength Seawater Aquaponics System
by Ayenia Carolina Rosales-Nieblas, Mina Yamada, Bernardo Murillo-Amador and Satoshi Yamada
Horticulturae 2025, 11(6), 623; https://doi.org/10.3390/horticulturae11060623 - 2 Jun 2025
Viewed by 528
Abstract
Understanding halophyte responses to agronomic management in saline environments is crucial for optimizing their cultivation. This study assessed the physiological and biochemical responses of three halophytic species, ice plant (Mesembryanthemum crystallinum L.), romeritos (Suaeda edulis Flores Olv. and Noguez), and sea [...] Read more.
Understanding halophyte responses to agronomic management in saline environments is crucial for optimizing their cultivation. This study assessed the physiological and biochemical responses of three halophytic species, ice plant (Mesembryanthemum crystallinum L.), romeritos (Suaeda edulis Flores Olv. and Noguez), and sea asparagus (Salicornia europaea L.) cultivated in half-strength seawater aquaponics (approximately 250 mM NaCl) under the following rooting media treatments: (C) untreated rearing water (RW), (pH) pH-adjusted to 5.5 RW, (pH+S) pH-adjusted to 5.5 RW with nutrient supplementation, and (NS) standard nutrient solution + 5 mM NaCl. Salinity was the primary factor influencing plant responses, while agronomic management played a secondary role. Ice plants exhibited stable growth across treatments due to their strong succulence, high water content, and antioxidative system, requiring minimal management, though optimal pH may enhance nutrient availability. Romeritos showed high treatment variability yet maintained biomass production via Na+ compartmentalization, with C treatment supporting better osmotic regulation, while pH adjustments and mineral supplementation induced stress under HSW. Sea asparagus sustained growth across all treatments, likely due to effective K+ retention and osmoregulation, reducing the need for additional management. These findings highlight species-specific salinity tolerance mechanisms and suggest that minimal agronomic management can effectively support halophyte cultivation in saline aquaponic systems. Full article
(This article belongs to the Special Issue Enhancing Plant Quality and Sustainability in Aquaponics Systems)
Show Figures

Figure 1

13 pages, 1629 KiB  
Article
The Effect of the Use of a Settling Chamber in the Cultivation of Penaeus vannamei and Salicornia neei in Aquaponics with Bioflocs
by Isabela Pinheiro, Flávia Banderó Höffling, Felipe Boéchat Vieira and Walter Quadros Seiffert
Animals 2025, 15(9), 1294; https://doi.org/10.3390/ani15091294 - 30 Apr 2025
Cited by 1 | Viewed by 316
Abstract
This study aimed to evaluate the effect of the continuous use of the settling chamber for solids removal in the cultivation of the marine shrimp Penaeus vannamei and the halophyte Salicornia neei in an aquaponic system with bioflocs. Two treatments were tested: with [...] Read more.
This study aimed to evaluate the effect of the continuous use of the settling chamber for solids removal in the cultivation of the marine shrimp Penaeus vannamei and the halophyte Salicornia neei in an aquaponic system with bioflocs. Two treatments were tested: with settling and without settling. Each experimental unit consisted of an 800 L tank for shrimp rearing (stocking density of 375 shrimp m−3) and a hydroponic bench of 0.33 m2 for 28 seedlings (84 plants m−2). In the treatment without settling, water was continuously pumped to the hydroponic bench. In the treatment with settling, the water was first pumped to the chamber, and the overflow was then distributed across each irrigation channel, returning to the tank by gravity. To maintain the concentration of suspended solids in the shrimp culture, solids that accumulated in the settling chamber were pumped back into the tank every 30 min. During the 54-day trial, the reduction in suspended solids in the treatment with settling led to an increase in TAN and NO2 levels, while the concentration of NO3 remained stable. Although water quality parameters were more stable in the treatment without settling, no significant differences were observed between the treatments regarding plant and shrimp production indices. These results demonstrate the feasibility of cultivating P. vannamei and S. neei in a biofloc-based aquaponic system without the continuous use of a settling chamber during the pre-grow phase (until 10 g), offering a potential method for simplifying aquaponic system design. Full article
Show Figures

Figure 1

2 pages, 174 KiB  
Correction
Correction: Marangi et al. Abundance of Human Pathogenic Microorganisms in the Halophyte Salicornia europaea L.: Influence of the Chemical Composition of Shoots and Soils. Agronomy 2024, 14, 2740
by Matteo Marangi, Sonia Szymanska, Kai-Uwe Eckhardt, Felix Beske, Gerald Jandl, Katarzyna Hrynkiewicz, Julien Pétillon, Christel Baum and Peter Leinweber
Agronomy 2025, 15(5), 1080; https://doi.org/10.3390/agronomy15051080 - 29 Apr 2025
Viewed by 297
Abstract
In the original publication [...] Full article
14 pages, 930 KiB  
Article
The Effect of Calcium in the Fermentation of White Cabbage with Salicornia
by Patrícia Pires-Cabral, Paula Pires-Cabral, Helena Mira and Célia Quintas
Fermentation 2025, 11(2), 91; https://doi.org/10.3390/fermentation11020091 - 11 Feb 2025
Viewed by 1278
Abstract
This study investigates the fermentation of white cabbage with salicornia and CaCl2 to assess its effect on the fermentation profiles and properties of the final products. Two sets of experiments were performed: A—cabbage with salt and salicornia, and B—cabbage with salt, salicornia, [...] Read more.
This study investigates the fermentation of white cabbage with salicornia and CaCl2 to assess its effect on the fermentation profiles and properties of the final products. Two sets of experiments were performed: A—cabbage with salt and salicornia, and B—cabbage with salt, salicornia, and CaCl2. The fermentative processes were studied through the microbial (lactic-acid bacteria (LAB), coliforms, and fungi), physicochemical (pH, total acidity), and mineral properties. A diminution of pH values (4.07, 3.58) and increased acidity values (0.70, 0.77 g lactic acid/100 mL) were registered at the end of the fermentation period (A and B, respectively). A stationary phase followed the exponential growth of LAB, and a slight decrease was observed (6.01, 5.51 Log CFU/g) in both experiments. A fungi decline was observed during the first week and the coliform populations disappeared after about 13 days of fermentation. Staphylococcus coagulase-positive, Escherichia coli, and Salmonella were not detected in the final products. The utilization of CaCl2 resulted in fermented cabbage with analogous microbial and sensorial characteristics to fermented cabbage without CaCl2 but with an increased hardness. However, Ca interfered with the diffusion of K, Mg, and Zn, resulting in lower levels of these elements in the final product, particularly Zn, which exhibited a reduction of 37%, reducing the nutritional value of the final products. Full article
(This article belongs to the Special Issue Recent Advances in Microbial Fermentation in Foods and Beverages)
Show Figures

Figure 1

24 pages, 10023 KiB  
Article
Glasswort as a Strategic Crop in Coastal Wetlands: Intercropping Results with Swiss Chard
by Anna Rita Bernadette Cammerino, Michela Ingaramo, Vincenzo Rizzi, Maurizio Gioiosa and Massimo Monteleone
Agronomy 2025, 15(1), 158; https://doi.org/10.3390/agronomy15010158 - 10 Jan 2025
Viewed by 1102
Abstract
The Mediterranean region is experiencing severe droughts and unprecedented high temperatures. In terms of salinity, about 18 million ha of land, or 25% of the total irrigated area in the Mediterranean, is salt affected. The use of halophytes as intercropping species to mitigate [...] Read more.
The Mediterranean region is experiencing severe droughts and unprecedented high temperatures. In terms of salinity, about 18 million ha of land, or 25% of the total irrigated area in the Mediterranean, is salt affected. The use of halophytes as intercropping species to mitigate the effects of salt stress is attractive. Halophytes have a great capacity to maintain their productivity in this extreme environment, thus supporting climate-appropriate agriculture. The aim of this study was to evaluate the productivity of Salicornia europaea L. subsp. ramosissima (glasswort) under field conditions and high soil salinity, grown as a sole crop (monocropping) and as a companion crop (intercropping) with Beta vulgaris L. subsp. cicla (Swiss chard) in a 1:1 cropping pattern. The field trials were conducted in the coastal wetland “King’s Lagoon”, a private nature reserve in the Apulia/Puglia region (southern Italy), during two consecutive spring–summer seasons in 2023 and 2024 and under different management conditions of irrigation and fertilization. These were performed to test for possible interaction effects. The results showed that both glasswort and chard can be grown sustainably under slightly saline conditions (ECe range 4–8 dS m−1). In contrast, strongly saline conditions (ECe > 16 dS m−1) were prohibitive for chard, both as a sole crop and as an intercrop, but were largely beneficial for glasswort. Swiss chard can benefit from intercropping with glasswort when soil salinity is still tolerable (6.9 dS m−1), showing an LER (Land Equivalent Ratio) ≥ 1.19. Meanwhile, glasswort did not significantly improve the growth of the companion crop (Swiss chard) when the soil was considerably saline (16.6 dS m−1). Higher LER values were observed when the contribution of chard to the intercrop performance was significantly greater than that of glasswort, i.e., under slightly saline conditions. This means that glasswort can have a significant positive effect on chard growth and productivity as long as soil is still moderately saline. Glasswort can therefore be considered a valuable model crop in extreme environments. The integration of glasswort (possibly together with other local halophytes) into diversified cropping systems on saline marginal soils is a promising sustainable agricultural practice in environmentally fragile areas such as wetlands, swamps, brackish areas, and marshes. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

11 pages, 1508 KiB  
Article
Abundance of Human Pathogenic Microorganisms in the Halophyte Salicornia europaea L.: Influence of the Chemical Composition of Shoots and Soils
by Matteo Marangi, Sonia Szymanska, Kai-Uwe Eckhardt, Felix Beske, Gerald Jandl, Katarzyna Hrynkiewicz, Julien Pétillon, Christel Baum and Peter Leinweber
Agronomy 2024, 14(11), 2740; https://doi.org/10.3390/agronomy14112740 - 20 Nov 2024
Cited by 1 | Viewed by 1561 | Correction
Abstract
Salicornia europaea L. is a halophilic plant species belonging to Chenopodiaceae, whose shoots are used as a vegetable. Since the shoots can be eaten raw, the objective of the present study was to investigate possible controls on the abundance of human pathogenic microorganisms [...] Read more.
Salicornia europaea L. is a halophilic plant species belonging to Chenopodiaceae, whose shoots are used as a vegetable. Since the shoots can be eaten raw, the objective of the present study was to investigate possible controls on the abundance of human pathogenic microorganisms (HPMOs) in the shoots as a health risk. For this reason, the molecular-chemical composition of shoots, site-specific soil organic matter (bulk and rhizosphere), and soil pH and salinity were analyzed. Plant and soil samples were taken from two test sites with differing salinity levels in France (a young and an old marsh). We hypothesized that the chemical traits of plants and soils could suppress or promote HPMOs and, thus, serve as risk indicators for food quality. The chemical traits of shoots and bulk and rhizosphere soil were measured through thermochemolysis using gas chromatography/mass spectrometry (GC/MS). The densities of cultivable HPMOs (Salmonella enterica, Escherichia coli, and Listeria monocytogenes) were determined in plant shoots, rhizosphere soil, and bulk soil using selective media. Negative correlations between lignin content in the shoots and the abundance of S. enterica, as well as between lignin content in bulk soil and the abundance of E. coli, are explained by the lignin-based rigidity and its protective effect on the cell wall. In the shoot samples, the content of lipids was positively correlated with the abundance of E. coli. The abundance of E. coli, S. enterica, and L. monocytogenes in bulk soil decreased with increasing soil pH, which is linked to increased salinity. Therefore, soil salinity is proposed as a tool to decrease HPMO contamination in S. europaea and ensure its food safety. Full article
(This article belongs to the Topic Plant-Soil Interactions, 2nd Volume)
Show Figures

Figure 1

17 pages, 2642 KiB  
Article
Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels
by Chiara Sanmartin, Isabella Taglieri, Alessandro Bianchi, Prangthip Parichanon, Martina Puccinelli, Alberto Pardossi and Francesca Venturi
Foods 2024, 13(20), 3260; https://doi.org/10.3390/foods13203260 - 13 Oct 2024
Cited by 3 | Viewed by 1446
Abstract
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation [...] Read more.
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation in this type of product. The purpose of this study was to investigate the effect of MAP, with or without refrigeration, to extend the shelf life of glasswort (Salicornia europaea L.) grown hydroponically (floating raft system) in a greenhouse with a nutrient solution containing 0 g/L (C) or 12.5 g/L of NaCl (T). The dry matter content, weight loss, respiration rate, biochemical composition, color, antioxidant capacity, and sensorial attributes were determined in shoots after harvest and during storage in plastic bags filled with technical air or with MAP at 4 or 20 °C for 120 h. At harvest, plants supplied with salt-enriched solution (T) showed a significant improvement in nutritional value and sensory profile. Storage in air at room temperature (20 °C) accelerated weight loss and diminished color stability, particularly in non-salinity samples (C), while MAP extended the shelf life of all the samples regardless of the storage temperature adopted. Optimal storage conditions were observed when MAP was combined with refrigeration, which allowed to effectively preserve shoots sensory acceptability for a period of about seven days. Future research could further explore the long-term effects on the nutritional value and sensory quality of S. europaea under various combinations of MAP and different storage temperatures ranging between 4 °C and 20 °C. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

15 pages, 2156 KiB  
Article
Biofloc Formation Strategy Effects on Halophyte Integration in IMTA with Marine Shrimp and Tilapia
by Mayra da Silva Gonçalves, Andrezza Carvalho, Jorge Santos, Mariana Holanda, Luís Henrique Poersch and César Serra Bonifácio Costa
Aquac. J. 2024, 4(4), 217-231; https://doi.org/10.3390/aquacj4040016 - 25 Sep 2024
Viewed by 1582
Abstract
The incorporation of aquaponics into saline integrated multitrophic aquaculture (IMTA) systems, employing biofloc technology (BFT), relies on the cultivation of halophytes capable of withstanding the physical–chemical conditions created by the unique microbial communities in BFT systems. This study aimed to evaluate the integration [...] Read more.
The incorporation of aquaponics into saline integrated multitrophic aquaculture (IMTA) systems, employing biofloc technology (BFT), relies on the cultivation of halophytes capable of withstanding the physical–chemical conditions created by the unique microbial communities in BFT systems. This study aimed to evaluate the integration of the halophyte Salicornia neei with tilapia (Oreochromis niloticus) and marine shrimp (Litopenaeus vannamei) reared in BFT systems dominated by chemoautotrophic (CHE) and heterotrophic (HET) microorganisms over a period of 84 days in southern Brazil. Each BFT treatment had three replicates, composed of IMTA units. The stocking densities were 400 ind. m−3 (17 m3 circular tanks), 44 ind. m−3 (4 m3 circular tanks), and 30 ind. m−2 (4.8 m2 hydroponic benches) for shrimp, fish, and halophyte, respectively. The highest S. neei individual shoot production (up to 31 g per 30 days) was observed in the CHE treatment, along with favorable agronomic characteristics, possibly due to overall elevated nitrate (98.41 mg N−NO3 L−1) and phosphate concentrations (4.62 P−PO4 L−1). Shrimp in the CHE treatment displayed higher average final weight, specific growth rate, productivity, and survival (11.24 g, 2.88% day−1, 3.86 kg m−3, and 90%, respectively) compared to the HET treatment. Results indicated no significant difference in tilapia zootechnical performance between treatments. Full article
Show Figures

Figure 1

17 pages, 5016 KiB  
Article
Effects of Poultry Manure Biochar on Salicornia herbacea L. Growth and Carbon Sequestration
by Danbi Chun, Hyun Cho, Victor J. Hahm, Michelle Kim, Seok Won Im, Hong Gun Kim and Young Soon Kim
Agriculture 2024, 14(9), 1590; https://doi.org/10.3390/agriculture14091590 - 12 Sep 2024
Cited by 1 | Viewed by 1865
Abstract
In order to explore the potential of biochar produced from poultry manure for sustainable waste utilization, carbon sequestration, and agricultural development, this study examines the impact of biochar on the growth of the halophyte plant Salicornia herbacea L., or glasswort. Because of their [...] Read more.
In order to explore the potential of biochar produced from poultry manure for sustainable waste utilization, carbon sequestration, and agricultural development, this study examines the impact of biochar on the growth of the halophyte plant Salicornia herbacea L., or glasswort. Because of their properties of morphological and chemical properties, biochar has been gaining interest as a potential solution to addressing both the concerns of climate change and unsustainable agriculture. In this study, the characteristics of biochar were analyzed and its impact on plant growth by stem length was measured over 15 weeks. Poultry-based biochar was created through pyrolysis at the temperatures of 400, 500, and 700 °C. Various amounts of biochar produced from pyrolysis at 500 °C were put to soil. However, the average surface area and average pore size values of poultry manure biochar produced from temperatures 400, 500, and 700 °C were similar enough to be negligible. The biochar sample produced from the pyrolysis temperature of 500 °C had an average pore size of 17.18 nm and a surface area of 18.06 m2/g. From weeks 4 to 15, all groups exhibited increased stem length, with the most significant differences observed between the biochar 0% (control) and biochar 10% groups, with biochar 0% and biochar 10% denoting 0% and 10% weight concentrations of biochar, respectively. While biochar 5% and biochar 7% groups showed minimal differences in stem length, biochar 10% demonstrated a significant increase, suggesting an optimal biochar percentage for enhancing plant growth. Carbon credit estimations have suggested that 1 ton of poultry manure biochar produced from pyrolysis at 500 C° equates to an estimate of 0.5248 ± 0.0580 carbon credits, the highest of all three biochar samples. All three samples (biochar produced from 400, 500, and 700 °C pyrolysis temperatures) had increased heavy metal contents and a wider range of functional groups. The findings indicate that biochar can effectively improve soil health and plant performance overall, with biochar 10% showing the most significant impact on Salicornia growth. Full article
Show Figures

Figure 1

18 pages, 2362 KiB  
Article
Engineering the Rhizosphere Microbiome with Plant Growth Promoting Bacteria for Modulation of the Plant Metabolome
by Maria J. Ferreira, Ana C. S. Veríssimo, Diana C. G. A. Pinto, Isabel N. Sierra-Garcia, Camille E. Granada, Javier Cremades, Helena Silva and Ângela Cunha
Plants 2024, 13(16), 2309; https://doi.org/10.3390/plants13162309 - 20 Aug 2024
Cited by 6 | Viewed by 3140
Abstract
Plant-growth-promoting bacteria (PGPB) have beneficial effects on plants. They can promote growth and enhance plant defense against abiotic stress and disease, and these effects are associated with changes in the plant metabolite profile. The research problem addressed in this study was the impact [...] Read more.
Plant-growth-promoting bacteria (PGPB) have beneficial effects on plants. They can promote growth and enhance plant defense against abiotic stress and disease, and these effects are associated with changes in the plant metabolite profile. The research problem addressed in this study was the impact of inoculation with PGPB on the metabolite profile of Salicornia europaea L. across controlled and field conditions. Salicornia europaea seeds, inoculated with Brevibacterium casei EB3 and Pseudomonas oryzihabitans RL18, were grown in controlled laboratory experiments and in a natural field setting. The metabolite composition of the aboveground tissues was analyzed using GC–MS and UHPLC–MS. PGPB inoculation promoted a reconfiguration in plant metabolism in both environments. Under controlled laboratory conditions, inoculation contributed to increased biomass production and the reinforcement of immune responses by significantly increasing the levels of unsaturated fatty acids, sugars, citric acid, acetic acid, chlorogenic acids, and quercetin. In field conditions, the inoculated plants exhibited a distinct phytochemical profile, with increased glucose, fructose, and phenolic compounds, especially hydroxybenzoic acid, quercetin, and apigenin, alongside decreased unsaturated fatty acids, suggesting higher stress levels. The metabolic response shifted from growth enhancement to stress resistance in the latter context. As a common pattern to both laboratory and field conditions, biopriming induced metabolic reprogramming towards the expression of apigenin, quercetin, formononetin, caffeic acid, and caffeoylquinic acid, metabolites that enhance the plant’s tolerance to abiotic and biotic stress. This study unveils the intricate metabolic adaptations of Salicornia europaea under controlled and field conditions, highlighting PGPB’s potential to redesign the metabolite profile of the plant. Elevated-stress-related metabolites may fortify plant defense mechanisms, laying the groundwork for stress-resistant crop development through PGPB-based inoculants, especially in saline agriculture. Full article
(This article belongs to the Special Issue Beneficial Effects of Bacteria on Plants)
Show Figures

Graphical abstract

11 pages, 570 KiB  
Brief Report
A Comparative Study of the Influence of Soil and Non-Soil Factors on Seed Germination of Edible Salt-Tolerant Species
by Viana Castañeda-Loaiza, Maria João Rodrigues, Eliana Fernandes and Luísa Custódio
Horticulturae 2024, 10(8), 872; https://doi.org/10.3390/horticulturae10080872 - 18 Aug 2024
Cited by 1 | Viewed by 1436
Abstract
Cultivating edible salt-tolerant plants (halophytes) for human consumption is increasingly important due to climate change and soil salinization, and offers sustainable agricultural solutions. Optimizing seed germination, the crucial initial stage of crop growth, is essential for enhancing crop production. This study aimed to [...] Read more.
Cultivating edible salt-tolerant plants (halophytes) for human consumption is increasingly important due to climate change and soil salinization, and offers sustainable agricultural solutions. Optimizing seed germination, the crucial initial stage of crop growth, is essential for enhancing crop production. This study aimed to optimize the germination of edible halophytes under greenhouse conditions, focusing on select soil (salinity and substrate) and non-soil-related factors (chemical and mechanical treatments). The target species were selected for their commercial value and included Mesembryanthemum crystallinum L. (crystalline iceplant), Salicornia ramosissima J. Woods (sea asparagus), Medicago marina L. (sea medick), Ammophila arenaria (L.) Link (European beachgrass), Portulaca oleracea L. (common purslane), and Atriplex halimus L. (Mediterranean saltbush). Salinity negatively impacted germination rates (GRs) and delayed mean germination time (MGT) across species. P. oleracea had the highest GR (95.6%) in coco peat under freshwater irrigation, and the shortest MGT (5.2 days). A. halimus did not germinate under the tested conditions. Scarification with sulfuric acid improved the GR of M. marina by 42.2%, while scarification with ultrasounds improved the GR of A. arenaria by 35.5%. Our results indicate that the choice of substrate and the application of specific treatments like scarification can significantly improve the germination of certain halophyte species under variable saline conditions. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Figure 1

25 pages, 6891 KiB  
Article
Intricate Networks in Nomenclature: Cases of Naming in Arthrocaulon, Arthrocnemum, and Salicornia (Amaranthaceae)
by Duilio Iamonico, Ib Friis and Mauro Iberite
Plants 2024, 13(13), 1783; https://doi.org/10.3390/plants13131783 - 27 Jun 2024
Viewed by 1491
Abstract
The nomenclatural status and typification of the names Arthrocaulon macrostachyum, Salicornia fruticosa, S. fruticosa var. deflexa, S. fruticosa var. glaucescens, S. fruticosa var. intermedia, S. fruticosa var. humilis, S. fruticosa var. pachystachya, S. fruticulosa, S. [...] Read more.
The nomenclatural status and typification of the names Arthrocaulon macrostachyum, Salicornia fruticosa, S. fruticosa var. deflexa, S. fruticosa var. glaucescens, S. fruticosa var. intermedia, S. fruticosa var. humilis, S. fruticosa var. pachystachya, S. fruticulosa, S. glauca, S. lignosa, S. macrostachya var. virescens, S. macrostachya var. glaucescens, S. perennis, S. radicans, S. radicans var. caespitosa, S. sarmentosa, S. sempervirens, and S. virginica, as well as an unnamed β-variety of S. fruticosa proposed by A. Bertoloni, are investigated. Concerning A. macrostachyum, we document that the type indicated in literature (G00177362) is not a holotype, and that lectotypification is necessary. A specimen from G (G00687638) is here designated as a lectotype. On the level of variety, Arthrocnemum fruticosum var. macrostachyum is an earlier legitimate name for Salicornia fruticosa var. pachystachya. Furthermore, Piirainen et al. are incorrect when citing Forsskål’s “Salicornia” from Alexandria as “S. virginica Forssk.”; it is not a new name and should be cited as S. virginica auct. non L., as published in Forsskål’s Flora Aegyptiaco-Arabica. Like with numerous other parallel cases in Flora Aegyptiaco-Arabica, Forsskål’s designation of “Salicornia virginica” for an Arabian plant is to be considered a misapplication of the earlier Linnaean name for an American plant. Arthrocnemum glaucum (a nomen illegitimum of Ungern-Sternberg), was listed as type species of Arthrocnemum by the Names in Current Use project; the basionym, Salicornia glauca Delile, is here lectotypified and identified as Arthrocaulon meridionale, published by Ramirez et al. Updated synonymies of Arthrocaulon macrostachyum, A. meridionale, Salicornia fruticosa, and S. perennis are proposed. Salicornia sempervirens is an invalid name according to Art. 36.1a of ICN. No original material was found for S. radicans var. caespitosa. This paper also refer to lecto- or neotypifications on specimens deposited at BM, G, LINN-HS, LY, MPU, NAP, and PAL, and their current taxonomic positions are suggested in a taxonomic part of the paper. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

16 pages, 3441 KiB  
Article
Investigating the Diversity and Influencing Factors of the Rhizosphere Bacterial Community Associated with Salicornia europaea L. Populations in Semi-arid Grassland
by Hai Wang, Liang Chun, Lei Ji, Risu Na, Zhijun Wei and Wenjun Han
Agriculture 2024, 14(7), 1018; https://doi.org/10.3390/agriculture14071018 - 27 Jun 2024
Cited by 1 | Viewed by 1052
Abstract
Salicornia europaea L. is a well-known model plant for studying the mechanism of salt tolerance. A substantial decline in the S. europaea population has been observed in the semi-arid steppe of the Mongolian Plateau. The relationship between environmental factors and its population dynamics [...] Read more.
Salicornia europaea L. is a well-known model plant for studying the mechanism of salt tolerance. A substantial decline in the S. europaea population has been observed in the semi-arid steppe of the Mongolian Plateau. The relationship between environmental factors and its population dynamics in the grassland ecosystem remains inadequately investigated. Rhizosphere microbial communities, representing the most direct and influential biological factors affecting plant populations, have received limited research attention in the context of halophytes. Four density treatments of S. europaea (bare land—SEB, low density—SEL, medium density—SEM, and high density—SEH) in a single-factor randomized-block design with five replications were established to evaluate the relationship between rhizosphere soil bacterial communities and environmental factors. The results showed that as the density of S. europaea increased, the soil pH decreased, while available phosphorus increased. Rhizosphere soil bacterial communities associated with S. europaea populations in the saline-alkali wetland were dominated by Proteobacteria, Bacteroidota, Actinobacteria, Gemmatimonadota, and Halobacterota. Notably, the genera Antarcticibacterium, Wenzhouxiangella, BD2-11_terrestrial_groupBD2-11, Halomonas, and Natronorubrum were found to be particularly abundant. The Simpson index of the rhizosphere soil bacterial community in the S. europaea treatments was significantly higher than that in bare land. Soil pH and nitrate nitrogen were the primary environmental drivers of the rhizosphere bacterial community. Overall, the rhizosphere soil’s bacterial diversity in saline wetlands under a high-salt environment was not affected by the decrease in the S. europaea population. S. europaea plays an important role in shaping soil bacterial community structure through its influence on the surrounding soil environment. The cultivation of S. europaea is a phytoremediation strategy to improve soil salinization. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

11 pages, 1709 KiB  
Article
Enhancing Tomato Productivity and Quality in Moderately Saline Soils through Salicornia-Assisted Cultivation Methods: A Comparative Study
by Marco Santin, Prangthip Parichanon, Maria Calogera Sciampagna, Annamaria Ranieri and Antonella Castagna
Horticulturae 2024, 10(6), 655; https://doi.org/10.3390/horticulturae10060655 - 20 Jun 2024
Cited by 2 | Viewed by 2170
Abstract
The presence of high salt in soils is a substantial abiotic constraint for agricultural activities worldwide, particularly in Mediterranean regions. Researchers have discovered a simple and efficient way to repair soils that have suffered from excessive salt use. They use plants that can [...] Read more.
The presence of high salt in soils is a substantial abiotic constraint for agricultural activities worldwide, particularly in Mediterranean regions. Researchers have discovered a simple and efficient way to repair soils that have suffered from excessive salt use. They use plants that can overcome salt, like halophytes, to improve the soil quality. This research aimed to evaluate the tomato productivity and quality cultivated using different methods. We look at three different ways to grow tomatoes with the halophyte Salicornia europaea L. in a moderately salty soil: monoculture (only tomatoes), intercropping (mixed cultivation), and sequential cropping (growing tomatoes where halophytes were grown before). We considered how the different ways of managing crops affected tomato yield, biochemical factors in tomato plants (like phenolic and flavonoid contents), antioxidant levels, carotene profiles, and fruit quality and production. Sequential cropping showed the highest tomato productivity, while intercropping exhibited high concentrations of total phenolics, total flavonoids, carotenoids, and antioxidant capacity. The tomatoes had a sweet taste due to the higher total soluble solid content (TSSC) and maintained their quality due to the higher titratable acidity (TA). Full article
Show Figures

Figure 1

20 pages, 2093 KiB  
Article
Can Environmental Stressors Determine the Condition of Ecological Plant Groups?
by Beata Koim-Puchowska, Piotr Kamiński, Piotr Puchowski, Anna Ossowska, Monika Wieloch, Mateusz Labudda, Halina Tkaczenko, Tadeusz Barczak, Alina Woźniak and Natalia Kurhaluk
Plants 2024, 13(11), 1550; https://doi.org/10.3390/plants13111550 - 4 Jun 2024
Cited by 1 | Viewed by 956
Abstract
There is still a need to investigate the relationships between glycophytes and halophytes and the many biotic and abiotic factors in their natural environments. Therefore, we study the effects of the type of environment on the ecophysiological responses and condition of the glycophyte [...] Read more.
There is still a need to investigate the relationships between glycophytes and halophytes and the many biotic and abiotic factors in their natural environments. Therefore, we study the effects of the type of environment on the ecophysiological responses and condition of the glycophyte Elder Sambucus nigra L., the macrophyte Common Reed Phragmites australis (Cav.) Trin. ex Steud., the facultative halophyte Weeping Alkaligrass Puccinellia distans (Jacq.) Parl, and the obligate halophyte Common Glasswort Salicornia europaea L. in a saline-disturbed anthropogenic region of central Poland. We analyzed the effects of salinity, acidity, and soil organic matter on shoot length, lipoperoxidation, and proline in roots and green parts, and evaluated plant responses to environmental disturbance, which allowed for the comparison of adaptation strategies. The studies were carried out in (1) “sodium production” (near sodium factories), (2) “anthropogenic environments” (waste dumps, agroecosystems, calcium deposits, post-production tanks), (3) “wetland environments” (near river channels and riparian areas), and (4) “control” (natural, unpolluted environments). Green parts of plants are better suited to indicate environmental stress than roots. Their higher structural MDA membrane damage is related to the transport of toxic ions to the shoots by a rapid transpiration stream in the xylem. We found high salinity to be the main factor inducing growth and found it to be correlated with the high pH effect on proline increase in glycophytes (Elder, Reed) and Weeping Alkaligrass, in contrast to Common Glasswort. We suggest that proline accumulation allows osmotic adjustment in the green parts of reeds and alkaligrasses, but may have another function (in Elder). Common Glasswort accumulates large amounts of Na+, which is energetically more effective than proline accumulation for osmotic adjustment. Organic matter affects plant growth and proline levels, but soil salinity and pH alter nutrient availability. Plant distribution along the salinity gradient indicates that Elder is the most salt-sensitive species compared to Reed, Alkaligrass, and Glasswort. Salinity and the lack of control of thick reeds, which compete with other plant groups, affect the distribution of halophytes in saline environments. Full article
(This article belongs to the Special Issue Adaptive Strategies of Plants to Stress Factors)
Show Figures

Figure 1

Back to TopTop