Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = SS topology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1526 KiB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 (registering DOI) - 2 Aug 2025
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

27 pages, 2072 KiB  
Article
Modeling and Characteristic Analysis of Mistuned Series–Series-Compensated Wireless Charging System for EVs
by Weihan Li, Yunhan Han and Chenxu Li
Energies 2025, 18(15), 4091; https://doi.org/10.3390/en18154091 (registering DOI) - 1 Aug 2025
Abstract
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent [...] Read more.
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent simplification of mistuned parameters, we systematically examine the effects of compensation capacitances and coil inductances on input impedance, output power, and efficiency in SS-compensated topologies across wide load ranges and different coupling coefficients. Results reveal that transmitter-side parameter deviations exert more pronounced impacts on input impedance and power gain than receiver-side variations. Remarkably, under receiver-side inductance mistuning of −20%, a significant 32° shift in the input impedance angle was observed. Experimental validation on a 500 W prototype confirms ≤5% maximum deviation between calculated and measured values for efficiency, input impedance angle, and power gain. Full article
(This article belongs to the Special Issue Wireless Charging Technologies for Electric Vehicles)
17 pages, 14504 KiB  
Article
Construction of a Transparent, Robust, Shape-Memory and Self-Healing MDI-Based Polyurethane Elastomer
by Haichun Dang, Ziliang Zhang, Ruibing Sun, Yunlun Li, Mengyu Lin, Siting Yang, Maoyong He, Zhaozan Xu and Xiangcheng Bian
Polymers 2025, 17(9), 1243; https://doi.org/10.3390/polym17091243 - 2 May 2025
Cited by 1 | Viewed by 888
Abstract
Integrating strong mechanical properties and excellent optical properties for self-healing materials is challenging in both academia and industry. Robust self-healing polyurethane elastomers are expected to have superior mechanical properties, transparency, remarkable healing capability, and shape-memory performance via the adjustment of chemical and microphase [...] Read more.
Integrating strong mechanical properties and excellent optical properties for self-healing materials is challenging in both academia and industry. Robust self-healing polyurethane elastomers are expected to have superior mechanical properties, transparency, remarkable healing capability, and shape-memory performance via the adjustment of chemical and microphase separation structure. Herein, a robust transparent self-healable 4,4′-diphenylmethane diisocyanate (MDI)-based polyurethane elastomer containing disulfide bonds and branched structure (MPUE-SS) was synthesized. The chemical and topological structures, compatibility of soft–hard phases, and hard domain size of polyurethane could be adjusted via branched structure and mixed chain extender containing disulfide bonds and 1,4-butanediol (BDO), leading to enhanced self-healing, transparency, and mechanical properties. MPUE-SS exhibited a maximal tensile strength of 40 MPa. The microphase separation structure and reduced crystallinity led to a high transparency of about 91%, close to that of alicyclic polyurethane elastomers. After cutting in half and splicing, the MPUE-SS film recovered more than 95% of the original mechanical properties in 24 h. The shape recovery ratio at 40 °C and shape fixity ratio at −20 °C of MPUE-SS were 96.0% and 99.6%, respectively, higher than those of MPUE without disulfide bonds. Therefore, the chemical, topological structures, and microphase separation of polyurethane could be adjusted to achieve desired self-healing, transparency, shape-memory, and mechanical properties. Full article
Show Figures

Graphical abstract

23 pages, 10682 KiB  
Article
An Improved Variable Step-Size Maximum Power Point Tracking Control Strategy with the Mutual Inductance Identification for Series–Series Wireless Power Transfer Systems
by Wenmei Hao, Cai Sun and Yi Hao
Symmetry 2025, 17(4), 564; https://doi.org/10.3390/sym17040564 - 8 Apr 2025
Viewed by 401
Abstract
Series–series (SS) wireless power transfer (WPT) systems are used in many applications because of their simple circuit structure. Compared with higher-order complex compensation topology, they are suitable for more demanding applications, such as rail trams with high power requirements but limited space for [...] Read more.
Series–series (SS) wireless power transfer (WPT) systems are used in many applications because of their simple circuit structure. Compared with higher-order complex compensation topology, they are suitable for more demanding applications, such as rail trams with high power requirements but limited space for the coupling mechanism. However, the characteristics of their voltage source also put forward higher requirements for the control strategy. Improving the dynamic response performance of an SS compensation WPT system without any communication between the primary and secondary sides is the key issue. This paper proposes an improved variable step-size maximum power point tracking control strategy with the mutual inductance identification. Compared with the conventional P&O control, it can achieve a faster response and more accurate tracking, which are very important to the WPT for rail transit. A method of the mutual inductance identification based on the weight of parameter sensitivity is proposed. Based on the results of the identified mutual inductance, to make the system transfer the maximum power, the duty ratio of the receiver is adjusted to approach the corresponding equivalent load. To deal with the change of the mutual inductance, a condition of terminating the searching process of the maximum power point and re-identifying the mutual inductance is proposed. A simulation and experimental platform is built for verification. The results show that the proposed control strategy can quickly respond to the variation of the mutual inductance and load and achieve accurate maximum power point location, which improves the performance of the SS compensation WPT system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 7139 KiB  
Article
Investigation of Short Channel Effects in Al0.30Ga0.60As Channel-Based Junctionless Cylindrical Gate-All-Around FET for Low Power Applications
by Pooja Srivastava, Aditi Upadhyaya, Shekhar Yadav, Chandra Mohan Singh Negi and Arvind Kumar Singh
J. Low Power Electron. Appl. 2025, 15(1), 12; https://doi.org/10.3390/jlpea15010012 - 21 Feb 2025
Viewed by 757
Abstract
In this work, a cylindrical gate-all-around junctionless field effect transistor (JLFET) was investigated. Junctions and doping concentration gradients are unavailable in JLFET. According to the results, the suggested device has a novel architecture that significantly enhances transistor performance while exhibiting a decreased vulnerability [...] Read more.
In this work, a cylindrical gate-all-around junctionless field effect transistor (JLFET) was investigated. Junctions and doping concentration gradients are unavailable in JLFET. According to the results, the suggested device has a novel architecture that significantly enhances transistor performance while exhibiting a decreased vulnerability to short-channel effects (SCEs). The Atlas 3D device simulator has been used to analyze the proposed JLFET’s performance, especially for low-power applications for different channel lengths ranging from 10 nm to 60 nm with Al0.30Ga0.60As as III-V materials. The comparative simulated study has been based on various performance parameters, including subthreshold slope (SS), drain-induced barrier lowering (DIBL), transconductance, threshold voltage, and ION to IOFF ratio. The results of the simulations demonstrated that the III-V JLFET exhibited a favorable SS and decreased DIBL compared to other circuit topologies. In the suggested study, gallium arsenide (GaAs) and its compound materials have demonstrated a strong correlation between the SS and DIBL values. The SS is approximately 63 mV/dec, extremely near the ideal 60 mV/dec value. Gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) exhibit DIBL of approximately 30 mV/V and an SS value of around 64 mV/dec. Full article
Show Figures

Figure 1

17 pages, 18041 KiB  
Article
Coils Optimisation to Avoid Parasitic Capacitance Effects in an Inductive Wireless Charger for Underwater Vehicles
by Inmaculada Casaucao, Alejandro Linares and Alicia Triviño
Electronics 2025, 14(4), 654; https://doi.org/10.3390/electronics14040654 - 8 Feb 2025
Cited by 1 | Viewed by 1027
Abstract
The integration of inductive charging technology in electric vehicles has aroused the interest of researchers in recent years. Specifically, one of the growing areas is wireless charging in Autonomous Underwater Vehicles (AUVs). In this environment, the effects of seawater in wireless power transmission [...] Read more.
The integration of inductive charging technology in electric vehicles has aroused the interest of researchers in recent years. Specifically, one of the growing areas is wireless charging in Autonomous Underwater Vehicles (AUVs). In this environment, the effects of seawater in wireless power transmission should be carefully studied. Specifically, one of the effects that should be analysed is the appearance of parasitic capacitances (Ce) between the power coils due to the high conductivity of seawater. The parasitic capacitance, together with the power converters switching losses and the resistive and inductive losses, can lead to a drop in efficiency during the charging process. The main objective of this contribution is to find the optimal solution to avoid the effects of Ce during the coils design, thus simplifying the process and making it equivalent to an air-based solution. To do so, different design criteria have been defined with a comparative analysis among different topologies proposed. Specifically, we have studied the variations of voltage, current, and efficiency caused by the Ce. Additionally, a comparison between Series-Series (SS) and LCC–Series (LCC–S) compensation systems has been considered, studying the system efficiency and maximum current values found on the circuit. The results of these studies have been verified through experimental validations, where the design and implementation of the elements that constitute the inductive charger have been performed. This validation has demonstrated the possibility of neglecting the effects of Ce by optimising the coil’s design. Full article
Show Figures

Figure 1

24 pages, 4723 KiB  
Article
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
by Bo Xu, Chunjiang Zhao, Guijun Yang, Yuan Zhang, Changbin Liu, Haikuan Feng, Xiaodong Yang and Hao Yang
Agriculture 2025, 15(1), 85; https://doi.org/10.3390/agriculture15010085 - 2 Jan 2025
Cited by 1 | Viewed by 822
Abstract
The maize tassel represents one of the most pivotal organs dictating maize yield and quality. Investigating its phenotypic information constitutes an exceedingly crucial task within the realm of breeding work, given that an optimal tassel structure is fundamental for attaining high maize yields. [...] Read more.
The maize tassel represents one of the most pivotal organs dictating maize yield and quality. Investigating its phenotypic information constitutes an exceedingly crucial task within the realm of breeding work, given that an optimal tassel structure is fundamental for attaining high maize yields. High-throughput phenotyping technologies furnish significant tools to augment the efficiency of analyzing maize tassel phenotypic information. Towards this end, we engineered a fully automated multi-angle digital imaging apparatus dedicated to maize tassels. This device was employed to capture images of tassels from 1227 inbred maize lines falling under three genotype classifications (NSS, TST, and SS). By leveraging the 3D reconstruction algorithm SFM (Structure from Motion), we promptly obtained point clouds of the maize tassels. Subsequently, we harnessed the TreeQSM algorithm, which is custom-designed for extracting tree topological structures, to extract 11 archetypal structural phenotypic parameters of the maize tassels. These encompassed main spike diameter, crown height, main spike length, stem length, stem diameter, the number of branches, total branch length, average crown diameter, maximum crown diameter, convex hull volume, and crown area. Finally, we compared the GFC (Gaussian Fuzzy Clustering algorithm) used in this study with commonly used algorithms, such as RF (Random Forest), SVM (Support Vector Machine), and BPNN (BP Neural Network), as well as k-Means, HCM (Hierarchical), and FCM (Fuzzy C-Means). We then conducted a correlation analysis between the extracted phenotypic parameters of the maize tassel structure and the genotypes of the maize materials. The research results showed that the Gaussian Fuzzy Clustering algorithm was the optimal choice for clustering maize genotypes. Specifically, its classification accuracies for the Non-Stiff Stalk (NSS) genotype and the Tropical and Subtropical (TST) genotype reached 67.7% and 78.5%, respectively. Moreover, among the materials with different maize genotypes, the number of branches, the total branch length, and the main spike length were the three indicators with the highest variability, while the crown volume, the average crown diameter, and the crown area were the three indicators with the lowest variability. This not only provided an important reference for the in-depth exploration of the variability of the phenotypic parameters of maize tassels but also opened up a new approach for screening breeding materials. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

22 pages, 8086 KiB  
Article
Research on Structural Optimization and Excitation Control Method Using a Two-Dimensional OWPT System for Capsule Robots Based on Non-Equivalent Coils
by Wenwei Li, Pingping Jiang, Zhiwu Wang and Guozheng Yan
Micromachines 2024, 15(12), 1510; https://doi.org/10.3390/mi15121510 - 19 Dec 2024
Viewed by 830
Abstract
The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in [...] Read more.
The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in multiple spatial directions. This system features a three-dimensional transmitting structure with a Helmholtz coil and saddle coil pairs, combined with a one-dimensional receiving structure. This design provides sufficient internal space, accommodating patients of various body types. Based on the magnetic field calculation and finite element analysis, the saddle coil structure is optimized to enhance magnetic field uniformity; to achieve a two-dimensional rotating magnetic field, a phase difference control method for the excitation signal is developed through the analysis of circuit topology and quantitative synthesis of non-equivalent magnetic field vectors. Finally, an experimental prototype is built, and the experimental results show that the one-dimensional transmitting coil achieves a minimum received voltage stability of 94.5% across different positions. When the three-dimensional transmitting coils operate together, a two-dimensional rotating magnetic field in the plane is achieved at the origin, providing a minimum received power of 550 mW with a voltage fluctuation rate of 7.68%. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

17 pages, 7592 KiB  
Article
Parametric Design Approach for Wireless Power Transfer System: UAV Applications
by Mohammed Terrah, Mostafa-Kamel Smail, Lionel Pichon and Mohamed Bensetti
Drones 2024, 8(12), 735; https://doi.org/10.3390/drones8120735 - 5 Dec 2024
Cited by 4 | Viewed by 2013
Abstract
Adopting Wireless Power Transfer (WPT) technology to an Unmanned Aerial Vehicle (UAV) involves adding extra components, which may impact the drone’s overall weight and performance. This paper aims to enhance UAV performance by designing a lightweight WPT system through a parametric design approach. [...] Read more.
Adopting Wireless Power Transfer (WPT) technology to an Unmanned Aerial Vehicle (UAV) involves adding extra components, which may impact the drone’s overall weight and performance. This paper aims to enhance UAV performance by designing a lightweight WPT system through a parametric design approach. This method explores novel perspectives by identifying the most suitable combination of parameters in terms of efficiency, weight, and feasibility. Various parameters such as the compensation topology, number of turns of coils, and frequency were studied. The system was analyzed through a coupled simulation approach, where electromagnetic modeling of the coupler using the finite element method (FEM) was combined with electrical circuit simulations, providing a more accurate assessment of the overall system efficiency and behavior considering variations in the coupling factor due to misalignment. A prototype of the resulting configuration was designed and tested experimentally versus misalignment at reduced power using a specific test bench. The results show a 70% efficiency level with SP compensation that was improved to 80% with SS compensation. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

12 pages, 1233 KiB  
Article
Establishment of Real-Time PCR Method to Differentiate Phlebotomus sichuanensis (Diptera, Psychodidae) from P. chinensis s.s. Based on Whole Mitochondrial Genome Analysis
by Haowei Dong, Wenqi Shan, Hao Yuan, Qiuming Zhou, Wenbing Zhong, Maimaitijiang Wumaier, Kang Wang, Anjie Yang, Bing Rui, Hua Shi, Huiying Chen, Xiangyu Li, Yajun Ma and Heng Peng
Life 2024, 14(12), 1610; https://doi.org/10.3390/life14121610 - 5 Dec 2024
Viewed by 956
Abstract
Phlebotomus sichuanensis, considered a potential vector for visceral leishmaniasis (VL), is distributed in the southern Gansu and northern Sichuan regions in China. However, the high similarity in the morphology of P. sichuanensis and P. chinensis s.s. poses unresolved taxonomic challenges. In this [...] Read more.
Phlebotomus sichuanensis, considered a potential vector for visceral leishmaniasis (VL), is distributed in the southern Gansu and northern Sichuan regions in China. However, the high similarity in the morphology of P. sichuanensis and P. chinensis s.s. poses unresolved taxonomic challenges. In this study, phlebotomine sand flies were collected from three locations in the southern Gansu and northern Sichuan regions (SCB group) and three locations that are the dominant distribution areas of P. chinensis s.s. (ZHB group). Their whole mitochondrial genomes were sequenced and analyzed. The differential analysis revealed that there were 339 fixed differential sites in the mitochondrial genome-coding region of P. chinensis s.s. and P. sichuanensis, among which the COI gene had the most differential sites (57), followed by ND5 (46), ND4 (38), and CYTB (37), while ATP8 had the least differential sites (4). The molecular genetic p-distance was calculated based on 13 protein-coding regions, and the genetic distance ranged from 0.001 to 0.018 in the ZHB group and from 0.001 to 0.006 in the SCB group, while the interspecies molecular genetic distance was 0.464–0.466 between the two groups. A phylogenetic maximum likelihood tree was constructed from 16 samples via tandem sequence of 13 protein-coding regions, and the topology showed that the ZHB and SCB groups formed separate clusters. A real-time PCR method was established based on the differences in the COI fragment, which can identify P. sichuanensis from P. chinensis s.s. effectively. This study presents objective evidence of the genetic differentiation between P. sichuanensis and P. chinensis s.s., and provides a method for identifying these two morphologically highly similar VL-transmitting sandflies. Full article
(This article belongs to the Special Issue Evolutionary and Conservation Genetics: 3rd Edition)
Show Figures

Figure 1

25 pages, 18988 KiB  
Article
A Robust Controller for a Novel Single-Switch Non-Isolated Converter with Low-Order Ripples for Electric Vehicle Chargers
by V. Rajeswari and Nalin Kant Mohanty
Sustainability 2024, 16(23), 10463; https://doi.org/10.3390/su162310463 - 28 Nov 2024
Viewed by 981
Abstract
High-efficiency non-isolated converters play a predominant role in electric vehicle on-board chargers to enhance the sustainability of EV charging stations. A novel single-switch configuration connected in a new parallel structure offering a higher efficiency than recently reported topologies is introduced in this article. [...] Read more.
High-efficiency non-isolated converters play a predominant role in electric vehicle on-board chargers to enhance the sustainability of EV charging stations. A novel single-switch configuration connected in a new parallel structure offering a higher efficiency than recently reported topologies is introduced in this article. A PV source powered single switch–switched capacitor–single inductor (SS–SC–SL) arrangement employing an intelligent, robust controller (MPC) is proposed to build a sustainable framework for electric vehicles. Notable features of this topology include improved voltage regulation, a high output gain, and maintaining a ripple-free continuous load current at a nominal duty cycle range which is commonly applicable for electric vehicle on-board chargers. In addition, several factors are included, as follows: design considerations, theoretical analysis, converter performance in CCM, and comparison with existing configurations. The converter simulation results are executed using the MATLAB software 2022a, and to verify the system performance, an experimental setup of 150 W is built and tested. The hardware results of a higher efficiency at 96.9% and a ripple-less continuous load current are achieved and validated in the laboratory. Full article
Show Figures

Figure 1

23 pages, 8427 KiB  
Article
Resonance Capacitance Selection Method for Minimizing Leakage Magnetic Fields and Achieving Zero Phase Angles in Wireless Power Transfer Systems
by Yujun Shin, Jaewon Rhee and Seongho Woo
Electronics 2024, 13(21), 4188; https://doi.org/10.3390/electronics13214188 - 25 Oct 2024
Cited by 2 | Viewed by 1122
Abstract
This study proposes a novel approach for selecting the resonance capacitance of wireless power transfer systems, aiming to achieve a zero phase angle (ZPA) while simultaneously minimizing the leakage magnetic field. The performance of the method is validated across two key topologies: series–series [...] Read more.
This study proposes a novel approach for selecting the resonance capacitance of wireless power transfer systems, aiming to achieve a zero phase angle (ZPA) while simultaneously minimizing the leakage magnetic field. The performance of the method is validated across two key topologies: series–series (S–S or SS) and the double-sided inductor–capacitor–capacitor (LCC, LCC–LCC) topologies. By minimizing the vector phasor sum of the coil currents, the proposed approach effectively mitigates magnetic field leakage. The method is further validated through mathematical derivations, simulations, and experimental tests. The results reveal that using the proposed method to select resonance capacitances reduces the leakage magnetic field by up to 35.2% in the SS topology and by 42.0% in the double-sided LCC topology. Furthermore, the method improves the ZPA by more than 20° in both cases. These outcomes affirm the effectiveness of the proposed resonance tuning approach. Full article
(This article belongs to the Special Issue Wireless Power Transfer Technology and Its Applications)
Show Figures

Figure 1

20 pages, 8715 KiB  
Article
A New Magnetic Coupler with High Misalignment Tolerance and Inherent Constant Current–Constant Voltage for Underground Wireless Charging
by Kai Yan, Ruirong Dang, Xudong Feng and Wenzhen Wang
Energies 2024, 17(20), 5130; https://doi.org/10.3390/en17205130 - 15 Oct 2024
Cited by 2 | Viewed by 994
Abstract
In an underground inductive power transfer (IPT), it is inevitable to produce the phenomenon of misalignment between the transmitter and the receiver, which will reduce the output current, voltage and output efficiency of the whole IPT system. Aiming to solve this problem, a [...] Read more.
In an underground inductive power transfer (IPT), it is inevitable to produce the phenomenon of misalignment between the transmitter and the receiver, which will reduce the output current, voltage and output efficiency of the whole IPT system. Aiming to solve this problem, a universal hybrid coupler is proposed, which can still stabilize the output in the expected range and has the ability of anti-misalignment when the X and Z directions are misaligned. The coupler is composed of a BP coupler and Γ type network. The secondary edge of the coupler introduces a Γ network, which decouples the two main coils on the same side of the receiver from the auxiliary coil and reduces the complexity of the system. The coupler can effectively reduce the coupling fluctuation caused by physical movement between the downhole transmitting end and the receiving end, thereby ensuring the stable output of the coupler. As a widely used IPT system, it can access the rest of the circuit topology whose output is independent of the load and achieve misalignment-tolerant output. Finally, based on the proposed hybrid IPT coupler theory, a 500 W misalignment-tolerant coupler prototype was built, and the compensation topologies were configured as series–series (SS) and series/inductance/capacitance/capacitor (S/LCC) structures. When the X and Z direction is misaligned, the constant current and voltage independent of the load can be output by switching the compensation topology. The experimental results are the same as the theoretical analysis. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

18 pages, 3556 KiB  
Article
Optimization of Coreless PCB Coils Based on a Modified Taguchi Tuning Method for WPT of Pedelec
by Yu-Kai Chen and Cheng-An Wang
Processes 2024, 12(10), 2148; https://doi.org/10.3390/pr12102148 - 2 Oct 2024
Viewed by 1049
Abstract
The printed circuit board (PCB) winding coil offers advantages such as small size, high precision, high repeatability, and low cost, making it conducive to the miniaturization of electronic equipment and a popular choice in wireless power transmission systems. This paper aims to clarify [...] Read more.
The printed circuit board (PCB) winding coil offers advantages such as small size, high precision, high repeatability, and low cost, making it conducive to the miniaturization of electronic equipment and a popular choice in wireless power transmission systems. This paper aims to clarify the correlation between induction parameters and inductive capabilities using the orthogonal array of the modified Taguchi method for Pedelec applications. The conventional Taguchi method typically achieves only local optimization; however, this paper considers practical application conditions and combines experimental data to establish the initial values of the orthogonal array, thereby achieving global optimization. Additionally, the tuning process of the Taguchi method replaces physical experiments with simulations, enhancing optimization speed and reducing hardware implementation costs. The performance index for the proposed modified Taguchi tuning method is selected as a combination of the quality factor (Q) and coupling coefficient (k) to minimize AC resistance and improve system efficiency. To validate the proposed method, the designed coils were implemented and tested in a WPT system based on S–S compensation with a half-bridge topology. The experimental results demonstrate that the optimized PCB coil parameters derived from the proposed tuning method accurately validate the method’s effectiveness and accuracy. From the measured results with the proposed modified tuning method, the system efficiency is increased by 43.87% and the system transmitting power is increased by 28.51%. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

11 pages, 2808 KiB  
Article
Facile Splint-Free Circularization of ssDNA with T4 DNA Ligase by Redesigning the Linear Substrate to Form an Intramolecular Dynamic Nick
by Wenhua Sun, Kunling Hu, Mengqin Liu, Jian Luo, Ran An and Xingguo Liang
Biomolecules 2024, 14(8), 1027; https://doi.org/10.3390/biom14081027 - 18 Aug 2024
Cited by 2 | Viewed by 2727
Abstract
The efficient preparation of single-stranded DNA (ssDNA) rings, as a macromolecular construction approach with topological features, has aroused much interest due to the ssDNA rings’ numerous applications in biotechnology and DNA nanotechnology. However, an extra splint is essential for enzymatic circularization, and by-products [...] Read more.
The efficient preparation of single-stranded DNA (ssDNA) rings, as a macromolecular construction approach with topological features, has aroused much interest due to the ssDNA rings’ numerous applications in biotechnology and DNA nanotechnology. However, an extra splint is essential for enzymatic circularization, and by-products of multimers are usually present at high concentrations. Here, we proposed a simple and robust strategy using permuted precursor (linear ssDNA) for circularization by forming an intramolecular dynamic nick using a part of the linear ssDNA substrate itself as the template. After the simulation of the secondary structure for desired circular ssDNA, the linear ssDNA substrate is designed to have its ends on the duplex part (≥5 bp). By using this permuted substrate with 5′-phosphate, the splint-free circularization is simply carried out by T4 DNA ligase. Very interestingly, formation of only several base pairs (2–4) flanking the nick is enough for ligation, although they form only instantaneously under ligation conditions. More significantly, the 5-bp intramolecular duplex part commonly exists in genomes or functional DNA, demonstrating the high generality of our approach. Our findings are also helpful for understanding the mechanism of enzymatic DNA ligation from the viewpoint of substrate binding. Full article
Show Figures

Graphical abstract

Back to TopTop