Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = SNS fiber structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 46031 KB  
Article
Cross-Scale Modeling of CFRP Stacking Sequence in Filament-Wound Composite Pressure Vessels: In-Plane and Inter-Layer Homogenization Analysis
by Ziqi Wang, Ji Shi, Xiaodong Zhao, Hui Li, Huiming Shen, Jianguo Liang and Jun Feng
Materials 2025, 18(19), 4612; https://doi.org/10.3390/ma18194612 - 5 Oct 2025
Viewed by 253
Abstract
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization [...] Read more.
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization method to achieve cross-scale modeling of carbon fiber-reinforced plastic (CFRP) layers, accounting for both lay-up sequence and in-plane FW diamond-shaped form. The stacking sequence in an FW Type IV composite pressure vessel is numerically investigated through ply modeling and cross-scale homogenization. The composite tank structure, featuring a polyamide PA66 liner, is designed for a working pressure of 70 MPa and comprises 12 helical winding layers and 17 hoop winding layers. An FW cross-undulation representative volume element (RVE) is developed based on actual in-plane mesostructures, suggesting an equivalent laminate RVE effective elastic modulus. Furthermore, six different lay-up sequences are numerically compared using ply models and fully and partially homogenized models. The structural displacements in both radial and axial directions are validated across all modeling approaches. The partial homogenization method successfully captures the detailed fiber-direction stress distribution in the innermost two hoop or helical layers. By applying the Hashin tensile failure criterion, the burst pressure of the composite tank is evaluated, revealing 7.56% deviation between the partial homogenization model and the ply model. Fatigue life analysis of the Type IV composite pressure vessel is conducted using ABAQUS® coupled with FE-SAFE, incorporating an S-N curve for polyamide PA66. The results indicate that the fatigue cycles of the liner exhibit only 0.28% variation across different stacking sequences, demonstrating that homogenization has a negligible impact on liner lifecycle predictions. The proposed cross-scale modeling framework offers an effective approach for multiscale simulation of FW composite pressure vessels, balancing computational efficiency with accuracy. Full article
Show Figures

Figure 1

17 pages, 4501 KB  
Article
Highly Sensitive SNS Structure Fiber Liquid-Sealed Temperature Sensor with PVA-Based Cladding for Large Range
by Si Cheng, Chuan Tian, Xiaolei Bai and Zhiyu Zhang
Photonics 2025, 12(9), 887; https://doi.org/10.3390/photonics12090887 - 3 Sep 2025
Viewed by 577
Abstract
A liquid-sealed single-mode–no-core–single-mode (SNS) structure fiber temperature sensor based on polyvinyl alcohol (PVA) partial replacement coating is proposed. Using a liquid-sealed glass capillary structure, the PVA solution is introduced into the SNS structure and avoids its influence by environmental humidity. Temperature can be [...] Read more.
A liquid-sealed single-mode–no-core–single-mode (SNS) structure fiber temperature sensor based on polyvinyl alcohol (PVA) partial replacement coating is proposed. Using a liquid-sealed glass capillary structure, the PVA solution is introduced into the SNS structure and avoids its influence by environmental humidity. Temperature can be obtained by measuring the shift of the multimode interference spectrum, which is affected by the thermal optical effect of the PVA solution. Through theoretical simulation of the sensor, the optimal NCF fiber length and coating stripped length are obtained by comprehensively considering the transmitted loss and output spectrum signal-to-noise ratio (SNR). The optimal PVA solution concentration is selected by measuring the thermo-optic coefficient (TOC) and refractive index (RI). Based on the theoretical optimization results, a PVA solution-coated SNS fiber optic temperature sensor is experimentally fabricated, and temperature-sensing characteristics are measured within −3.6 to 73.2 °C. The experimental results show that the sensor has a high sensitivity (nm/°C, maximum is 21.713 nm/°C) and has a resolution of 10−3 °C. λdip has a stable negative linear relationship with temperature, and the correlation coefficient of the fitting curve exceeds 95%. The temperature cycling experiment and long-term stability test show that the temperature sensor has good repeatability and stability. The experimental results also show the nonlinear relationship between the temperature measurement range and sensitivity, clarify the important factors affecting the response performance of fiber temperature sensors, and provide important reference values for optical fiber temperature sensors. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 22180 KB  
Article
Preparation of a Nano-Laminated Sc2SnC MAX Phase Coating on SiC Fibers via the Molten Salt Method
by Chenyang Wang, Lexiang Yin, Peng Li and Qing Huang
Materials 2025, 18(11), 2633; https://doi.org/10.3390/ma18112633 - 4 Jun 2025
Viewed by 729
Abstract
The incorporation of MAX phase interface layers into silicon carbide (SiC) composites has been shown to significantly enhance mechanical properties, particularly under irradiation conditions. However, conventional Ti-based MAX phases suffer from thermal instability and tend to decompose at high temperatures. In this work, [...] Read more.
The incorporation of MAX phase interface layers into silicon carbide (SiC) composites has been shown to significantly enhance mechanical properties, particularly under irradiation conditions. However, conventional Ti-based MAX phases suffer from thermal instability and tend to decompose at high temperatures. In this work, an Sc2SnC coating was successfully synthesized onto the surface of SiC fibers (SiCf) via an in situ reaction between metals and pyrolytic carbon (PyC) in a molten salt environment. The PyC layer, pre-deposited by chemical vapor deposition (CVD), served as both a carbon source and a structural template. Characterization by SEM, XRD, and Raman spectroscopy confirmed the formation of Sc2SnC coatings with a distinctive hexagonal flake-like morphology, accompanied by an internal ScCx intermediate layer. By turning the Sc-to-Sn ratio in the molten salt, coatings with varied morphologies were achieved. ScCx was identified as a critical intermediate phase in the synthesis process. The formation of numerous defects during the reaction enhanced element diffusion, resulting in preferential growth orientations and diverse grain structures in the Sc2SnC coating. Full article
Show Figures

Graphical abstract

26 pages, 8732 KB  
Article
Impact of CuSn10 Powder on Mechanical Properties and Tribological Performance of Novel Basalt Fiber-Reinforced Hybrid Composites
by Corina Birleanu, Bere Paul, Razvan Udroiu, Mircea Cioaza and Marius Pustan
Polymers 2025, 17(9), 1161; https://doi.org/10.3390/polym17091161 - 24 Apr 2025
Cited by 3 | Viewed by 664
Abstract
Hybrid composite materials reinforced with both fibers and particulate fillers are increasingly used in engineering due to their favorable balance of mechanical strength, reduced weight, and enhanced tribological performance. This study investigated the effect of CuSn10 bronze powder additions (5%, 10%, and 15% [...] Read more.
Hybrid composite materials reinforced with both fibers and particulate fillers are increasingly used in engineering due to their favorable balance of mechanical strength, reduced weight, and enhanced tribological performance. This study investigated the effect of CuSn10 bronze powder additions (5%, 10%, and 15% by weight) on the mechanical and tribological properties of novel basalt fiber-reinforced polymer (BFRP) composites. The composites were fabricated via vacuum-assisted processing and tested under dry sliding conditions with varying loads (10, 20, and 30 N) and sliding speeds (0.1, 0.25, and 0.36 m/s). The results show that the optimal tensile strength (440.6 MPa) was achieved at 10 wt% CuSn10, while the best tribological performance was observed at 15 wt% CuSn10, under a 10 N load and 0.25 m/s sliding speed, where the coefficient of friction decreased by up to 38% and the specific wear rate was reduced by more than 50% compared to the unreinforced BFRP composite. These enhancements are attributed to the formation of a stable oxide-based tribolayer (CuO, SnO2) and improved load transfer at the fiber–matrix interface. Statistical analysis (GLM) confirmed that CuSn10 content had the most significant influence on tribological parameters. The findings provide valuable insight into the design of high-performance hybrid composites for structural and tribological applications. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymeric Composites)
Show Figures

Figure 1

16 pages, 6430 KB  
Article
Self-Supporting Sn-Based Carbon Nanofiber Anodes for High-Performance Lithium-Ion Batteries
by Jingjie Xie and Lan Xu
Molecules 2025, 30(8), 1740; https://doi.org/10.3390/molecules30081740 - 13 Apr 2025
Viewed by 977
Abstract
Due to its high theoretical specific capacity, abundant resources, accessibility and environmental friendliness, Sn has been considered as a promising alternative to lithium-ion batteries (LIBs) anodes. However, Sn anodes still face great challenges such as huge volume change and low conductivity. Herein, a [...] Read more.
Due to its high theoretical specific capacity, abundant resources, accessibility and environmental friendliness, Sn has been considered as a promising alternative to lithium-ion batteries (LIBs) anodes. However, Sn anodes still face great challenges such as huge volume change and low conductivity. Herein, a self-supporting Sn-based carbon nanofiber anode for high-performance LIBs was prepared. Sn-based nanoparticles with high theoretical specific capacity were uniformly embedded in carbon nanofibers, which not only mitigated the volume expansion of Sn-based nanoparticles, but also obtained composite carbon nanofibers with excellent mechanical properties by adjusting the ratio of polyacrylonitrile to polyvinylpyrrolidone, exhibiting excellent electrochemical performance. The obtained optimal self-supporting Sn-based carbon nanofiber anode (Sn-SnO2/CNF-2) showed a discharge specific capacity of 607.28 mAh/g after 100 cycles at a current density of 500 mA/g. Even after 200 cycles, Sn-SnO2/CNF-2 still maintained a capacity of 543.78 mAh/g and maintained its original fiber structure well, demonstrating its good long-term cycling stability. This indicated that the self-supporting Sn-SnO2/CNF-2 anode had great potential for advanced energy storage. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Figure 1

25 pages, 12421 KB  
Article
Fluid–Structure Interaction of a Darrieus-Type Hydrokinetic Turbine Modified with Winglets
by Emerson Escobar Nunez, Diego García González, Omar Darío López, Juan Pablo Casas Rodríguez and Santiago Laín
J. Mar. Sci. Eng. 2025, 13(3), 548; https://doi.org/10.3390/jmse13030548 - 12 Mar 2025
Cited by 2 | Viewed by 1051
Abstract
The growing demand for electricity in developing countries has called attention and interest to renewable energy sources to mitigate the adverse environmental effects caused by energy generation through fossil fuels. Among different renewable energy sources, such as photovoltaic, wind, and biomass, hydraulic energy [...] Read more.
The growing demand for electricity in developing countries has called attention and interest to renewable energy sources to mitigate the adverse environmental effects caused by energy generation through fossil fuels. Among different renewable energy sources, such as photovoltaic, wind, and biomass, hydraulic energy represents an attractive solution to address the demand for electricity in rural areas of Colombia that are not connected to the electrical grid. In the current paper, the fluid–structure interaction (FSI) of a recently designed Vertical-Axis Hydrokinetic Turbine (VAHT) Straight-Bladed (SB) Darrieus-type, modified with symmetric winglets, was studied by implementing the sliding mesh method (SMM). By coupling with Computational Fluid Dynamics (CFD) numerical simulations, the FSI study demonstrated that the hydrodynamic loads obtained can cause potential fatigue damage in the blades of the Straight-Bladed (SB) Darrieus VAHT. Fatigue life was assessed using the stress–life (S-N) approach, and materials such as structural steel, short glass fiber reinforced composites (SGFRC), and high-performance polymers (HPP), such as PEEK, were studied as potential materials for the construction of the blades. FSI results showed that the biaxiality index (BI) provides a good understanding of the dominant stresses in the blades as the azimuth angle changes. It was also shown that structural steel and PEEK are good materials for the manufacturing of the blades, both from a fatigue resistance and modal perspective. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

21 pages, 3671 KB  
Review
Review of the Synthesis and Degradation Mechanisms of Some Biodegradable Polymers in Natural Environments
by Xiao Yao, Xue Yang, Yisang Lu, Yinyuan Qiu and Qinda Zeng
Polymers 2025, 17(1), 66; https://doi.org/10.3390/polym17010066 - 30 Dec 2024
Cited by 13 | Viewed by 5272
Abstract
The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation. This review [...] Read more.
The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation. This review is centered around dissecting the degradation mechanisms of specific biodegradable polymers, namely PLA, starch-based polymers, and plant fiber-based polymers. Recent investigations have unveiled that PLA exhibits augmented biocompatibility when combined with HA, and its degradation is subject to the influence of enzymatic and abiotic determinants. In the case of starch-based polymers, chemical or physical modifications can modulate their degradation kinetics, as evidenced by Wang et al.’s superhydrophobic starch-based nanocomposite cryogel. For plant fiber-based polymers, the effects of temperature, humidity, and cellulose degradation on their properties, along with the implications of various treatments and additives, are probed, as exemplified by Liu et al.’s study on jute/SiO2/PP composites. Specifically, with respect to PLA, the polymerization process and the role of catalysts such as SnCl2 in governing the structure and biodegradability are expounded in detail. The degradation of PLA in SBF and its interaction with β-TCP particles constitute crucial aspects. For starch-based polymers, the enzymatic degradation catalyzed by amylase and glucosidase and the environmental impacts of temperature and humidity, in addition to the structural ramifications of amylose and amylopectin, are further elucidated. In plant fiber-based polymers, the biodegradation of cellulose and the effects of plasma treatment, electron beam irradiation, nanoparticles, and crosslinking agents on water resistance and stability are explicated with experimental substantiation. This manuscript also delineates technological accomplishments. PLA incorporated with HA demonstrates enhanced biocompatibility and finds utility in drug delivery systems. Starch-based polymers can be engineered for tailored degradation. Plant fiber-based polymers acquire water resistance and durability through specific treatments or the addition of nanoparticles, thereby widening their application spectrum. Synthetic and surface modification methodologies can be harnessed to optimize these materials. This paper also consolidates reaction conditions, research techniques, their merits, and demerits and delves into the biodegradation reaction mechanisms of these polymers. A comprehensive understanding of these degradation mechanisms is conducive to their application and progression in the context of sustainable development and environmental conservation. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

11 pages, 4579 KB  
Article
Flexible Carbon Fiber/SnO2@rGO Electrode with Long Cyclability for Lithium-Ion Batteries
by Wenjie Zhang, Yongqi Liu, Zhouyang Qin, Lingxiao Yu, Jiabiao Lian, Zhanliang Tao and Zheng-Hong Huang
Batteries 2024, 10(12), 412; https://doi.org/10.3390/batteries10120412 - 25 Nov 2024
Cited by 3 | Viewed by 1930
Abstract
Flexible electrodes are highly desirable for next-generation wearable lithium-ion batteries. To achieve high-capacity flexible electrode materials, SnO2 with high theoretical capacity has been introduced into electrodes and shows promising capacity. However, the electrodes are still confronted with major challenges in terms of [...] Read more.
Flexible electrodes are highly desirable for next-generation wearable lithium-ion batteries. To achieve high-capacity flexible electrode materials, SnO2 with high theoretical capacity has been introduced into electrodes and shows promising capacity. However, the electrodes are still confronted with major challenges in terms of inferior rate capability and cycling stability, which are caused by large volume changes of SnO2 during the lithiation/delithiation process. Here, we adopt an adsorption assembly strategy to fabricate a flexible carbon fiber/SnO2@rGO electrode that effectively stabilizes the volume changes of SnO2 and enhances the charge transport kinetics in electrodes. The sandwich-like structure endows the electrode’s high flexibility and succeeds in improving both rate capability and cycling stability. The flexible carbon fiber/SnO2@rGO electrode delivers a high capacity of 453 mAh g−1 at 50 mA g−1 and outstanding capacity retention of 88% after 1000 cycles at 2 A g−1. Full article
(This article belongs to the Special Issue Novel Materials for Rechargeable Batteries)
Show Figures

Graphical abstract

14 pages, 3964 KB  
Article
A High-Sensitivity Fiber Optic Soil Moisture Sensor Based on D-Shaped Fiber and Tin Oxide Thin Film Coatings
by Chuen-Lin Tien, Hsi-Fu Shih, Jia-Kai Tien and Ching-Chiun Wang
Sensors 2024, 24(23), 7474; https://doi.org/10.3390/s24237474 - 23 Nov 2024
Cited by 3 | Viewed by 1930
Abstract
We present a high-sensitivity fiber optic soil moisture sensor based on side-polished multimode fibers and lossy mode resonance (LMR). The multimode fibers (MMFs), after side-polishing to form a D-shaped structure, are coated with a single-layer SnO2 thin film by electron beam evaporation [...] Read more.
We present a high-sensitivity fiber optic soil moisture sensor based on side-polished multimode fibers and lossy mode resonance (LMR). The multimode fibers (MMFs), after side-polishing to form a D-shaped structure, are coated with a single-layer SnO2 thin film by electron beam evaporation with ion-assisted deposition technology. The LMR effect can be obtained when the refractive index of the thin film is positive and greater than its extinction coefficient and the real part of the external medium permittivity. The D-shaped fiber optic soil moisture sensor was placed in soil, allowing moisture to penetrate into the thin film microstructure, and it observed the resonance wavelength shift in LMR spectra to measure the relative humidity change in soil. Meanwhile, an Arduino electronic soil moisture sensing module was used as the experimental control group, with soil relative humidity ranging from 10%RH to 90%RH. We found that the D-shaped fiber with a residual thickness of 93 μm and SnO2 thin film thickness of 450 nm had a maximum sensitivity of 2.29 nm/%RH, with relative humidity varying from 10%RH to 90%RH. The D-shaped fiber also demonstrates a fast response time and good reproducibility. Full article
(This article belongs to the Special Issue Imaging and Sensing in Optics and Photonics)
Show Figures

Figure 1

15 pages, 5505 KB  
Article
Design and Characterization of Poly(ethylene oxide)-Based Multifunctional Composites with Succinonitrile Fillers for Ambient-Temperature Structural Sodium-Ion Batteries
by Vasan Iyer, Jan Petersen, Sebastian Geier and Peter Wierach
Polymers 2024, 16(19), 2806; https://doi.org/10.3390/polym16192806 - 3 Oct 2024
Cited by 2 | Viewed by 2390
Abstract
A new approach to developing structural sodium batteries capable of operating in ambient-temperature conditions has been successfully achieved. The developed multifunctional structural electrolyte (SE) using poly(ethylene oxide) (PEO) as a matrix integrated with succinonitrile (SN) plasticizers and glass-fiber (GF) reinforcements identified as GF_PEO-SN-NaClO [...] Read more.
A new approach to developing structural sodium batteries capable of operating in ambient-temperature conditions has been successfully achieved. The developed multifunctional structural electrolyte (SE) using poly(ethylene oxide) (PEO) as a matrix integrated with succinonitrile (SN) plasticizers and glass-fiber (GF) reinforcements identified as GF_PEO-SN-NaClO4 showed a tensile strength of 32.1 MPa and an ionic conductivity of 1.01 × 10−4 S cm−1 at room temperature. It displayed a wide electrochemical stability window of 0 to 4.9 V and a high sodium-ion transference number of 0.51 at room temperature. The structural electrode (CF|SE) was fabricated by pressing the structural electrolyte with carbon fibers (CFs), and it showed a tensile strength of 72.3 MPa. The fabricated structural battery half-cell (CF||SE||Na) demonstrated good cycling stability and an energy density of 14.2 Wh kg−1, and it retained 80% capacity at the end of the 200th cycle. The cycled electrodes were observed using scanning electron microscopy, which revealed small dendrite formation and dense albeit uniform deposition of the sodium metal, helping to avoid a short-circuit of the cell and providing more cycling stability. The developed multifunctional matrix composites demonstrate promising potential for developing ambient-temperature sodium structural batteries. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials)
Show Figures

Figure 1

15 pages, 3949 KB  
Article
Highly Efficient Production of Furfural from Corncob by Barley Hull Biochar-Based Solid Acid in Cyclopentyl Methyl Ether–Water System
by Bo Fan, Linghui Kong and Yucai He
Catalysts 2024, 14(9), 583; https://doi.org/10.3390/catal14090583 - 1 Sep 2024
Cited by 4 | Viewed by 2096
Abstract
Furfural, an important biobased compound, can be synthesized through the chemocatalytic conversion of D-xylose and hemicelluloses from lignocellulose. It has widespread applications in the production of valuable furans, additives, resins, rubbers, synthetic fibers, polymers, plastics, biofuels, and pharmaceuticals. By using barley hulls [...] Read more.
Furfural, an important biobased compound, can be synthesized through the chemocatalytic conversion of D-xylose and hemicelluloses from lignocellulose. It has widespread applications in the production of valuable furans, additives, resins, rubbers, synthetic fibers, polymers, plastics, biofuels, and pharmaceuticals. By using barley hulls (BHs) as biobased support, a heterogeneous biochar Sn-NUS-BH catalyst was created to transform corncob into furfural in cyclopentyl methyl ether–H2O. Sn-NUS-BH had a fibrous structure with voids, a large comparative area, and a large pore volume, which resulted in more catalytic active sites. Through the characterization of the physical and chemical properties of Sn-NUS-BH, it was observed that the Sn-NUS-BH had tin dioxide (Lewis acid sites) and a sulfonic acid group (Brønsted acid sites). This chemocatalyst had good thermostability. At 170 °C for 20 min, Sn-NUS-BH (3.6 wt%) was applied to transform 75 g/L of corncob with ZnCl2 (50 mM) to generate furfural (80.5% yield) in cyclopentyl methyl ether–H2O (2:1, v/v). This sustainable catalytic process shows great promise in the transformation of lignocellulose to furfural using biochar-based chemical catalysts. Full article
Show Figures

Figure 1

17 pages, 11515 KB  
Article
Actin Cytoskeleton and Integrin Components Are Interdependent for Slit Diaphragm Maintenance in Drosophila Nephrocytes
by Megan Delaney, Yunpo Zhao, Joyce van de Leemput, Hangnoh Lee and Zhe Han
Cells 2024, 13(16), 1350; https://doi.org/10.3390/cells13161350 - 14 Aug 2024
Cited by 3 | Viewed by 1766
Abstract
In nephrotic syndrome, the podocyte filtration structures are damaged in a process called foot process effacement. This is mediated by the actin cytoskeleton; however, which actins are involved and how they interact with other filtration components, like the basement membrane, remains poorly understood. [...] Read more.
In nephrotic syndrome, the podocyte filtration structures are damaged in a process called foot process effacement. This is mediated by the actin cytoskeleton; however, which actins are involved and how they interact with other filtration components, like the basement membrane, remains poorly understood. Here, we used the well-established Drosophila pericardial nephrocyte—the equivalent of podocytes in flies—knockdown models (RNAi) to study the interplay of the actin cytoskeleton (Act5C, Act57B, Act42A, and Act87E), alpha- and beta-integrin (basement membrane), and the slit diaphragm (Sns and Pyd). Knockdown of an actin gene led to variations of formation of actin stress fibers, the internalization of Sns, and a disrupted slit diaphragm cortical pattern. Notably, deficiency of Act5C, which resulted in complete absence of nephrocytes, could be partially mitigated by overexpressing Act42A or Act87E, suggesting at least partial functional redundancy. Integrin localized near the actin cytoskeleton as well as slit diaphragm components, but when the nephrocyte cytoskeleton or slit diaphragm was disrupted, this switched to colocalization, both at the surface and internalized in aggregates. Altogether, the data show that the interdependence of the slit diaphragm, actin cytoskeleton, and integrins is key to the structure and function of the Drosophila nephrocyte. Full article
(This article belongs to the Special Issue Drosophila Model in Molecular Mechanisms of Kidney Dysfunction)
Show Figures

Figure 1

11 pages, 3581 KB  
Article
All-Fiber Flexible Electrochemical Sensor for Wearable Glucose Monitoring
by Zeyi Tang, Jinming Jian, Mingxin Guo, Shangjian Liu, Shourui Ji, Yilong Li, Houfang Liu, Tianqi Shao, Jian Gao, Yi Yang and Tianling Ren
Sensors 2024, 24(14), 4580; https://doi.org/10.3390/s24144580 - 15 Jul 2024
Cited by 4 | Viewed by 4148
Abstract
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on [...] Read more.
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on sensitive skin areas. The sensors, primarily based on polyethylene terephthalate (PET) or polyimide (PI) substrates, might also cause pressure or unease during insertion due to the skin’s irregular deformation. To address these constraints, we developed an innovative, wearable, all-fiber-structured electrochemical sensor. Our composite sensor incorporates polyurethane (PU) fibers prepared via electrospinning as electrode substrates to achieve excellent adaptability. Electrospun PU nanofiber films with gold layers shaped via thermal evaporation are used as base electrodes with exemplary conductivity and electrochemical catalytic attributes. To achieve glucose monitoring, gold nanofibers functionalized by gold nanoflakes (AuNFs) and glucose oxidase (GOx) serve as the working electrode, while Pt nanofibers and Ag/AgCl nanofibers serve as the counter and reference electrode. The acrylamide-sodium alginate double-network hydrogel synthesized on electrospun PU fibers serves as the adhesive and substance-transferring layer between the electrodes. The all-fiber electrochemical sensor is assembled layer-by-layer to form a robust structure. Given the stretchability of PU nanofibers coupled with a high specific surface area, the manufactured porous microneedle glucose sensor exhibits enhanced stretchability, superior sensitivity at 31.94 μA (lg(mM))−1 cm−2, a broad detection range (1–30 mM), and a significantly low detection limit (1 mM, S/N = 3), as well as satisfactory biocompatibility. Therefore, the novel electrochemical microneedle design is well-suited for wearable or even implantable continuous monitoring applications, thereby showing promising significant potential within the global arena of wearable medical technology. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

13 pages, 6276 KB  
Article
The Highly Sensitive Refractive Index Sensing of Seawater Based on a Large Lateral Offset Mach–Zehnder Interferometer
by Jingwen Zhou, Yue Sun, Haodong Liu, Haibin Li, Yuye Wang, Junfeng Jiang, Degang Xu and Jianquan Yao
Sensors 2024, 24(12), 3887; https://doi.org/10.3390/s24123887 - 15 Jun 2024
Cited by 2 | Viewed by 1804
Abstract
A novel fiber sensor for the refractive index sensing of seawater based on a Mach–Zehnder interferometer has been demonstrated. The sensor consisted of a single-mode fiber (SMF)–no-core fiber (NCF)–single-mode fiber structure (shortened to an SNS structure) with a large lateral offset spliced between [...] Read more.
A novel fiber sensor for the refractive index sensing of seawater based on a Mach–Zehnder interferometer has been demonstrated. The sensor consisted of a single-mode fiber (SMF)–no-core fiber (NCF)–single-mode fiber structure (shortened to an SNS structure) with a large lateral offset spliced between the two sections of a multimode fiber (MMF). Optimization studies of the multimode fiber length, offset SNS length, and vertical axial offset distance were performed to improve the coupling efficiency of interference light and achieve the best extinction ratio. In the experiment, a large lateral offset sensor was prepared to detect the refractive index of various ratios of saltwater, which were used to simulate seawater environments. The sensor’s sensitivity was up to −13,703.63 nm/RIU and −13,160 nm/RIU in the refractive index range of 1.3370 to 1.3410 based on the shift of the interference spectrum. Moreover, the sensor showed a good linear response and high stability, with an RSD of only 0.0089% for the trough of the interference in air over 1 h. Full article
Show Figures

Figure 1

18 pages, 4932 KB  
Article
The Influence of Thermal Parameters on the Self-Nucleation Behavior of Polyphenylene Sulfide (PPS) during Secondary Thermoforming
by Yi Ren, Zhouyang Li, Xinguo Li, Jiayu Su, Yue Li, Yu Gao, Jianfeng Zhou, Chengchang Ji, Shu Zhu and Muhuo Yu
Materials 2024, 17(4), 890; https://doi.org/10.3390/ma17040890 - 15 Feb 2024
Cited by 2 | Viewed by 2032
Abstract
During the secondary thermoforming of carbon fiber-reinforced polyphenylene sulfide (CF/PPS) composites, a vital material for the aerospace field, varied thermal parameters profoundly influence the crystallization behavior of the PPS matrix. Notably, PPS exhibits a distinctive self-nucleation (SN) behavior during repeated thermal cycles. This [...] Read more.
During the secondary thermoforming of carbon fiber-reinforced polyphenylene sulfide (CF/PPS) composites, a vital material for the aerospace field, varied thermal parameters profoundly influence the crystallization behavior of the PPS matrix. Notably, PPS exhibits a distinctive self-nucleation (SN) behavior during repeated thermal cycles. This behavior not only affects its crystallization but also impacts the processing and mechanical properties of PPS and CF/PPS composites. In this article, the effects of various parameters on the SN and non-isothermal crystallization behavior of PPS during two thermal cycles were systematically investigated by differential scanning calorimetry. It was found that the SN behavior was not affected by the cooling rate in the second thermal cycle. Furthermore, the lamellar annealing resulting from the heating process in both thermal cycles affected the temperature range for forming the special SN domain, because of the refined lamellar structure, and expelled various defects. Finally, this study indicated that to control the strong melt memory effect in the first thermal cycle, both the heating rate and processing melt temperature need to be controlled simultaneously. This work reveals that through collaborative control of these parameters, the crystalline morphology, crystallization temperature and crystallization rate in two thermal cycles are controlled. Furthermore, it presents a new perspective for controlling the crystallization behavior of the thermoplastic composite matrix during the secondary thermoforming process. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Graphical abstract

Back to TopTop