A Comparative Evaluation of Two Bias Correction Approaches for SST Forecasting: Data Assimilation Versus Deep Learning Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Assimilation-Based Strategy for Bias Correction
2.2.1. Principle of 4D-MGA Method
2.2.2. Workflow of 4D-MGA
- Background field generation: The background fields for each day within the time window (65 days) are set as . Taking the forecast start time (day 59) as the splitting point, days 1 to 58 are the analysis period, and days 59 to 65 are the forecast period. The background fields for the analysis period () are derived from the day 1 output of the 7-day SST forecasts, while the background fields for the forecast period () are the 7-day SST forecasts corresponding to .
- Observation increment calculation: For the analysis period, the observation increments () are calculated as the difference between the OISST data () and the background fields () for the corresponding dates. These observation increments are equal to the negative of the SST forecast biases.
- Data assimilation: Based on the smoothing term, 4D-MGA fits the observation increments () to generate smoothed analysis increments () for the forecast period, which are extrapolated to obtain the analysis increments () for the analysis period.
- Bias correction: Add the analysis increments () for the forecast period to the corresponding background fields (), producing the bias-corrected SST analysis fields ().
2.3. Deep Learning-Based Strategy for Bias Correction
2.3.1. Principle of EE–BP Method
2.3.2. Workflow of EE–BP
- EOF analysis: The 2016 SST forecast bias data are decomposed by EOF analysis to obtain EOFs and PCs. EOFs and PCs accounting for 99.90% of the cumulative variance are selected. The 2017 SST forecast bias data are projected onto the 2016 EOFs to derive the corresponding time series, called pseudo-PCs.
- EMD analysis: Each PC is decomposed into three IMFs and one residual component (called derived PCs) using EMD analysis. For each derived PC, the 2016 data are used as the training set, and the 2017 data are used as the test set.
- Model training: The BP neural network is constructed and trained on the training set. The size of the time window used to predict the derived PCs is set to , which means that we use the preceding -day-derived PC data to predict -step-derived PCs.
- Model validation: based on the trained BP neural network, we predict the derived PCs in 2017, which are compared with the test set to evaluate model accuracy.
- Bias correction: The predicted derived PCs are reconstructed into PCs, which are then combined with EOFs to generate SST bias forecasts. By combining the biases and SST forecasts, the corrected SST can be obtained.
2.4. Evaluation Metrics
3. Results
3.1. Overall Performance Evaluation
3.2. Skill Comparison of Two Strategies
3.2.1. Annual Mean Bias Correction
3.2.2. Seasonal Bias Correction
3.2.3. Monthly and Daily Mean Bias Correction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, S.; Li, W.; Liu, T.; Zhou, S.; Guan, J.; Qin, R.; Wang, Z. MIMO: A unified spatio-temporal model for multi-scale sea surface temperature prediction. Remote Sens. 2022, 14, 2371. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Chakraborty, A.; Krishnamurti, R.; Dewar, W.K.; Clayson, C.A. Seasonal prediction of sea surface temperature anomalies using a suite of 13 coupled atmosphere–ocean models. J. Clim. 2006, 19, 6069–6088. [Google Scholar] [CrossRef]
- Lins, I.D.; Araujo, M.; das Chagas Moura, M.; Silva, M.A.; Droguett, E.L. Prediction of sea surface temperature in the tropical Atlantic by support vector machines. Comput. Stat. Data Anal. 2013, 61, 187–198. [Google Scholar] [CrossRef]
- Wei, L.; Guan, L.; Qu, L. Prediction of sea surface temperature in the South China Sea by artificial neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 17, 558–562. [Google Scholar] [CrossRef]
- Chepurin, G.A.; Carton, J.A.; Dee, D. Forecast model bias correction in ocean data assimilation. Mon. Weather Rev. 2005, 133, 1328–1342. [Google Scholar] [CrossRef]
- Hewson, T.D.; Pillosu, F.M. A low-cost post-processing technique improves weather forecasts around the world. Commun. Earth Environ. 2021, 2, 132. [Google Scholar] [CrossRef]
- Kim, H.; Ham, Y.G.; Joo, Y.S.; Son, S.W. Deep learning for bias correction of MJO prediction. Nat. Commun. 2021, 12, 3087. [Google Scholar] [CrossRef]
- Frnda, J.; Durica, M.; Rozhon, J.; Vojtekova, M.; Nedoma, J.; Martinek, R. ECMWF short-term prediction accuracy improvement by deep learning. Sci. Rep. 2022, 12, 7898. [Google Scholar] [CrossRef]
- Han, G.; Zhou, J.; Shao, Q.; Li, W.; Li, C.; Wu, X.; Zhou, G. Bias correction of sea surface temperature retrospective forecasts in the South China Sea. Acta Oceanol. Sin. 2022, 41, 41–50. [Google Scholar] [CrossRef]
- Fei, T.; Huang, B.; Wang, X.; Zhu, J.; Chen, Y.; Wang, H.; Zhang, W. A hybrid deep learning model for the bias correction of sst numerical forecast products using satellite data. Remote Sens. 2022, 14, 1339. [Google Scholar] [CrossRef]
- Liu, B.; Xie, B.; Huang, B.; Yin, X.; Wang, Z.; Yang, Y. Deviation correction of the SST prediction in global high resolution ocean prediction system. Adv. Mar. Sci. 2023, 41, 444–455. [Google Scholar] [CrossRef]
- Yuan, S.; Feng, X.; Mu, B.; Qin, B.; Wang, X.; Chen, Y. A generative adversarial network–based unified model integrating bias correction and downscaling for global SST. Atmos. Ocean. Sci. Lett. 2024, 17, 100407. [Google Scholar] [CrossRef]
- Zhou, G.; Han, G.; Li, W.; Wang, X.; Wu, X.; Cao, L.; Li, C. High-resolution gridded temperature and salinity fields from Argo floats based on a spatiotemporal four-dimensional multigrid analysis method. J. Geophys. Res. Ocean. 2023, 128, e2022JC019386. [Google Scholar] [CrossRef]
- Zhang, M.; Han, G.; Wu, X.; Li, C.; Shao, Q.; Li, W.; Cao, L.; Wang, X.; Dong, W.; Ji, Z. SST forecast skills based on hybrid deep learning models: With applications to the South China Sea. Remote Sens. 2024, 16, 1034. [Google Scholar] [CrossRef]
- Lorenc, A.C. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 1986, 112, 1177–1194. [Google Scholar] [CrossRef]
- Hsueh, Y. The kuroshio in the east China sea. J. Mar. Syst. 2000, 24, 131–139. [Google Scholar] [CrossRef]
- Tao, L.; Sun, X.; Yang, X.Q.; Fang, J.; Cai, D.; Zhou, B.; Chen, H. Cross-season effect of spring Kuroshio-Oyashio extension SST anomalies on following summer atmospheric circulation. Geophys. Res. Lett. 2024, 51, e2024GL108750. [Google Scholar] [CrossRef]
- Wu, X. Analysis and Prediction of the Kuroshio Path South of Japan. Ph.D. Thesis, Tianjin University, Tianjin, China, 2024. [Google Scholar]
- Mellor, G.L.; Häkkinen, S.M.; Ezer, T.; Patchen, R.C. A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In Ocean Forecasting; Springer: Berlin/Heidelberg, Germany, 2002; pp. 55–72. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Cao, L.; Wu, X.; Han, G.; Li, W.; Wu, X.; Wu, H.; Li, C.; Li, Y.; Zhou, G. EAKF-based parameter optimization using a hybrid adaptive method. Mon. Weather Rev. 2022, 150, 3065–3079. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Li, W.; Xie, Y.; He, Z.; Han, G.; Liu, K.; Ma, J.; Li, D. Application of the multigrid data assimilation scheme to the China Seas’ temperature forecast. J. Atmos. Ocean. Technol. 2008, 25, 2106–2116. [Google Scholar] [CrossRef]
- Li, W.; Xie, Y.; Han, G. A theoretical study of the multigrid three-dimensional variational data assimilation scheme using a simple bilinear interpolation algorithm. Acta Oceanol. Sin. 2013, 32, 80–87. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Shao, Q.; Hou, G.; Li, W.; Han, G.; Liang, K.; Bai, Y. Ocean reanalysis data-driven deep learning forecast for sea surface multivariate in the South China Sea. Earth Space Sci. 2021, 8, e2020EA001558. [Google Scholar] [CrossRef]
- Shao, Q.; Li, W.; Hou, G.; Han, G.; Wu, X. Mid-term simultaneous spatiotemporal prediction of sea surface height anomaly and sea surface temperature using satellite data in the South China Sea. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1501705. [Google Scholar] [CrossRef]
- Liu, X.; Li, N.; Guo, J.; Fan, Z.; Lu, X.; Liu, W.; Liu, B. Multistep-ahead prediction of ocean SSTA based on hybrid empirical mode decomposition and gated recurrent unit model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7525–7538. [Google Scholar] [CrossRef]
- Wu, X.; Han, G.; Li, W.; Ji, Z.; Cao, L.; Dong, W. A hybrid deep learning model for predicting the Kuroshio path south of Japan. Front. Mar. Sci. 2023, 10, 1112336. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Y.; Deng, X.; Liu, H.; Dong, C. Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model. Acta Oceanol. Sin. 2023, 42, 54–66. [Google Scholar] [CrossRef]
- Aparna, S.G.; D’souza, S.; Arjun, N.B. Prediction of daily sea surface temperature using artificial neural networks. Int. J. Remote Sens. 2018, 39, 4214–4231. [Google Scholar] [CrossRef]
- Bai, Y.; Li, W.; Shao, Q. A prediction model of Sea Surface Height Anomaly based on Empirical Orthogonal Function and machine learning. Mar. Sci. Bull. 2020, 39, 678–688. [Google Scholar]
- Pendlebury, S.F.; Adams, N.D.; Hart, T.L.; Turner, J. Numerical weather prediction model performance over high southern latitudes. Mon. Weather Rev. 2003, 131, 335–353. [Google Scholar] [CrossRef]
- Sakaida, F.; Kudoh, J.I.; Kawamura, H. A-HIGHERS—The system to produce the high spatial resolution sea surface temperature maps of the western North Pacific using the AVHRR/NOAA. J. Oceanogr. 2000, 56, 707–716. [Google Scholar] [CrossRef]
- Lee, M.; Chang, Y.; Sakaida, F.; Kawamura, H.; Cheng, C.H.; Chan, J.; Huang, I. Validation of satellite-derived sea surface temperatures for waters around Taiwan. TAO Terr. Atmos. Ocean. Sci. 2005, 16, 1189–1204. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, D.; Kawamura, H.; Guan, L.; Qin, H. Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea. Cont. Shelf Res. 2009, 29, 2358–2366. [Google Scholar] [CrossRef]
- Kagimoto, T.; Miyazawa, Y.; Guo, X.; Kawajiri, H. High resolution Kuroshio forecast system: Description and its applications. In High Resolution Numerical Modelling of the Atmosphere and Ocean; Hamilton, K., Ohfuchi, W., Eds.; Springer: New York, NY, USA, 2008; pp. 209–239. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, G.; Li, W.; Wang, H.; Wang, D. Development of the operational oceanography forecasting system in the Northwest Pacific. J. Phys. Conf. Ser. 2023, 2486, 012032. [Google Scholar] [CrossRef]
Metric | Method | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 |
---|---|---|---|---|---|---|---|---|
RMSE | 4D-MGA | 85.51 | 59.82 | 49.62 | 43.10 | 39.11 | 36.20 | 35.20 |
EE–BP | 100.00 | 98.01 | 97.16 | 94.71 | 93.10 | 86.89 | 82.36 | |
Bias | 4D-MGA | 69.56 | 55.75 | 46.78 | 41.87 | 38.80 | 37.19 | 37.04 |
EE–BP | 99.62 | 96.32 | 94.71 | 91.95 | 91.72 | 85.12 | 79.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Han, G.; Li, W.; Wu, H.; Zheng, Q.; Wu, X.; Zhang, M.; Cao, L.; Ji, Z. A Comparative Evaluation of Two Bias Correction Approaches for SST Forecasting: Data Assimilation Versus Deep Learning Strategies. Remote Sens. 2025, 17, 1602. https://doi.org/10.3390/rs17091602
Dong W, Han G, Li W, Wu H, Zheng Q, Wu X, Zhang M, Cao L, Ji Z. A Comparative Evaluation of Two Bias Correction Approaches for SST Forecasting: Data Assimilation Versus Deep Learning Strategies. Remote Sensing. 2025; 17(9):1602. https://doi.org/10.3390/rs17091602
Chicago/Turabian StyleDong, Wanqiu, Guijun Han, Wei Li, Haowen Wu, Qingyu Zheng, Xiaobo Wu, Mengmeng Zhang, Lige Cao, and Zenghua Ji. 2025. "A Comparative Evaluation of Two Bias Correction Approaches for SST Forecasting: Data Assimilation Versus Deep Learning Strategies" Remote Sensing 17, no. 9: 1602. https://doi.org/10.3390/rs17091602
APA StyleDong, W., Han, G., Li, W., Wu, H., Zheng, Q., Wu, X., Zhang, M., Cao, L., & Ji, Z. (2025). A Comparative Evaluation of Two Bias Correction Approaches for SST Forecasting: Data Assimilation Versus Deep Learning Strategies. Remote Sensing, 17(9), 1602. https://doi.org/10.3390/rs17091602