Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (183)

Search Parameters:
Keywords = SST-2 dataset

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3319 KiB  
Technical Note
Intensification Trend and Mechanisms of Oman Upwelling During 1993–2018
by Xiwu Zhou, Yun Qiu, Jindian Xu, Chunsheng Jing, Shangzhan Cai and Lu Gao
Remote Sens. 2025, 17(15), 2600; https://doi.org/10.3390/rs17152600 - 26 Jul 2025
Viewed by 290
Abstract
The long-term trend of coastal upwelling under global warming has been a research focus in recent years. Based on datasets including sea surface temperature (SST), sea surface wind, air–sea heat fluxes, ocean currents, and sea level pressure, this study explores the long-term trend [...] Read more.
The long-term trend of coastal upwelling under global warming has been a research focus in recent years. Based on datasets including sea surface temperature (SST), sea surface wind, air–sea heat fluxes, ocean currents, and sea level pressure, this study explores the long-term trend and underlying mechanisms of the Oman coastal upwelling intensity in summer during 1993–2018. The results indicate a persistent decrease in SST within the Oman upwelling region during this period, suggesting an intensification trend of Oman upwelling. This trend is primarily driven by the strengthened positive wind stress curl (WSC), while the enhanced net shortwave radiation flux at the sea surface partially suppresses the SST cooling induced by the strengthened positive WSC, and the effect of horizontal oceanic heat transport is weak. Further analysis revealed that the increasing trend in the positive WSC results from the nonuniform responses of sea level pressure and the associated surface winds to global warming. There is an increasing trend in sea level pressure over the western Arabian Sea, coupled with decreasing atmospheric pressure over the Arabian Peninsula and the Somali Peninsula. This enhances the atmospheric pressure gradient between land and sea, and consequently strengthens the alongshore winds off the Oman coast. However, in the coastal region, wind changes are less pronounced, resulting in an insignificant trend in the alongshore component of surface wind. Consequently, it results in the increasing positive WSC over the Oman upwelling region, and sustains the intensification trend of Oman coastal upwelling. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

17 pages, 4162 KiB  
Article
Evaluation of Wake Structure Induced by Helical Hydrokinetic Turbine
by Erkan Alkan, Mehmet Ishak Yuce and Gökmen Öztürkmen
Water 2025, 17(15), 2203; https://doi.org/10.3390/w17152203 - 23 Jul 2025
Viewed by 167
Abstract
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow [...] Read more.
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow rate of 180 m3/h, corresponding to a Reynolds number of approximately 90 × 103. Velocity measurements were collected at 13 downstream cross-sections using an Acoustic Doppler Velocimeter, with each point sampled repeatedly. Standard error analysis was applied to quantify measurement uncertainty. Complementary numerical simulations were conducted in ANSYS Fluent using a steady-state k-ω Shear Stress Transport (SST) turbulence model, with a mesh of 4.7 million elements and mesh independence confirmed. Velocity deficit and turbulence intensity were employed as primary parameters to characterize the wake structure, while the analysis also focused on the recovery of cross-sectional velocity profiles to validate the extent of wake influence. Experimental results revealed a maximum velocity deficit of over 40% in the near-wake region, which gradually decreased with downstream distance, while turbulence intensity exceeded 50% near the rotor and dropped below 10% beyond 4 m. In comparison, numerical findings showed a similar trend but with lower peak velocity deficits of 16.6%. The root mean square error (RMSE) and mean absolute error (MAE) between experimental and numerical mean velocity profiles were calculated as 0.04486 and 0.03241, respectively, demonstrating reasonable agreement between the datasets. Extended simulations up to 30 m indicated that flow profiles began to resemble ambient conditions around 18–20 m. The findings highlight the importance of accurately identifying the downstream distance at which the wake effect fully dissipates, as this is crucial for determining appropriate inter-turbine spacing. The study also discusses potential sources of discrepancies between experimental and numerical results, as well as the limitations of the modeling approach. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

31 pages, 6565 KiB  
Article
Remotely Sensing Phytoplankton Size Structure in the Mediterranean Sea: Insights from In Situ Data and Temperature-Corrected Abundance-Based Models
by John A. Gittings, Eleni Livanou, Xuerong Sun, Robert J. W. Brewin, Stella Psarra, Manolis Mandalakis, Alexandra Peltekis, Annalisa Di Cicco, Vittorio E. Brando and Dionysios E. Raitsos
Remote Sens. 2025, 17(14), 2362; https://doi.org/10.3390/rs17142362 - 9 Jul 2025
Viewed by 346
Abstract
Since the mid-1980s, the Mediterranean Sea’s surface and deeper layers have warmed at unprecedented rates, with recent projections identifying it as one of the regions most impacted by rising global temperatures. Metrics that characterize phytoplankton abundance, phenology and size structure are widely utilized [...] Read more.
Since the mid-1980s, the Mediterranean Sea’s surface and deeper layers have warmed at unprecedented rates, with recent projections identifying it as one of the regions most impacted by rising global temperatures. Metrics that characterize phytoplankton abundance, phenology and size structure are widely utilized as ecological indicators that enable a quantitative assessment of the status of marine ecosystems in response to environmental change. Here, using an extensive, updated in situ pigment dataset collated from numerous past research campaigns across the Mediterranean Sea, we re-parameterized an abundance-based phytoplankton size class model that infers Chl-a concentration in three phytoplankton size classes: pico- (<2 μm), nano- (2–20 μm) and micro-phytoplankton (>20 μm). Following recent advancements made within this category of size class models, we also incorporated information of sea surface temperature (SST) into the model parameterization. By tying model parameters to SST, the performance of the re-parameterized model was improved based on comparisons with concurrent, independent in situ measurements. Similarly, the application of the model to remotely sensed ocean color observations revealed strong agreement between satellite-derived estimates of phytoplankton size structure and in situ observations, with a performance comparable to the current regional operational datasets on size structure. The proposed conceptual regional model, parameterized with the most extended in situ pigment dataset available to date for the area, serves as a suitable foundation for long-term (1997–present) analyses on phytoplankton size structure and ecological indicators (i.e., phenology), ultimately linking higher trophic level responses to a changing Mediterranean Sea. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

17 pages, 2373 KiB  
Article
Analytical Workflow for Tracking Aquatic Biomass Responses to Sea Surface Temperature Changes
by Teodoro Semeraro, Jessica Titocci, Lorenzo Liberatore, Flavio Monti, Francesco De Leo, Gianmarco Ingrosso, Milad Shokri and Alberto Basset
Environments 2025, 12(7), 210; https://doi.org/10.3390/environments12070210 - 20 Jun 2025
Viewed by 490
Abstract
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of [...] Read more.
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of temperature variations. The aim of this research was to develop and test a workflow analysis to monitor the impact of sea surface temperature (SST) on phytoplankton biomass and primary production by combining field and remote sensing data of Chl-a and net primary production (NPP) (as proxies of phytoplankton biomass). The tropical zone was used as a case study to test the procedure. Firstly, machine learning algorithms were applied to the field data of SST, Chl-a and NPP, showing that the Random Forest was the most effective in capturing the dataset’s patterns. Secondly, the Random Forest algorithm was applied to MODIS SST images to build Chl-a and NPP time series. The time series analysis showed a significant increase in SST which corresponded to a significant negative trend in Chl-a concentrations and NPP variation. The recurrence plot of the time series revealed significant disruptions in Chl-a and NPP evolutions, potentially linked to El Niño–Southern Oscillation (ENSO) events. Therefore, the analysis can help to highlight the effects of temperature variation on Chl-a and NPP, such as the long-term evolution of the trend and short perturbation events. The methodology, starting from local studies, can support broader spatial–temporal-scale studies and provide insights into future scenarios. Full article
Show Figures

Figure 1

21 pages, 1317 KiB  
Article
Research on Hidden Backdoor Prompt Attack Method
by Huanhuan Gu, Qianmu Li, Yufei Wang, Yu Jiang, Aniruddha Bhattacharjya, Haichao Yu and Qian Zhao
Symmetry 2025, 17(6), 954; https://doi.org/10.3390/sym17060954 - 16 Jun 2025
Viewed by 634
Abstract
Existing studies on backdoor attacks in large language models (LLMs) have contributed significantly to the literature by exploring trigger-based strategies—such as rare tokens or syntactic anomalies—that, however, limit both their stealth and generalizability, rendering them susceptible to detection. In this study, we propose [...] Read more.
Existing studies on backdoor attacks in large language models (LLMs) have contributed significantly to the literature by exploring trigger-based strategies—such as rare tokens or syntactic anomalies—that, however, limit both their stealth and generalizability, rendering them susceptible to detection. In this study, we propose HDPAttack, a novel hidden backdoor prompt attack method which is designed to overcome these limitations by leveraging the semantic and structural properties of prompts as triggers rather than relying on explicit markers. Not symmetric to traditional approaches, HDPAttack injects carefully crafted fake demonstrations into the training data, semantically re-expressing prompts to generate examples that exhibit high consistency in input semantics and corresponding labels. This method guides models to learn latent trigger patterns embedded in their deep representations, thereby enabling backdoor activation through natural language prompts without altering user inputs or introducing conspicuous anomalies. Experimental results across datasets (SST-2, SMS, AGNews, Amazon) reveal that HDPAttack achieved an average attack success rate of 99.87%, outperforming baseline methods by 2–20% while incurring a classification accuracy loss of ≤1%. These findings set a new benchmark for undetectable backdoor attacks and underscore the urgent need for advancements in prompt-based defense strategies. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

25 pages, 2838 KiB  
Article
BHE+ALBERT-Mixplus: A Distributed Symmetric Approximate Homomorphic Encryption Model for Secure Short-Text Sentiment Classification in Teaching Evaluations
by Jingren Zhang, Siti Sarah Maidin and Deshinta Arrova Dewi
Symmetry 2025, 17(6), 903; https://doi.org/10.3390/sym17060903 - 7 Jun 2025
Viewed by 455
Abstract
This study addresses the sentiment classification of short texts in teaching evaluations. To mitigate concerns regarding data security in cloud-based sentiment analysis and to overcome the limited feature extraction capacity of traditional deep-learning methods, we propose a distributed symmetric approximate homomorphic hybrid sentiment [...] Read more.
This study addresses the sentiment classification of short texts in teaching evaluations. To mitigate concerns regarding data security in cloud-based sentiment analysis and to overcome the limited feature extraction capacity of traditional deep-learning methods, we propose a distributed symmetric approximate homomorphic hybrid sentiment classification model, denoted BHE+ALBERT-Mixplus. To enable homomorphic encryption of non-polynomial functions within the ALBERT-Mixplus architecture—a mixing-and-enhancement variant of ALBERT—we introduce the BHE (BERT-based Homomorphic Encryption) algorithm. The BHE establishes a distributed symmetric approximation workflow, constructing a cloud–user symmetric encryption framework. Within this framework, simplified computations and mathematical approximations are applied to handle non-polynomial operations (e.g., GELU, Softmax, and LayerNorm) under the CKKS homomorphic-encryption scheme. Consequently, the ALBERT-Mixplus model can securely perform classification on encrypted data without compromising utility. To improve feature extraction and enhance prediction accuracy in sentiment classification, ALBERT-Mixplus incorporates two core components: 1. A meta-information extraction layer, employing a lightweight pre-trained ALBERT model to capture extensive general semantic knowledge and thereby bolster robustness to noise. 2. A hybrid feature-extraction layer, which fuses a bidirectional gated recurrent unit (BiGRU) with a multi-scale convolutional neural network (MCNN) to capture both global contextual dependencies and fine-grained local semantic features across multiple scales. Together, these layers enrich the model’s deep feature representations. Experimental results on the TAD-2023 and SST-2 datasets demonstrate that BHE+ALBERT-Mixplus achieves competitive improvements in key evaluation metrics compared to mainstream models, despite a slight increase in computational overhead. The proposed framework enables secure analysis of diverse student feedback while preserving data privacy. This allows marginalized student groups to benefit equally from AI-driven insights, thereby embodying the principles of educational equity and inclusive education. Moreover, through its innovative distributed encryption workflow, the model enhances computational efficiency while promoting environmental sustainability by reducing energy consumption and optimizing resource allocation. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 14125 KiB  
Article
Spatio-Temporal Dynamics of Particulate Organic Carbon and Its Response to Climate Change: Evidence of the East China Sea from 2003 to 2022
by Zhenghan Liu, Yingfeng Chen, Xiaofeng Lin and Wei Yang
J. Mar. Sci. Eng. 2025, 13(5), 963; https://doi.org/10.3390/jmse13050963 - 15 May 2025
Viewed by 554
Abstract
Particulate organic carbon (POC) plays a crucial role in oceanic climate change. However, existing research is limited by several factors, including the scarcity of long-term data, extensive datasets, and a comprehensive understanding of POC dynamics. This study utilizes monthly average POC remote sensing [...] Read more.
Particulate organic carbon (POC) plays a crucial role in oceanic climate change. However, existing research is limited by several factors, including the scarcity of long-term data, extensive datasets, and a comprehensive understanding of POC dynamics. This study utilizes monthly average POC remote sensing data from the MODIS/AQUA satellite to analyze the spatiotemporal variations of POC in the East China Sea from 2003 to 2022. Employing correlation analysis, spatial autocorrelation models, and the Geodetector model, we explore responses to key influencing factors such as climatic elements. The results indicate that POC concentrations are higher in the western nearshore areas and lower in the eastern offshore regions of the East China Sea (ECS). Additionally, concentrations are observed to be lower in southern regions compared to northern ones. From 2003 to 2022, POC concentrations exhibited a fluctuating downward trend with an average annual concentration of 121.05 ± 4.57 mg/m3. Seasonally, monthly average POC concentrations ranged from 105.48 mg/m3 to 158.36 mg/m3; notably higher concentrations were recorded during spring while summer showed comparatively lower levels. Specifically, POC concentrations peaked in April before rapidly declining from May to June—reaching a minimum—and then gradually increasing again from June through December. Correlation analysis revealed significant influences on POC levels by particulate inorganic carbon (PIC), sea surface temperature (SST), chlorophyll (Chl), and photosynthetically active radiation (PAR). The Geodetector model further elucidated that these factors vary in their impact: Chl was identified as having the strongest influence (q = 0.84), followed by PIC (q = 0.75) and SST (q = 0.64) as primary influencing factors; PAR was recognized as a secondary factor with q = 0.30. This study provides new insights into marine carbon cycling dynamics within the context of climate change. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

19 pages, 3091 KiB  
Article
Efficient Data Reduction Through Maximum-Separation Vector Selection and Centroid Embedding Representation
by Sultan Alshamrani
Electronics 2025, 14(10), 1919; https://doi.org/10.3390/electronics14101919 - 9 May 2025
Viewed by 408
Abstract
This study introduces two novel data reduction approaches for efficient sentiment analysis: High-Distance Sentiment Vectors (HDSV) and Centroid Sentiment Embedding Vectors (CSEV). By leveraging embedding space characteristics from DistilBERT, HDSV selects maximally separated sample pairs, while CSEV computes representative centroids for each sentiment [...] Read more.
This study introduces two novel data reduction approaches for efficient sentiment analysis: High-Distance Sentiment Vectors (HDSV) and Centroid Sentiment Embedding Vectors (CSEV). By leveraging embedding space characteristics from DistilBERT, HDSV selects maximally separated sample pairs, while CSEV computes representative centroids for each sentiment class. We evaluate these methods on three benchmark datasets: SST-2, Yelp, and Sentiment140. Our results demonstrate remarkable data efficiency, reducing training samples to just 100 with HDSV and two with CSEV while maintaining comparable performance to full dataset training. Notable findings include CSEV achieving 88.93% accuracy on SST-2 (compared to 90.14% with full data) and both methods showing improved cross-dataset generalization, with less than 2% accuracy drop in domain transfer tasks versus 11.94% for full dataset training. The proposed methods enable significant storage savings, with datasets compressed to less than 1% of their original size, making them particularly valuable for resource-constrained environments. Our findings advance the understanding of data requirements in sentiment analysis, demonstrating that strategically selected minimal training data can achieve robust and generalizable classification while promoting more sustainable machine learning practices. Full article
Show Figures

Figure 1

25 pages, 20166 KiB  
Article
Sensitivity Analysis and Performance Evaluation of the WRF Model in Forecasting an Extreme Rainfall Event in Itajubá, Southeast Brazil
by Denis William Garcia, Michelle Simões Reboita and Vanessa Silveira Barreto Carvalho
Atmosphere 2025, 16(5), 548; https://doi.org/10.3390/atmos16050548 - 5 May 2025
Cited by 1 | Viewed by 803
Abstract
On 27 February 2023, the municipality of Itajubá in southeastern Brazil experienced a short-duration yet high-intensity rainfall event, causing significant socio-economic impacts. Hence, this study evaluates the performance of the Weather Research and Forecasting (WRF) model in simulating this extreme event through a [...] Read more.
On 27 February 2023, the municipality of Itajubá in southeastern Brazil experienced a short-duration yet high-intensity rainfall event, causing significant socio-economic impacts. Hence, this study evaluates the performance of the Weather Research and Forecasting (WRF) model in simulating this extreme event through a set of sensitivity numerical experiments. The control simulation followed the operational configuration used daily by the Center for Weather and Climate Forecasting Studies of Minas Gerais (CEPreMG). Additional experiments tested the use of different microphysics schemes (WSM3, WSM6, WDM6), initial and boundary conditions (GFS, GDAS, ERA5), and surface datasets (sea surface temperature and soil moisture from ERA5 and GDAS). The model’s performance was evaluated by comparing the simulated variables with those from various datasets. We primarily focused on the representation of the spatial precipitation pattern, statistical metrics (bias, Pearson correlation, and Kling–Gupta Efficiency), and atmospheric instability indices (CAPE, K, and TT). The results showed that none of the simulations accurately captured the amount and spatial distribution of precipitation over the region, likely due to the complex topography and convective nature of the studied event. However, the WSM3 microphysics scheme and the use of ERA5 SST data provided slightly better representation of instability indices, although these configurations still underperformed in simulating the rainfall intensity. All simulations overestimated the instability indices compared to ERA5, although ERA5 itself may underestimate the convective environments. Despite some performance limitations, the sensitivity experiments provided valuable insights into the model’s behavior under different configurations for southeastern Brazil—particularly in a convective environment within mountainous terrain. However, further evaluation across multiple events is recommended. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 8499 KiB  
Article
A Comparative Evaluation of Two Bias Correction Approaches for SST Forecasting: Data Assimilation Versus Deep Learning Strategies
by Wanqiu Dong, Guijun Han, Wei Li, Haowen Wu, Qingyu Zheng, Xiaobo Wu, Mengmeng Zhang, Lige Cao and Zenghua Ji
Remote Sens. 2025, 17(9), 1602; https://doi.org/10.3390/rs17091602 - 30 Apr 2025
Viewed by 623
Abstract
This study introduces two distinct post-processing strategies to address systematic biases in sea surface temperature (SST) numerical forecasts, thereby enhancing SST predictive accuracy. The first strategy implements a spatiotemporal four-dimensional multi-grid analysis (4D-MGA) scheme within a three-dimensional variational (3D-Var) data assimilation framework. The [...] Read more.
This study introduces two distinct post-processing strategies to address systematic biases in sea surface temperature (SST) numerical forecasts, thereby enhancing SST predictive accuracy. The first strategy implements a spatiotemporal four-dimensional multi-grid analysis (4D-MGA) scheme within a three-dimensional variational (3D-Var) data assimilation framework. The second strategy establishes a hybrid deep learning architecture integrating empirical orthogonal function (EOF) analysis, empirical mode decomposition (EMD), and a backpropagation (BP) neural network (designated as EE–BP). The 4D-MGA strategy dynamically corrects systematic biases through a temporally coherent extrapolation of analysis increments, leveraging its inherent capability to characterize intrinsic temporal correlations in model error evolution. In contrast, the EE–BP strategy develops a bias correction model by learning the systematic biases of the SST numerical forecasts. Utilizing a satellite fusion SST dataset, this study conducted bias correction experiments that specifically addressed the daily SST numerical forecasts with 7-day lead times in the Kuroshio region south of Japan during 2017, systematically quantifying the respective error reduction potentials of both strategies. Quantitative verification reveals that EE–BP delivers enhanced predictive skill across all forecast horizons, achieving 18.1–22.7% root–mean–square error reduction compared to 1.2–9.1% attained by 4D-MGA. This demonstrates deep learning’s unique advantage in capturing nonlinear bias evolution patterns. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

19 pages, 3776 KiB  
Article
Research on Weighted Fusion Method for Multi-Source Sea Surface Temperature Based on Cloud Conditions
by Xiangxiang Rong and Haiyong Ding
Remote Sens. 2025, 17(8), 1466; https://doi.org/10.3390/rs17081466 - 20 Apr 2025
Viewed by 429
Abstract
The sea surface temperature (SST) is an important parameter reflecting the energy exchange between the ocean and the atmosphere, which has a key impact on climate change, marine ecology and fisheries. However, most of the existing SST fusion methods suffer from poor portability [...] Read more.
The sea surface temperature (SST) is an important parameter reflecting the energy exchange between the ocean and the atmosphere, which has a key impact on climate change, marine ecology and fisheries. However, most of the existing SST fusion methods suffer from poor portability and a lack of consideration of cloudy conditions, which can affect the data accuracy and reliability. To address these problems, this paper proposes an infrared and microwave SST fusion method based on cloudy conditions. The method categorizes the fusion process according to three scenarios—clear sky, completely cloudy, and partially cloudy—adjusting the fusion approach for each condition. In this paper, three representative global datasets from home and abroad are selected, while the South China Sea region, which suffers from extreme weather, is used as a typical study area for validation. By introducing the buoy observation data, the fusion results are evaluated using the metrics of bias, RMSE, URMSE, r and coverage. The experimental results show that the biases of the three fusion results of VIRR-RH, AVHRR-RH and MODIS-RH are −0.611 °C, 0.043 °C and 0.012 °C, respectively. In the South China Sea region under extreme weather conditions, the bias is −0.428 °C, the RMSE is 0.941 °C, the URMSE is 0.424 °C and the coverage rate reaches 25.55%. These results confirm that this method not only produces significant fusion effects but also exhibits strong generalization and adaptability, being unaffected by specific sensors or regions. Full article
Show Figures

Figure 1

18 pages, 5898 KiB  
Technical Note
Spatial Regionalization of the Arctic Ocean Based on Ocean Physical Property
by Joo-Eun Yoon, Jinku Park and Hyun-Cheol Kim
Remote Sens. 2025, 17(6), 1065; https://doi.org/10.3390/rs17061065 - 18 Mar 2025
Viewed by 600
Abstract
The Arctic Ocean has a uniquely complex system associated with tightly coupled ocean–ice–atmosphere–land interactions. The Arctic Ocean is considered to be highly susceptible to global climate change, with the potential for dramatic environmental impacts at both regional and global scales, and its spatial [...] Read more.
The Arctic Ocean has a uniquely complex system associated with tightly coupled ocean–ice–atmosphere–land interactions. The Arctic Ocean is considered to be highly susceptible to global climate change, with the potential for dramatic environmental impacts at both regional and global scales, and its spatial differences particularly have been exacerbated. A comprehensive understanding of Arctic Ocean environmental responses to climate change thus requires classifying the Arctic Ocean into subregions that describe spatial homogeneity of the clusters and heterogeneity between clusters based on ocean physical properties and implementing the regional-scale analysis. In this study, utilizing the long-term optimum interpolation sea surface temperature (SST) datasets for the period 1982–2023, which is one of the essential indicators of physical processes, we applied the K-means clustering algorithm to generate subregions of the Arctic Ocean, reflecting distinct physical characteristics. Using the variance ratio criterion, the optimal number of subregions for spatial clustering was 12. Employing methods such as information mapping and pairwise multi-comparison analysis, we found that the 12 subregions of the Arctic Ocean well represent spatial heterogeneity and homogeneity of physical properties, including sea ice concentration, surface ocean currents, SST, and sea surface salinity. Spatial patterns in SST changes also matched well with the boundaries of clustered subregions. The newly identified physical subregions of the Arctic Ocean will contribute to a more comprehensive understanding of the Arctic Ocean’s environmental response to accelerating climate change. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

35 pages, 20527 KiB  
Article
Dual Effects of Marine Heatwaves on Typhoon Intensity and Associated Heat Dissipation
by Thi-Kieu-Diem Nguyen and Po-Chun Hsu
Remote Sens. 2025, 17(6), 968; https://doi.org/10.3390/rs17060968 - 9 Mar 2025
Viewed by 1453
Abstract
Based on the positions of 1027 typhoons that passed through the Western Pacific (WP), East China Sea (ECS), and South China Sea (SCS), the results indicate that the category of marine heatwaves (MHWs) significantly decreases or dissipates after a typhoon’s passage, with stronger [...] Read more.
Based on the positions of 1027 typhoons that passed through the Western Pacific (WP), East China Sea (ECS), and South China Sea (SCS), the results indicate that the category of marine heatwaves (MHWs) significantly decreases or dissipates after a typhoon’s passage, with stronger typhoons causing more pronounced dissipation. The presence of MHWs does not necessarily enhance typhoon intensity; in as many as 151 cases, typhoons weakened despite the presence of MHWs. Furthermore, case studies were conducted using three typhoons that traversed different regions—Hinnamnor (2022), Mawar (2023), and Koinu (2023)—to investigate the dual effects of MHWs on typhoon intensity and their dissipation using satellite observations and ocean reanalysis datasets. Results show that MHWs enhance typhoon intensity by increasing sea surface temperature (SST) and ocean heat content (OHC), while also strengthening stratification through a shallower mixed layer depth (MLD), creating favorable conditions for intensification. While MHWs may initially enhance typhoon intensity, the passage of a typhoon triggers intense vertical mixing and upwelling, which disrupts MHW structures and alters heat distribution, potentially leading to intensity fluctuations. The impact of MHWs on typhoon intensity varies in time and space, MHWs can sustain typhoon strength despite heat loss induced by the typhoon. Additionally, variations in OHC and the mean upper 100 m temperature (T100¯) were more pronounced in the inner-core region (R50) than in the outer-core region (R30), indicating that energy exchange is concentrated in the inner core, while broader air–sea interactions occur in the outer core. The results show that MHWs can enhance typhoon development by increasing stratification and SST but are also highly susceptible to rapid dissipation due to typhoon-induced impacts, forming a highly dynamic two-way interaction. Full article
Show Figures

Figure 1

17 pages, 11811 KiB  
Article
Analysis of the Effect of Sea Surface Temperature on Sea Ice Concentration in the Laptev Sea for the Years 2004–2023
by Chenyao Zhang, Ziyu Zhang, Peng Qi, Yiding Zhang and Changlei Dai
Water 2025, 17(5), 769; https://doi.org/10.3390/w17050769 - 6 Mar 2025
Viewed by 903
Abstract
The Laptev Sea, as a marginal sea and a key source of sea ice for the Arctic Ocean, has a profound influence on the dynamic processes of sea ice evolution. Under a 2 °C global warming scenario, the accelerated ablation of Arctic sea [...] Read more.
The Laptev Sea, as a marginal sea and a key source of sea ice for the Arctic Ocean, has a profound influence on the dynamic processes of sea ice evolution. Under a 2 °C global warming scenario, the accelerated ablation of Arctic sea ice is projected to greatly impact Arctic warming. The ocean regulates global climate through its interactions with the atmosphere, where sea surface temperature (SST) serves as a crucial parameter in exchanging energy, momentum, and gases. SST is also a key driver of sea ice concentration (SIC). In this paper, we analyze the spatiotemporal variability of SST and SIC, along with their interrelationships in the Laptev Sea, using daily optimum interpolation SST datasets from NCEI and daily SIC datasets from the University of Bremen for the period 2004–2023. The results show that: (1) Seasonal variations are observed in the influence of SST on SIC. SIC exhibited a decreasing trend in both summer and fall with pronounced interannual variability as ice conditions shifted from heavy to light. (2) The highest monthly averages of SST and SIC were in July and September, respectively, while the lowest values occurred in August and November. (3) The most pronounced trends for SST and SIC appeared both in summer, with rates of +0.154 °C/year and −0.095%/year, respectively. Additionally, a pronounced inverse relationship was observed between SST and SIC across the majority of the Laptev Sea with correlation coefficients ranging from −1 to 0.83. Full article
Show Figures

Figure 1

19 pages, 4267 KiB  
Article
Investigation on the Linkage Between Precipitation Trends and Atmospheric Circulation Factors in the Tianshan Mountains
by Chen Chen, Yanan Hu, Mengtian Fan, Lirui Jia, Wenyan Zhang and Tianyang Fan
Water 2025, 17(5), 726; https://doi.org/10.3390/w17050726 - 1 Mar 2025
Cited by 1 | Viewed by 937
Abstract
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and [...] Read more.
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and is highly sensitive to the nuances of climate change. Utilizing ERA5 precipitation datasets alongside 24 atmospheric circulation indices, this study delves into the variances in Tianshan’s precipitation patterns and their correlation with large-scale atmospheric circulation within the timeframe of 1981 to 2020. We observe a seasonally driven dichotomy, with the mountains exhibiting increasing moisture during the spring, summer, and autumn months, contrasted by drier conditions in winter. There is a pronounced spatial variability; the western and northern reaches exhibit more pronounced increases in precipitation compared to their eastern and southern counterparts. Influences on Tianshan’s precipitation patterns are multifaceted, with significant factors including the North Pacific Pattern (NP), Trans-Niño Index (TNI), Tropical Northern Atlantic Index (TNA*), Extreme Eastern Tropical Pacific SST (Niño 1+2*), North Tropical Atlantic SST Index (NTA), Central Tropical Pacific SST (Niño 4*), Tripole Index for the Interdecadal Pacific Oscillation [TPI(IPO)], and the Western Hemisphere Warm Pool (WHWP*). Notably, NP and TNI emerge as the predominant factors driving the upsurge in precipitation. The study further reveals a lagged response of precipitation to atmospheric circulatory patterns, underpinning complex correlations and resonance cycles of varying magnitudes. Our findings offer valuable insights for forecasting precipitation trends in mountainous terrains amidst the ongoing shifts in global climate conditions. Full article
Show Figures

Figure 1

Back to TopTop