Construction of a Transparent, Robust, Shape-Memory and Self-Healing MDI-Based Polyurethane Elastomer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of MPUE and MPUE-SSs
2.3. Characterization of Structural and Physicochemical Properties
2.4. Characterization of Mechanical Properties
2.5. Shape-Memory Property
3. Results and Discussion
3.1. Structure of MPUE and MPUE-SSs
3.2. Thermal Behaviors
3.3. Mechanical and Self-Healing Properties
3.4. Shape-Memory Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Zhao, Q.; Qi, H.J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49–50, 79–120. [Google Scholar] [CrossRef]
- Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Adv. Mater. 2021, 33, 2000713. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Yang, R.Q.; Wang, Z.; Liu, Y.T.; Zhang, Q.C.; He, B.; Li, K.W.; Yang, Q.; Wei, L.; Pan, C.F.; et al. Bioinspired Self-healing Soft Electronics. Adv. Funct. Mater. 2023, 33, 2214479. [Google Scholar] [CrossRef]
- Jiang, Z.; Diggle, B.; Tan, M.L.; Viktorova, J.; Bennett, C.W.; Connal, L.A. Extrusion 3D Printing of Polymeric Materials with Advanced Properties. Adv. Sci. 2020, 7, 2001379. [Google Scholar] [CrossRef]
- Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J.M.; Laycock, B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019, 90, 211–268. [Google Scholar] [CrossRef]
- Xu, Z.; Cui, Y.; Li, T.; Dang, H.; Li, J.; Cheng, F. Enhanced Mechanical and Shape Memory Properties of Poly (propylene glycol)-Based Star-Shaped Polyurethane. Macromol. Chem. Phys. 2020, 221, 2000082. [Google Scholar] [CrossRef]
- An, Z.W.; Xue, R.; Ye, K.; Zhao, H.; Liu, Y.; Li, P.; Chen, Z.M.; Huang, C.X.; Hu, G.H. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods. Nanoscale 2023, 15, 6505–6520. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Zhao, P.C.; Chen, S.Y.; Zheng, Y.X.; Zuo, J.L.; Li, C.H. Tough, Reprocessable, and Recyclable Dynamic Covalent Polymers with Ultrastable Long-Lived Room-Temperature Phosphorescence. Angew. Chem. Int. Ed. 2023, 62, e202301993. [Google Scholar] [CrossRef]
- Li, Z.; Yu, R.; Guo, B. Shape-Memory and Self-Healing Polymers Based on Dynamic Covalent Bonds and Dynamic Noncovalent Interactions: Synthesis, Mechanism, and Application. ACS Appl. Bio Mater. 2021, 4, 5926–5943. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhou, S.; Wu, Z.; Yang, X.; Li, N.; Qin, Z.; Jiao, T. Room-temperature self-healing and recyclable polyurethane elastomers with high strength and superior robustness based on dynamic double-crosslinked structure. Chem. Eng. J. 2023, 466, 143179. [Google Scholar] [CrossRef]
- Xu, H.; Tu, J.; Li, H.; Ji, J.; Liang, L.; Tian, J.; Guo, X. Room-temperature self-healing, high ductility, recyclable polyurethane elastomer fabricated via asymmetric dynamic hard segments strategy combined with self-cleaning function application. Chem. Eng. J. 2023, 454, 140101. [Google Scholar] [CrossRef]
- Rong, H.; Wang, M.; Zhang, Y.; Lu, X. A high strength, high toughness and transparent room-temperature self-healing elastomer based on the synergy effect of quadruple dynamic bonding structure. React. Funct. Polym. 2023, 185, 105531. [Google Scholar] [CrossRef]
- Li, Q.; Guo, L.; Qiu, T.; Ye, J.; He, L.; Li, X.; Tuo, X. Polyurethane/polyphenylsilsequiloxane nanocomposite: From waterborne dispersions to coating films. Prog. Org. Coat. 2018, 122, 19–29. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Li, W.; Ru, Y.; Li, Y.; Sun, A.; Wei, L. Engineered self-healable elastomer with giant strength and toughness via phase regulation and mechano-responsive self-reinforcing. Chem. Eng. J. 2021, 410, 128300. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Zhang, S.; Yin, Y.; Wang, C. UV-resistant transparent lignin-based polyurethane elastomer with repeatable processing performance. Eur. Polym. J. 2021, 159, 110763. [Google Scholar] [CrossRef]
- Kim, S.M.; Jeon, H.; Shin, S.H.; Park, S.A.; Jegal, J.; Hwang, S.Y.; Oh, D.X.; Park, J. Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv. Mater. 2018, 30, 1705145. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Yang, B.; Wang, L.; Sun, H. A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds. New J. Chem. 2020, 44, 5746–5754. [Google Scholar] [CrossRef]
- Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, Transparent, Robust, and Fast Scratch-Self-Healing Elastomers via a Phase-Locked Dynamic Bonds Design. Adv. Mater. 2018, 30, 1802556. [Google Scholar] [CrossRef]
- Chang, K.; Jia, H.; Gu, S.-Y. A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Eur. Polym. J. 2019, 112, 822–831. [Google Scholar] [CrossRef]
- Chen, P.H.; Yang, Y.F.; Lee, D.K.; Lin, Y.F.; Wang, H.H.; Tsai, H.B.; Tsai, R.S. Synthesis and properties of transparent thermoplastic segmented polyurethanes. Adv. Polym. Technol. 2007, 26, 33–40. [Google Scholar] [CrossRef]
- Saiani, A.; Daunch, W.A.; Verbeke, H.; Leenslag, J.W.; Higgins, J.S. Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 1. Thermodynamic Investigation. Macromolecules 2001, 34, 9059–9068. [Google Scholar] [CrossRef]
- Choi, T.; Weksler, J.; Padsalgikar, A.; Runt, J. Novel Hard-Block Polyurethanes with High Strength and Transparency for Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2011, 22, 973–980. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, J.; Situ, G.; Li, C.; Zhang, C.; Li, F.; Li, C.-H.; Luo, Z.; Zhang, X. Aromatic disulfide-induced self-reinforcing polyurethane elastomer with self-healability. Chem. Eng. J. 2023, 469, 143958. [Google Scholar] [CrossRef]
- Sonnenschein, M.F.; Rondan, N.; Wendt, B.L.; Cox, J.M. Synthesis of transparent thermoplastic polyurethane elastomers. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 271–278. [Google Scholar] [CrossRef]
- Fortman, D.J.; Snyder, R.L.; Sheppard, D.T.; Dichtel, W.R. Rapidly Reprocessable Cross-Linked Polyhydroxyurethanes Based on Disulfide Exchange. ACS Macro Lett. 2018, 7, 1226. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, D. A Novel Self-Healing Polyurethane Based on Disulfide Bonds. Macromol. Chem. Phys. 2016, 217, 1191–1196. [Google Scholar] [CrossRef]
- Hao, Z.; Shan, B.; Liu, P.; Wu, Y.; Cao, X. Preparation and Characterization of a Novel Self-Healing Polyurethane-Modified Asphalt Based on Dynamic Disulfide Bond. J. Mater. Civ. Eng. 2024, 36, 04023627. [Google Scholar] [CrossRef]
- Ha, Y.-m.; Kim, Y.-O.; Ahn, S.; Lee, S.-k.; Lee, J.-s.; Park, M.; Chung, J.W.; Jung, Y.C. Robust and stretchable self-healing polyurethane based on polycarbonate diol with different soft-segment molecular weight for flexible devices. Eur. Polym. J. 2019, 118, 36–44. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S. Triple Shape Memory Effect of Star-Shaped Polyurethane. ACS Appl. Mater. Interfaces 2014, 6, 6545–6554. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.T.; Runt, J.; Lin, J.S. Microphase separation of segmented poly(urethane urea) block copolymers. Macromolecules 2000, 33, 6353–6359. [Google Scholar] [CrossRef]
- Li, Y.-H.; Guo, W.-J.; Li, W.-J.; Liu, X.; Zhu, H.; Zhang, J.-P.; Liu, X.-J.; Wei, L.-H.; Sun, A.-L. Tuning hard phase towards synergistic improvement of toughness and self-healing ability of poly(urethane urea) by dual chain extenders and coordinative bonds. Chem. Eng. J. 2020, 393, 124583. [Google Scholar] [CrossRef]
- Bates, S.R.G.; Farrow, I.R.; Trask, R.S. 3D printed polyurethane honeycombs for repeated tailored energy absorption. Mater. Des. 2016, 112, 172–183. [Google Scholar] [CrossRef]
- Miller, A.T.; Safranski, D.L.; Smith, K.E.; Sycks, D.G.; Guldberg, R.E.; Gall, K. Fatigue of injection molded and 3D printed polycarbonate urethane in solution. Polymer 2017, 108, 121–134. [Google Scholar] [CrossRef]
- He, M.; Li, R.; Hao, M.; Tao, Y.; Wang, P.; Bian, X.; Dang, H.; Wang, Y.; Li, Z.; Zhang, T. Novel Design of Eco-Friendly High-Performance Thermoplastic Elastomer Based on Polyurethane and Ground Tire Rubber toward Upcycling of Waste Tires. Polymers 2024, 16, 2448. [Google Scholar] [CrossRef]
- Chen, K.S.; Yu, T.L.; Chen, Y.S.; Lin, T.L.; Liu, W.J. Soft- and hard-segment phase segregation of polyester-based polyurethane. J. Polym. Res. 2001, 8, 99–109. [Google Scholar] [CrossRef]
- Ren, L.; Kang, N.-G.; Shah, P.N.; Faust, R. Synthesis and thermal transition behavior of model thermoplastic polyurethanes containing MDI/butanediol-based monodisperse hard segments. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3171–3181. [Google Scholar] [CrossRef]
- Deng, X.-Y.; Xie, H.; Du, L.; Fan, C.-J.; Cheng, C.-Y.; Yang, K.-K.; Wang, Y.-Z. Polyurethane networks based on disulfide bonds: From tunable multi-shape memory effects to simultaneous self-healing. Sci. China Mater. 2019, 62, 437–447. [Google Scholar] [CrossRef]
- Jia, X.-Y.; Mei, J.-F.; Lai, J.-C.; Li, C.-H.; You, X.-Z. A Highly Stretchable Polymer that Can Be Thermally Healed at Mild Temperature. Macromol. Rapid Commun. 2016, 37, 952–956. [Google Scholar] [CrossRef]
- Li, F.K.; Zhang, X.; Hou, J.N.; Xu, M.; Lu, X.L.; Ma, D.Z.; Kim, B.K. Studies on thermally stimulated shape memory effect of segmented polyurethanes. J. Appl. Polym. Sci. 1997, 64, 1511–1516. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, D. Shape memory-assisted self-healing polyurethane inspired by a suture technique. J. Mater. Sci. 2018, 53, 10582–10592. [Google Scholar] [CrossRef]
Sample | n (OH Diol):n(NCO MDI):n(OH Extender) | BDO:HEDS | Sulfur Content a (wt%) | Mn (×104) | Mw (×104) | PDI b | [η] | Hard Segment Content c (wt%) |
---|---|---|---|---|---|---|---|---|
MPUE | 1:4:3 | 4:0 | 0 | 1.05 | 2.41 | 2.30 | 0.98 | 55.9 |
MPUE-SS-1 | 1:4:3 | 3:1 | 2.1% | 1.09 | 2.68 | 2.46 | 1.01 | 57.7 |
MPUE-SS-2 | 1:4:3 | 2:2 | 4.1% | 1.01 | 3.23 | 3.20 | 1.34 | 58.6 |
MPUE-SS-3 | 1:4:3 | 0:4 | 7.6% | 0.98 | 2.13 | 2.17 | 0.74 | 60.3 |
MPUE-SS-4 | 1:2:1 | 2:2 | 2.0% | 1.28 | 4.57 | 3.57 | 1.20 | 39.2 |
MPUE-SS-5 | 1:3:2 | 2:2 | 3.2% | 3.27 | 12.59 | 3.85 | 1.63 | 50.8 |
Sample | Tg, s (°C) | Tg, h (°C) | Tm1 (°C) | ∆Hm1 (J g−1) | Tm2 (°C) | ∆Hm2 (J g−1) | Tg (°C) |
---|---|---|---|---|---|---|---|
MPUE | −15.9 | 48.6 | 124.1 | 1.56 | 177 | 14.1 | −1.5 |
MPUE-SS-1 | −0.20 | 51.9 | 124.2 | 4.11 | 178 | 9.5 | 13.2 |
MPUE-SS-2 | 20.4 | 71.1 | --- a | --- | --- | --- | 38.3 |
MPUE-SS-3 | 8.2 | --- | --- | --- | 172 | 13.24 | 11.3 |
Samples | Original | After 24 h Healing | Self-Healing Efficiency (%) | ||
---|---|---|---|---|---|
Tensile Strength (MPa) | Elongation at Break (%) | Tensile Strength (MPa) | Elongation at Break (%) | ||
MPUE | 30.0 ± 0.5 | 380 ± 5 | 9.0 ± 0.3 | 60.8 ± 3 | 30.0 ± 0.5 |
MPUE-SS-1 | 35.2 ± 0.2 | 273 ± 2 | 18.7 ± 0.3 | 66.2 ± 6 | 53.2 ± 1.2 |
MPUE-SS-2 | 33.9 ± 0.2 | 292 ± 3 | 23.3 ± 0.2 | 194 ± 2 | 68.7 ± 0.6 |
MPUE-SS-3 | 27.2 ± 0.3 | 292 ± 8 | 20.6 ± 0.5 | 31.2 ± 1 | 75.7 ± 1.3 |
MPUE-SS-4 | 27.4 ± 0.5 | 453 ± 9 | 16.6 ± 0.3 | 525 ± 10 | 65.3 ± 0.9 |
MPUE-SS-5 | 39.9 ± 0.3 | 285 ± 2 | 36.9 ± 0.5 | 308 ± 1 | 95.0 ± 2.8 |
Samples | Rf (%) | Rr (%) |
---|---|---|
MPUE | 94.0 | 73.2 |
MPUE-SS-1 | 99.8 | 85.0 |
MPUE-SS-2 | 99.8 | 88.9 |
MPUE-SS-3 | 94.0 | 86.7 |
MPUE-SS-4 | 99.4 | 96.0 |
MPUE-SS-5 | 99.6 | 96.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, H.; Zhang, Z.; Sun, R.; Li, Y.; Lin, M.; Yang, S.; He, M.; Xu, Z.; Bian, X. Construction of a Transparent, Robust, Shape-Memory and Self-Healing MDI-Based Polyurethane Elastomer. Polymers 2025, 17, 1243. https://doi.org/10.3390/polym17091243
Dang H, Zhang Z, Sun R, Li Y, Lin M, Yang S, He M, Xu Z, Bian X. Construction of a Transparent, Robust, Shape-Memory and Self-Healing MDI-Based Polyurethane Elastomer. Polymers. 2025; 17(9):1243. https://doi.org/10.3390/polym17091243
Chicago/Turabian StyleDang, Haichun, Ziliang Zhang, Ruibing Sun, Yunlun Li, Mengyu Lin, Siting Yang, Maoyong He, Zhaozan Xu, and Xiangcheng Bian. 2025. "Construction of a Transparent, Robust, Shape-Memory and Self-Healing MDI-Based Polyurethane Elastomer" Polymers 17, no. 9: 1243. https://doi.org/10.3390/polym17091243
APA StyleDang, H., Zhang, Z., Sun, R., Li, Y., Lin, M., Yang, S., He, M., Xu, Z., & Bian, X. (2025). Construction of a Transparent, Robust, Shape-Memory and Self-Healing MDI-Based Polyurethane Elastomer. Polymers, 17(9), 1243. https://doi.org/10.3390/polym17091243