Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Manual Measurement Data of Tassel
2.2. TIPS Development and Image Acquisition
2.3. Point Cloud Generation and Preprocessing
2.4. Extraction of Phenotypic Parameters for Maize Tassel
2.5. Methods of Cluster Analysis
- (1)
- Initialize the original data point matrix X and randomly generate the initial affiliation matrix U. Note that the initialized affiliation matrix must satisfy = 1, where is the row number, and k is the column number, from 1 to 11. Normalize the affiliation of each data point so that the sum of its affiliations to all clusters equals 1. Normalize the affiliation of each data point using the formula so that the sum of its affiliations to all clusters equals 1. Here, the normalization still results in the matrix U.(Ld, Lt, Branchnum, Lm, Lp, Lc, La, Crownarea, Crowndiam (AVG), Lb (all), and CrownVolume)
- (2)
- The next step is to calculate the clustering center for each phenotypic parameter, where k is the number of features (here, 11), and the fuzzy coefficient m usually takes the value of 2.The cluster centroids are obtained by calculating as follows.
- (3)
- Compute the Euclidean distance from each data point to each cluster center . The calculation process and results are as follows:
- (4)
- Update the affiliation matrix based on the distance and fuzzy coefficients U, where each element in the U matrix is calculated as follows:Use the new post U11…U1127-11 to update the affiliation matrix U. Repeat processes (2) to (4) until the affiliation matrix U converges or reaches the set maximum number of iterations, i.e., 2000.
2.6. Accuracy Evaluation
3. Results
3.1. Reconstruction Results of the 3D Topological Structure of the Tassel
3.2. Variability Analysis of Point Cloud and Extraction Results
3.3. Analysis Results of Phenotypic Parameter Correlations and Importance
3.4. Different Genotype Classification Results
3.5. Comparison of Clustering Results for Different Phenotypic Parameters
4. Discussion
4.1. Comparison of Results from Different Clustering Methods
4.2. Clustering Results Under Different Clustering Modes
4.3. Comparison with Clustering Results of Measured Values
5. Conclusions
- (a)
- The system developed in this study has high efficiency and accuracy for extracting the structural phenotypes of maize tassel with high precision, especially the use of the combination of Gaussian filtering and DBSCAN algorithms to achieve the separation of the point cloud of the tassel of a single plant proved to be very effective.
- (b)
- For the classification of genotypes of maize materials, the parameter importance was Branchnum > Lb (all) > Lt > Ld > Lp > Lc > La > Lm > Crownarea > Crowndiam (AVG) > CrownVolume, which revealed the magnitude of the variability of the tassel phenotypic parameters of the different genotypes of the maize materials.
- (c)
- Compared with the traditional RF, SVM, and BPNN methods based on supervised classification, the GFC algorithm, an unsupervised classification method, separated NSS and TST maize genotypes more efficiently, with accuracies of 67.7% and 78.5%.
- (d)
- Comparing the clustering results of the measured data and the predicted data, although the clustering accuracy of the measured data is 5–10% higher than that of the predicted data, the method in this study has a higher economic and practical value.
- (e)
- Compared with the traditional process of classifying maize materials by using gene locus information, which is complicated, difficult to operate, and costly, this study has pioneered the first research on clustering maize genotypes using the phenotypic parameters of maize tassels and has proven that its results are more efficient, economical, easy to operate, and highly accurate. The fuzziness, probabilistic nature, and sensitivity to the normal distribution data of the Gaussian Fuzzy Clustering algorithm are in line with the classification rules for maize material genotypes and the characteristics of the sample data used in this study. Therefore, it has relatively good classification accuracy.
- (f)
- Phenotype is the result of gene action. The variability of the branch number, branch length, and main spike length, as well as the clustering accuracy results in this study, fully demonstrate that the heritability of tassel phenotypic traits in different maize genotypes is relatively strong.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 2017, 38, 184–192. [Google Scholar] [CrossRef]
- Han, D.; Yang, G.; Yang, H.; Qiu, C.; Chen, M.; Wen, W.; Niu, Q.; Yang, W. Three Dimensional Information Extraction from Maize Tassel Based on Stereoscopic Vision; Chinese Society of Agricultural Engineering: Beijing, China, 2018. [Google Scholar]
- Geraldi, I.; Miranda Filho, J.; Vencovsky, R. Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives. Maydica 1985, 30, 1–14. [Google Scholar]
- Liu, J.; Bai, Z.; Wu, W. Evolution of main ear traits of maize hybrids and their effects on breeding objectives. Maize Sci. 2004, 12 (Suppl. S2), 3–4. [Google Scholar]
- Xu, G.; Wang, X.; Huang, C.; Xu, D.; Li, D.; Tian, J.; Chen, Q.; Wang, C.; Liang, Y.; Wu, Y. Complex genetic architecture underlies maize tassel domestication. New Phytol. 2017, 214, 852–864. [Google Scholar] [CrossRef]
- Berke, T.; Rocheford, T. Quantitative trait loci for tassel traits in maize. Crop Sci. 1999, 39, 1439–1443. [Google Scholar] [CrossRef]
- Upadyayula, N.; Da Silva, H.; Bohn, M.O.; Rocheford, T. Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor. Appl. Genet. 2006, 112, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Kusmec, A.; Mirnezami, S.V.; Attigala, L.; Srinivasan, S.; Jubery, T.Z.; Schnable, J.C.; Salas-Fernandez, M.G.; Ganapathysubramanian, B.; Schnable, P.S. Identification and utilization of genetic determinants of trait measurement errors in image-based, high-throughput phenotyping. Plant Cell 2021, 33, 2562–2582. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, J.; Han, L.; Liang, C.; Li, J.; Shang, X.; Miao, X.; Luo, Z.; Zhu, W.; Li, Z. QTG-Miner aids rapid dissection of the genetic base of tassel branch number in maize. Nat. Commun. 2023, 14, 5232. [Google Scholar] [CrossRef] [PubMed]
- Xhu, B.; Liu, F.; Che, Y.; Hui, F.; Ma, Y. Three-dimensional quantification of intercropping crops in field by ground and aerial photography. In Proceedings of the 2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA), Hefei, China, 4–8 November 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 8–12. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, C.; Wu, D.; Qiao, F.; Li, W.; Duan, L.; Wang, K.; Xiao, Y.; Chen, G.; Liu, Q. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol. 2017, 173, 1554–1564. [Google Scholar] [CrossRef]
- Das Choudhury, S.; Samal, A.; Awada, T. Leveraging image analysis for high-throughput plant phenotyping. Front. Plant Sci. 2019, 10, 508. [Google Scholar] [CrossRef] [PubMed]
- Das Choudhury, S.; Maturu, S.; Samal, A.; Stoerger, V.; Awada, T. Leveraging image analysis to compute 3D plant phenotypes based on voxel-grid plant reconstruction. Front. Plant Sci. 2020, 11, 521431. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Czauderna, T.; Hoffmann, R.; Stein, N.; Schreiber, F. HTPheno: An image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform. 2011, 12, 148. [Google Scholar] [CrossRef]
- Gage, J.L.; Miller, N.D.; Spalding, E.P.; Kaeppler, S.M.; de Leon, N. TIPS: A system for automated image-based phenotyping of maize tassels. Plant Methods 2017, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Klukas, C.; Chen, D.; Pape, J.-M. Integrated analysis platform: An open-source information system for high-throughput plant phenotyping. Plant Physiol. 2014, 165, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.A.; Pound, M.; French, A.P.; Wells, D.M.; Murchie, E.; Pridmore, T. Approaches to three-dimensional reconstruction of plant shoot topology and geometry. Funct. Plant Biol. 2016, 44, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tang, L. Developing a low-cost 3d plant morphological traits characterization system. Comput. Electron. Agric. 2017, 143, 1–13. [Google Scholar] [CrossRef]
- Yang, W.; Guo, Z.; Huang, C.; Duan, L.; Chen, G.; Jiang, N.; Fang, W.; Feng, H.; Xie, W.; Lian, X. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 2014, 5, 5087. [Google Scholar] [CrossRef]
- Guo, W.; Fukatsu, T.; Ninomiya, S. Automated characterization of flowering dynamics in rice using field-acquired time-series rgb images. Plant Methods 2015, 11, 7. [Google Scholar] [CrossRef]
- Lu, H.; Cao, Z.; Xiao, Y.; Fang, Z.; Zhu, Y.; Xian, K. Fine-grained maize tassel trait characterization with multi-view representations. Comput. Electron. Agric. 2015, 118, 143–158. [Google Scholar] [CrossRef]
- Kükenbrink, D.; Schneider, F.D.; Leiterer, R.; Schaepman, M.E.; Morsdorf, F. Quantification of hidden canopy volume of airborne laser scanning data using a voxel traversal algorithm. Remote Sens. Environ. 2017, 194, 424–436. [Google Scholar] [CrossRef]
- Kunz, M.; Hess, C.; Raumonen, P.; Bienert, A.; Hackenberg, J.; Maas, H.; Härdtle, W.; Fichtner, A.; Von Oheimb, G. Comparison of wood volume estimates of young trees from terrestrial laser scan data. iFor. Biogeosci. For. 2017, 10, 451–458. [Google Scholar] [CrossRef]
- Thapa, S.; Zhu, F.; Walia, H.; Yu, H.; Ge, Y. A novel LiDAR-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum. Sensors 2018, 18, 1187. [Google Scholar] [CrossRef]
- Paulus, S.; Behmann, J.; Mahlein, A.-K.; Plümer, L.; Kuhlmann, H. Low-cost 3d systems: Suitable tools for plant phenotyping. Sensors 2014, 14, 3001–3018. [Google Scholar] [CrossRef] [PubMed]
- Chaivivatrakul, S.; Tang, L.; Dailey, M.N.; Nakarmi, A.D. Automatic morphological trait characterization for corn plants via 3d holographic reconstruction. Comput. Electron. Agric. 2014, 109, 109–123. [Google Scholar] [CrossRef]
- Wu, S.; Wen, W.; Gou, W.; Lu, X.; Zhang, W.; Zheng, C.; Xiang, Z.; Chen, L.; Guo, X. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction. Front. Plant Sci. 2022, 13, 897746. [Google Scholar] [CrossRef]
- Xu, B.; Wan, X.; Yang, H.; Feng, H.; Fu, Y.; Cen, H.; Wang, B.; Zhang, Z.; Li, S.; Zhao, C. TIPS: A three-dimensional phenotypic measurement system for individual maize tassel based on TreeQSM. Comput. Electron. Agric. 2023, 212, 108150. [Google Scholar] [CrossRef]
- Song, D. Clustering Study of Gene Expression Data Based on Gaussian Mixture Model. Ph.D. Thesis, Jiangsu University, Zhenjiang, China, 2015. [Google Scholar]
- Minton, R.L. Morphometrics Suggest Reduced Diversity in the Freshwater Snail Genus Gyrotoma Shuttleworth, 1845 (Gastropoda: Pleuroceridae). Ann. Carnegie Mus. 2021, 87, 79–88. [Google Scholar] [CrossRef]
- Yang, M.-S.; Chang-Chien, S.-J.; Nataliani, Y. Unsupervised fuzzy model-based Gaussian clustering. Inf. Sci. 2019, 481, 1–23. [Google Scholar] [CrossRef]
- Fuchs, R.; Pommeret, D.; Viroli, C. Mixed Deep Gaussian Mixture Model: A clustering model for mixed datasets. Adv. Data Anal. Classif. 2022, 16, 31–53. [Google Scholar] [CrossRef]
- Yang, X.; Gao, S.; Xu, S.; Zhang, Z.; Prasanna, B.M.; Li, L.; Li, J.; Yan, J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 2010, 28, 511–526. [Google Scholar] [CrossRef]
- Pan, C.-X.; Hu, Y.; Ji, H.-B.; Li, Y.-M.; Chen, N.-L. Phenotypic diversity and clustering analysis of watermelon germplasm. J. Plant Genet. Resour. 2015, 16, 59–63. [Google Scholar]
- Xie, Z.; Chen, S.; Gao, G.; Li, H.; Wu, X.; Meng, L.; Ma, Y. Evaluation of rapeseed flowering dynamics for different genotypes with UAV platform and machine learning algorithm. Precis. Agric. 2022, 23, 1688–1706. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Dai, H.; Yang, H.; Xu, B.; Feng, H.; Li, Z.; Yang, X. Fuzzy clustering of maize plant-height patterns using time series of UAV remote-sensing images and variety traits. Front. Plant Sci. 2019, 10, 926. [Google Scholar] [CrossRef]
- Rincón Sánchez, F.; Johnson, B.; Crossa, J.; Taba, S. Cluster analysis, an approach to sampling variability in maize accessions. Agric. Food Sci. 1996, 41, 4. [Google Scholar]
- Shrestha, J. Cluster analysis of maize inbred lines. J. Nepal Agric. Res. Counc. 2016, 2, 33–36. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 2000, 67, 170–181. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, Y.; Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1362–1376. [Google Scholar] [CrossRef]
- Wu, C.; Zhan, S. Three-dimensional face modeling of SFM algorithm based on gabor feature. J. Hefei Univ. Technol. Nat. Sci. Ed. 2017, 40, 180–185. [Google Scholar] [CrossRef]
- Dassot, M.; Colin, A.; Santenoise, P.; Fournier, M.; Constant, T. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric. 2012, 89, 86–93. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Raumonen, P.; Casella, E.; Calders, K.; Murphy, S.; Åkerblom, M.; Kaasalainen, M. Massive-scale tree modelling from TLS data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 189–196. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef]
- Hackenberg, J.; Spiecker, H.; Calders, K.; Disney, M.; Raumonen, P. SimpleTree—An efficient open source tool to build tree models from TLS clouds. Forests 2015, 6, 4245–4294. [Google Scholar] [CrossRef]
- Delagrange, S.; Jauvin, C.; Rochon, P. PypeTree: A tool for reconstructing tree perennial tissues from point clouds. Sensors 2014, 14, 4271–4289. [Google Scholar] [CrossRef]
- Moorthy, S.M.K.; Raumonen, P.; Van den Bulcke, J.; Calders, K.; Verbeeck, H. Terrestrial laser scanning for non-destructive estimates of liana stem biomass. For. Ecol. Manag. 2020, 456, 117751. [Google Scholar] [CrossRef]
- Hackenberg, J.; Morhart, C.; Sheppard, J.; Spiecker, H.; Disney, M. Highly accurate tree models derived from terrestrial laser scan data: A method description. Forests 2014, 5, 1069–1105. [Google Scholar] [CrossRef]
- Wei, X. EM Algorithm and Its Initialization for Parameter Estimation of Gaussian Mixture Models. Electron. Testing. 2011, 6, 26–30. [Google Scholar] [CrossRef]
- Xing, C.; Zhao, Q.; Wang, X. Research on accelerated EM algorithm based on robust Gaussian mixture model. Comput. Appl. Res. 2017, 4, 1042–1046. [Google Scholar]
- Wu, T. Application of Gaussian Mixture Model Based on EM Algorithm in Iris Dataset. Netw. Secur. Technol. Appl. 2022, 4, 47–49. [Google Scholar]
Definition | Name | Max Value (cm) | Min Value (cm) | Mean Value (cm) | Variance | Note |
---|---|---|---|---|---|---|
Main spike length | 56.50 | 14.50 | 30.50 | 5.25 | ||
Branch length | 40.6 | 16.90 | 28.73 | 4.01 | ||
Branch num | 38.00 | 2.00 | 12.37 | 6.22 | ||
Stalk diam | 6.15 | 0.14 | 0.73 | 0.66 | ||
Main spike diameter | 10.00 | 0.35 | 1.00 | 1.03 | ||
Stalk Length | 50.00 | 6.00 | 19.44 | 5.55 | ||
Maxcrowndiam | 38.50 | 1.80 | 10.37 | 6.70 | ||
Crown height | 36.30 | 3.00 | 18.32 | 4.50 |
Algorithms | Extracted Indicators |
---|---|
TreeQSM | Lt |
Lb(all) | |
Branchnum | |
Lc | |
La | |
Ld | |
Lm | |
Lp | |
Crowndiam(AVG) | |
Convex hull | Crownarea |
CrownVolume |
Variable Name | Symbol | Definition |
---|---|---|
Sample DataSet | X | Consists of d-dimensional sample points, that is, X = {x1, x2 … xn}, where d is a d-dimensional vector representing a sample point. |
Cluster Center | Represents the center of the k-th cluster and is a d-dimensional vector used to represent the typical position of this cluster in the feature space. | |
Membership Matrix | U | It is a n×c matrix, and the element represents the membership degree of the sample point xi belonging to cluster k, satisfying 1 for any i. |
Fuzziness Index | Each data point to each cluster center . When the distance is less than the set threshold, the point is assigned to the current category. |
Parameters | Variability (CV) |
---|---|
Ld | 26.8% |
Lt | 16.9% |
Branchnum | 55.6% |
Lm | 63.4% |
La | 18.3% |
Crowndiam (AVG) | 64.6% |
Crownarea | 58.2% |
Lb (all) | 67.1% |
Lp | 23.7% |
Lc | 16.9% |
CrownVolume | 82.9% |
Actual Results | |||||||||
---|---|---|---|---|---|---|---|---|---|
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | SS | 10 | 76 | 21 | 26 | 85.34 | 15.79 | 25.00 | 0.19 |
MIXED | 23 | 49 | 13 | 20 | 81.24 | 21.90 | 13.94 | 0.17 | |
NSS | 82 | 372 | 34 | 63 | 72.19 | 67.71 | 70.86 | 0.69 | |
TST | 50 | 18 | 16 | 311 | 83.84 | 78.53 | 74.05 | 0.76 | |
Total | 165 | 525 | 84 | 420 |
Group | Parameter Combinations | ||||||||
---|---|---|---|---|---|---|---|---|---|
A | Ld, Lt, Branchnum, Lm, Lp, Lc, La, Lb (all), Crowndiam (AVG), Crownarea, CrownVolume | ||||||||
B | Ld, Lt, Branchnum, Lm, Lp, Lc, La, Lb (all), Crowndiam (AVG) | ||||||||
C | Ld, Lt, Branchnum, Lm, Lp, Lc, La, Lb (all) | ||||||||
D | Ld, Lt, Branchnum, Lm, Lp, Lc, La | ||||||||
E | Ld, Lt, Branchnum, Lm, Lp, Lc | ||||||||
F | Branchnum, Lm, Lp | ||||||||
G | Lt, Lm, Lp | ||||||||
(A) | |||||||||
Actual Results | |||||||||
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | SS | 3 | 63 | 22 | 28 | 86.93 | 18.97 | 26.19 | 0.22 |
MIXED | 8 | 18 | 19 | 85 | 76.63 | 6.15 | 4.85 | 0.05 | |
NSS | 148 | 305 | 30 | 23 | 64.74 | 60.28 | 58.10 | 0.59 | |
TST | 6 | 139 | 13 | 284 | 75.38 | 64.25 | 67.62 | 0.66 | |
Total | 165 | 525 | 84 | 420 | |||||
(B) | |||||||||
Actual Results | |||||||||
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | SS | 11 | 51 | 0 | 29 | 85.34 | 0.00 | 0.00 | |
MIXED | 23 | 74 | 0 | 36 | 78.89 | 17.29 | 13.94 | 0.15 | |
NSS | 99 | 271 | 64 | 57 | 60.30 | 55.19 | 51.62 | 0.53 | |
TST | 32 | 129 | 20 | 288 | 73.79 | 61.41 | 68.57 | 0.65 | |
Total | 165 | 525 | 84 | 420 | |||||
(C) | |||||||||
Actual Results | |||||||||
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | SS | 27 | 54 | 0 | 20 | 84.51 | 0.00 | 0.00 | |
MIXED | 35 | 86 | 0 | 34 | 79.06 | 22.58 | 21.21 | 0.22 | |
NSS | 94 | 264 | 68 | 76 | 58.21 | 52.59 | 50.29 | 0.51 | |
TST | 9 | 101 | 16 | 290 | 78.56 | 63.71 | 69.05 | 0.69 | |
Total | 165 | 525 | 84 | 420 | |||||
(D) | |||||||||
Actual Results | |||||||||
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | SS | 27 | 92 | 15 | 34 | 81.41 | 8.93 | 17.86 | 0.12 |
MIXED | 21 | 61 | 0 | 45 | 79.06 | 16.54 | 12.73 | 0.14 | |
NSS | 70 | 230 | 69 | 157 | 50.50 | 43.73 | 43.81 | 0.44 | |
TST | 47 | 142 | 0 | 181 | 64.15 | 48.92 | 43.10 | 0.46 | |
Total | 165 | 525 | 84 | 420 | |||||
(E) | |||||||||
Actual Results | |||||||||
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | SS | 33 | 86 | 0 | 30 | 80.49 | 0.00 | 0.00 | |
MIXED | 6 | 108 | 15 | 50 | 72.19 | 3.35 | 3.64 | 0.03 | |
NSS | 82 | 217 | 31 | 156 | 51.68 | 44.65 | 41.33 | 0.43 | |
TST | 64 | 114 | 38 | 184 | 62.14 | 46.00 | 43.81 | 0.45 | |
Total | 165 | 525 | 84 | 420 | |||||
(F) | |||||||||
Actual Results | |||||||||
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | SS | 43 | 104 | 0 | 49 | 76.55 | 0.00 | 0.00 | |
MIXED | 23 | 116 | 0 | 14 | 77.22 | 15.03 | 13.94 | 0.14 | |
NSS | 72 | 215 | 66 | 193 | 46.31 | 39.38 | 40.95 | 0.40 | |
TST | 27 | 90 | 18 | 92 | 61.22 | 40.53 | 21.90 | 0.28 | |
Total | 165 | 525 | 84 | 420 | |||||
(G) | |||||||||
Actual Results | |||||||||
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | SS | 11 | 126 | 8 | 86 | 74.96 | 3.46 | 9.52 | 0.05 |
MIXED | 12 | 63 | 0 | 35 | 78.98 | 10.91 | 7.27 | 0.09 | |
NSS | 89 | 209 | 61 | 168 | 46.90 | 39.66 | 39.81 | 0.40 | |
TST | 53 | 127 | 15 | 131 | 59.46 | 40.18 | 31.19 | 0.35 | |
Total | 165 | 525 | 84 | 420 |
RF | SVM | BPNN | ||||
---|---|---|---|---|---|---|
Variety Number | Train Set Accuracy (%) | Validation Set Accuracy (%) | Train Set Accuracy (%) | Validation Set Accuracy (%) | Train Set Accuracy (%) | Validation Set Accuracy (%) |
1 | 93.24 | 46.48 | 61.90 | 57.7 | 54.17 | 53.52 |
2 | 88.49 | 53.52 | 54.76 | 49.30 | 61.90 | 53.52 |
3 | 90.10 | 54.93 | 57.14 | 50.70 | 60.71 | 56.34 |
4 | 97.11 | 50.70 | 52.98 | 47.89 | 60.12 | 46.48 |
5 | 86.99 | 49.30 | 60.71 | 49.30 | 55.36 | 49.30 |
6 | 88.24 | 57.75 | 62.50 | 50.7 | 47.62 | 57.75 |
7 | 96.75 | 56.34 | 57.74 | 42.25 | 59.52 | 43.66 |
8 | 96.81 | 57.75 | 64.29 | 39.40 | 55.95 | 56.34 |
9 | 95.49 | 57.75 | 60.12 | 46.48 | 55.36 | 60.56 |
10 | 88.24 | 59.15 | 56.55 | 53.52 | 56.55 | 52.11 |
11 | 96.11 | 52.11 | 58.33 | 45.07 | 53.57 | 45.07 |
12 | 91.05 | 54.93 | 61.90 | 52.11 | 60.12 | 46.48 |
13 | 86.92 | 52.11 | 61.30 | 45.07 | 41.67 | 42.25 |
14 | 90.73 | 54.93 | 60.71 | 50.70 | 59.93 | 52.64 |
15 | 92.94 | 47.89 | 57.14 | 49.30 | 57.14 | 49.30 |
16 | 85.61 | 47.89 | 60.71 | 39.44 | 51.79 | 52.11 |
17 | 93.67 | 50.71 | 63.11 | 52.10 | 52.38 | 53.52 |
18 | 92.68 | 52.11 | 55.36 | 45.07 | 62.55 | 52.11 |
19 | 88.35 | 49.30 | 53.57 | 56.34 | 55.90 | 38.03 |
20 | 92.94 | 50.71 | 64.29 | 57.75 | 56.55 | 43.66 |
Average | 91.73 | 52.82 | 59.26 | 49.01 | 55.94 | 50.24 |
Standard Deviation | 3.67 | 3.75 | 3.46 | 5.32 | 5.03 | 5.81 |
Actual Results | |||||||||
---|---|---|---|---|---|---|---|---|---|
Genotyping | MIXED | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Means | SS | 11 | 24 | 0 | 16 | 88.72 | 0.00 | 0.00 | |
MIXED | 65 | 109 | 15 | 68 | 75.53 | 25.25 | 39.34 | 0.31 | |
NSS | 72 | 229 | 46 | 184 | 49.95 | 43.16 | 43.62 | 0.43 | |
TST | 18 | 163 | 23 | 152 | 60.48 | 42.72 | 36.19 | 0.39 | |
HCM | SS | 24 | 30 | 0 | 5 | 88.02 | 0.00 | 0.00 | |
MIXED | 22 | 24 | 0 | 16 | 84.67 | 35.48 | 13.33 | 0.19 | |
NSS | 84 | 302 | 61 | 252 | 53.10 | 47.26 | 57.52 | 0.52 | |
TST | 35 | 169 | 23 | 147 | 63.15 | 47.70 | 49.29 | 0.48 | |
FCM | SS | 3 | 42 | 0 | 11 | 88.27 | 0.00 | 0.00 | |
MIXED | 54 | 109 | 15 | 89 | 72.86 | 20.22 | 32.73 | 0.25 | |
NSS | 76 | 302 | 46 | 68 | 65.41 | 61.38 | 57.52 | 0.59 | |
TST | 32 | 72 | 23 | 252 | 75.29 | 66.49 | 60.00 | 0.63 | |
Total | 165 | 525 | 84 | 420 |
Actual Results | ||||||||
---|---|---|---|---|---|---|---|---|
Genotyping | NSS | SS | TST | Accuracy (%) | Precision (%) | Recall (%) | F1 | |
Classification results | NSS | 393 | 76 | 237 | 66.33 | 29.92 | 282.14 | 0.54 |
TST | 122 | 23 | 163 | 77.89 | 35.57 | 73.94 | 0.48 | |
SS | 90 | 34 | 56 | 32.58 | 9.77 | 6.48 | 0.08 | |
Total | 605 | 133 | 456 |
Data Type | Actual Results | Data Type | Actual Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genotyping | MIXED | NSS | SS | TST | MIXED | NSS | SS | TST | Precision (%) | ||
Classification data | SS | 11 | 51 | 0 | 29 | Measured data | 13 | 43 | 0 | 19 | 0.00 |
MIXED | 23 | 74 | 0 | 36 | 20 | 62 | 1 | 29 | 17.86 | ||
NSS | 99 | 271 | 64 | 57 | 108 | 334 | 66 | 41 | 60.84 | ||
TST | 32 | 129 | 20 | 288 | 24 | 86 | 17 | 331 | 72.27 | ||
Total | 165 | 525 | 84 | 420 | 165 | 525 | 84 | 420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Zhao, C.; Yang, G.; Zhang, Y.; Liu, C.; Feng, H.; Yang, X.; Yang, H. Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering. Agriculture 2025, 15, 85. https://doi.org/10.3390/agriculture15010085
Xu B, Zhao C, Yang G, Zhang Y, Liu C, Feng H, Yang X, Yang H. Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering. Agriculture. 2025; 15(1):85. https://doi.org/10.3390/agriculture15010085
Chicago/Turabian StyleXu, Bo, Chunjiang Zhao, Guijun Yang, Yuan Zhang, Changbin Liu, Haikuan Feng, Xiaodong Yang, and Hao Yang. 2025. "Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering" Agriculture 15, no. 1: 85. https://doi.org/10.3390/agriculture15010085
APA StyleXu, B., Zhao, C., Yang, G., Zhang, Y., Liu, C., Feng, H., Yang, X., & Yang, H. (2025). Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering. Agriculture, 15(1), 85. https://doi.org/10.3390/agriculture15010085