Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = SKY analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 10039 KiB  
Article
Design of an Interactive System by Combining Affective Computing Technology with Music for Stress Relief
by Chao-Ming Wang and Ching-Hsuan Lin
Electronics 2025, 14(15), 3087; https://doi.org/10.3390/electronics14153087 (registering DOI) - 1 Aug 2025
Viewed by 32
Abstract
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music [...] Read more.
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music listening, emotion detection, and interactive devices. A prototype was created accordingly and refined through interviews with four experts and eleven users participating in a preliminary experiment. The system is grounded in a four-stage guided imagery and music framework, along with a static activity model focused on relaxation-based stress management. Emotion detection was achieved using a wearable EEG device (NeuroSky’s MindWave Mobile device) and a two-dimensional emotion model, and the emotional states were translated into visual representations using seasonal and weather metaphors. A formal experiment involving 52 users was conducted. The system was evaluated, and its effectiveness confirmed, through user interviews and questionnaire surveys, with statistical analysis conducted using SPSS 26 and AMOS 23. The findings reveal that: (1) integrating emotion sensing with music listening creates a novel and engaging interactive experience; (2) emotional states can be effectively visualized using nature-inspired metaphors, enhancing user immersion and understanding; and (3) the combination of music listening, guided imagery, and real-time emotional feedback successfully promotes emotional relaxation and increases self-awareness. Full article
(This article belongs to the Special Issue New Trends in Human-Computer Interactions for Smart Devices)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 304
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

17 pages, 4137 KiB  
Article
Satellite Positioning Accuracy Improvement in Urban Canyons Through a New Weight Model Utilizing GPS Signal Strength Variability
by Hye-In Kim and Kwan-Dong Park
Sensors 2025, 25(15), 4678; https://doi.org/10.3390/s25154678 - 29 Jul 2025
Viewed by 274
Abstract
Urban environments present substantial obstacles to GPS positioning accuracy, primarily due to multipath interference and limited satellite visibility. To address these challenges, we propose a novel weighting approach, referred to as the HK model, that enhances real-time GPS positioning performance by leveraging the [...] Read more.
Urban environments present substantial obstacles to GPS positioning accuracy, primarily due to multipath interference and limited satellite visibility. To address these challenges, we propose a novel weighting approach, referred to as the HK model, that enhances real-time GPS positioning performance by leveraging the variability of the signal-to-noise ratio (SNR), without requiring auxiliary sensors. Analysis of 24 h observational datasets collected across diverse environments, including open-sky (OS), city streets (CS), and urban canyons (UC), demonstrates that multipath-affected non-line-of-sight (NLOS) signals exhibit significantly greater SNR variability than direct line-of-sight (LOS) signals. The HK model classifies received signals based on the standard deviation of their SNR and assigns corresponding weights during position estimation. Comparative performance evaluation indicates that relative to existing weighting models, the HK model improves 3D positioning accuracy by up to 22.4 m in urban canyon scenarios, reducing horizontal RMSE from 13.0 m to 4.7 m and vertical RMSE from 19.5 m to 6.9 m. In city street environments, horizontal RMSE is reduced from 11.6 m to 3.8 m. Furthermore, a time-sequential analysis at the TEHE site confirms consistent improvements in vertical positioning accuracy across all 24-hourly datasets, and in terms of horizontal accuracy, in 22 out of 24 cases. These results demonstrate that the HK model substantially surpasses conventional SNR- or elevation-based weighting techniques, particularly under severe multipath conditions frequently encountered in dense urban settings. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

21 pages, 4350 KiB  
Article
Trends of Liquid Water Path of Non-Raining Clouds as Derived from Long-Term Ground-Based Microwave Measurements near the Gulf of Finland
by Vladimir S. Kostsov and Maria V. Makarova
Meteorology 2025, 4(3), 19; https://doi.org/10.3390/meteorology4030019 - 22 Jul 2025
Viewed by 147
Abstract
Quantifying long-term variations in the cloud liquid water path (LWP) is crucial to obtain a better understanding of the processes relevant to cloud–climate feedback. The 12-year (2013–2024) time series of LWP values obtained from ground-based measurements by the RPG-HATPRO radiometer near the Gulf [...] Read more.
Quantifying long-term variations in the cloud liquid water path (LWP) is crucial to obtain a better understanding of the processes relevant to cloud–climate feedback. The 12-year (2013–2024) time series of LWP values obtained from ground-based measurements by the RPG-HATPRO radiometer near the Gulf of Finland is analysed, and the linear trends of the LWP for different sampling subsets of data are assessed. These subsets include all-hour, daytime, and night-time measurements. Two different approaches have been used for trend assessment, which produced similar results. Statistically significant linear trends have been detected for most data subsets. The most pronounced general trend over the period 2013–2024 has been detected for the daytime LWP, and it constitutes −0.0011 ± 0.00015 kg m−2 yr−1. This trend is driven mainly by the daytime LWP trend for the warm season (May–July, −0.0014 ± 0.00015 kg m−2 yr−1), which is considerably larger than the trend for the cold season (November–January, −0.00064 ± 0.00026 kg m−2 yr−1). Additionally, the analysis shows that the absolute number of clear-sky measurements decreased approximately by a factor of 4 if the years 2013 and 2024 are compared. Full article
Show Figures

Figure 1

24 pages, 4004 KiB  
Article
Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates
by Ivan Bevanda, Petar Marić, Ante Kristić and Tihomir Betti
Energies 2025, 18(14), 3868; https://doi.org/10.3390/en18143868 - 21 Jul 2025
Viewed by 241
Abstract
Precise photovoltaic (PV) performance modeling is essential for optimizing system design, operational monitoring, and reliable power forecasting—yet spectral correction is often overlooked, despite its significant impact on energy yield uncertainty. This study employs the FARMS-NIT model to assess the impact of spectral irradiance [...] Read more.
Precise photovoltaic (PV) performance modeling is essential for optimizing system design, operational monitoring, and reliable power forecasting—yet spectral correction is often overlooked, despite its significant impact on energy yield uncertainty. This study employs the FARMS-NIT model to assess the impact of spectral irradiance on eight PV technologies across 79 European sites, grouped by Köppen–Geiger climate classification. Unlike previous studies limited to clear-sky or single-site analysis, this work integrates satellite-derived spectral data for both all-sky and clear-sky scenarios, enabling hourly, tilt-optimized simulations that reflect real-world operating conditions. Spectral analyses reveal European climates exhibit blue-shifted spectra versus AM1.5 reference, only 2–5% resembling standard conditions. Thin-film technologies demonstrate superior spectral gains under all-sky conditions, though the underlying drivers vary significantly across climatic regions—a distinction that becomes particularly evident in the clear-sky analysis. Crystalline silicon exhibits minimal spectral sensitivity (<1.6% variations), with PERC/PERT providing highest stability. CZTSSe shows latitude-dependent performance with ≤0.7% variation: small gains at high latitudes and losses at low latitudes. Atmospheric parameters were analyzed in detail, revealing that air mass (AM), clearness index (Kt), precipitable water (W), and aerosol optical depth (AOD) play key roles in shaping spectral effects, with different parameters dominating in distinct climate groups. Full article
Show Figures

Figure 1

26 pages, 27369 KiB  
Article
Comprehensive Impact of Different Urban Form Indices on Land Surface Temperature and PM2.5 Pollution in Summer and Winter, Based on Urban Functional Zones: A Case Study of Taiyuan City
by Wenyu Zhao, Le Xuan, Wenru Li, Wei Wang and Xuhui Wang
Sustainability 2025, 17(14), 6618; https://doi.org/10.3390/su17146618 - 20 Jul 2025
Viewed by 377
Abstract
Urban form plays a crucial role in regulating urban thermal environments and air pollution patterns. However, the indirect mechanisms through which urban form influences PM2.5 concentrations via land surface temperature (LST) remain poorly understood. This study investigates these pathways by analyzing representative two- [...] Read more.
Urban form plays a crucial role in regulating urban thermal environments and air pollution patterns. However, the indirect mechanisms through which urban form influences PM2.5 concentrations via land surface temperature (LST) remain poorly understood. This study investigates these pathways by analyzing representative two- and three-dimensional urban form indices (UFIs) in the central urban area of Taiyuan, China. Multiple log-linear regression and mediation analysis were applied to evaluate the combined effects of urban form on LST and PM2.5. The results indicate that UFIs significantly influence both LST and PM2.5. The frontal area index (FAI) and sky view factor (SVF) emerged as key variables, with LST playing a significant mediating role. The indirect pathways affecting PM2.5 via LST, along with the direct LST-PM2.5 correlation, exhibit pronounced seasonal differences in direction and intensity. Moreover, different urban functional zones exhibit heterogeneous responses to the same form indices, highlighting the spatial variability of these linkages. These findings underscore the importance of incorporating seasonal and spatial differences into urban design. Accordingly, this study proposes targeted urban form optimization strategies to improve air quality and thermal comfort, offering theoretical insights and practical guidance for sustainable urban planning. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

13 pages, 3260 KiB  
Article
Background Measurements and Simulations of the ComPair Balloon Flight
by Zachary Metzler, Nicholas Kirschner, Lucas Smith, Nicholas Cannady, Makoto Sasaki, Daniel Shy, Regina Caputo, Carolyn Kierans, Aleksey Bolotnikov, Thomas J. Caligiure, Gabriella A. Carini, Alexander Wilder Crosier, Jack Fried, Priyarshini Ghosh, Sean Griffin, Jon Eric Grove, Elizabeth Hays, Sven Herrmann, Emily Kong, Iker Liceaga-Indart, Julie McEnery, John Mitchell, Alexander A. Moiseev, Lucas Parker, Jeremy Perkins, Bernard Phlips, Adam J. Schoenwald, Clio Sleator, David J. Thompson, Janeth Valverde, Sambid Wasti, Richard Woolf, Eric Wulf and Anna Zajczykadd Show full author list remove Hide full author list
Particles 2025, 8(3), 69; https://doi.org/10.3390/particles8030069 - 19 Jul 2025
Viewed by 224
Abstract
ComPair, a prototype of the All-sky Medium Energy Gamma-ray Observatory (AMEGO), completed a short-duration high-altitude balloon campaign on 27 August 2023 from Fort Sumner, New Mexico, USA. The goal of the balloon flight was to demonstrate ComPair as both a Compton and Pair [...] Read more.
ComPair, a prototype of the All-sky Medium Energy Gamma-ray Observatory (AMEGO), completed a short-duration high-altitude balloon campaign on 27 August 2023 from Fort Sumner, New Mexico, USA. The goal of the balloon flight was to demonstrate ComPair as both a Compton and Pair telescope in flight, reject the charged particle background, and measure the background γ-ray spectrum. This analysis compares measurements from the balloon flight with Monte Carlo simulations to benchmark the instrument. The comparison finds good agreement between the measurements and simulations and supports the conclusion that ComPair accomplished its goals for the balloon campaign. Additionally, two charged particle background rejection schemes are discussed: a soft ACD veto that records a higher charged particle event rate but with less risk of event loss, and a hard ACD veto that limits the charged particle event rate on board. There was little difference in the measured spectra from the soft and hard ACD veto schemes, indicating that the hard ACD veto could be used for future flights. The successes of ComPair’s engineering flight will inform the development of the next generation of ComPair with upgraded detector technology and larger active area. Full article
Show Figures

Figure 1

15 pages, 271 KiB  
Article
Evaluating the Energy Costs of SHA-256 and SHA-3 (KangarooTwelve) in Resource-Constrained IoT Devices
by Iain Baird, Isam Wadhaj, Baraq Ghaleb, Craig Thomson and Gordon Russell
IoT 2025, 6(3), 40; https://doi.org/10.3390/iot6030040 - 11 Jul 2025
Viewed by 381
Abstract
The rapid expansion of Internet of Things (IoT) devices has heightened the demand for lightweight and secure cryptographic mechanisms suitable for resource-constrained environments. While SHA-256 remains a widely used standard, the emergence of SHA-3 particularly the KangarooTwelve variant offers potential benefits in flexibility [...] Read more.
The rapid expansion of Internet of Things (IoT) devices has heightened the demand for lightweight and secure cryptographic mechanisms suitable for resource-constrained environments. While SHA-256 remains a widely used standard, the emergence of SHA-3 particularly the KangarooTwelve variant offers potential benefits in flexibility and post-quantum resilience for lightweight resource-constrained devices. This paper presents a comparative evaluation of the energy costs associated with SHA-256 and SHA-3 hashing in Contiki 3.0, using three generationally distinct IoT platforms: Sky Mote, Z1 Mote, and Wismote. Unlike previous studies that rely on hardware acceleration or limited scope, our work conducts a uniform, software-only analysis across all motes, employing consistent radio duty cycling, ContikiMAC (a low-power Medium Access Control protocol) and isolating the cryptographic workload from network overhead. The empirical results from the Cooja simulator reveal that while SHA-3 provides advanced security features, it incurs significantly higher CPU and, in some cases, radio energy costs particularly on legacy hardware. However, modern platforms like Wismote demonstrate a more balanced trade-off, making SHA-3 viable in higher-capability deployments. These findings offer actionable guidance for designers of secure IoT systems, highlighting the practical implications of cryptographic selection in energy-sensitive environments. Full article
Show Figures

Figure 1

20 pages, 26018 KiB  
Article
An Accuracy Assessment of the ESTARFM Data-Fusion Model in Monitoring Lake Dynamics
by Can Peng, Yuanyuan Liu, Liwen Chen, Yanfeng Wu, Jingxuan Sun, Yingna Sun, Guangxin Zhang, Yuxuan Zhang, Yangguang Wang, Min Du and Peng Qi
Water 2025, 17(14), 2057; https://doi.org/10.3390/w17142057 - 9 Jul 2025
Viewed by 304
Abstract
High-spatiotemporal-resolution remote sensing data are of great significance for surface monitoring. However, existing remote sensing data cannot simultaneously meet the demands for high temporal and spatial resolution. Spatiotemporal fusion algorithms are effective solutions to this problem. Among these, the ESTARFM (Enhanced Spatiotemporal Adaptive [...] Read more.
High-spatiotemporal-resolution remote sensing data are of great significance for surface monitoring. However, existing remote sensing data cannot simultaneously meet the demands for high temporal and spatial resolution. Spatiotemporal fusion algorithms are effective solutions to this problem. Among these, the ESTARFM (Enhanced Spatiotemporal Adaptive Reflection Fusion Model) algorithm has been widely used for the fusion of multi-source remote sensing data to generate high spatiotemporal resolution remote sensing data, owing to its robustness. However, most existing studies have been limited to applying ESTARFM for the fusion of single-surface-element data and have paid less attention to the effects of multi-band remote sensing data fusion and its accuracy analysis. For this reason, this study selects Chagan Lake as the study area and conducts a detailed evaluation of the performance of the ESTARFM in fusing six bands—visible, near-infrared, infrared, and far-infrared—using metrics such as the correlation coefficient and Root Mean Square Error (RMSE). The results show that (1) the ESTARFM fusion image is highly consistent with the clear-sky Landsat image, with the coefficients of determination (R2) for all six bands exceeding 0.8; (2) the Normalized Difference Vegetation Index (NDVI) (R2 = 0.87, RMSE = 0.023) and the Normalized Difference Water Index (NDWI) (R2 = 0.93, RMSE = 0.022), derived from the ESTARFM fusion data, are closely aligned with the real values; (3) the evaluation and analysis of different bands for various land-use types reveal that R2 generally exhibits a favorable trend. This study extends the application of the ESTARFM to inland water monitoring and can be applied to scenarios similar to Chagan Lake, facilitating the acquisition of high-frequency water-quality information. Full article
(This article belongs to the Special Issue Drought Evaluation Under Climate Change Condition)
Show Figures

Figure 1

20 pages, 9491 KiB  
Article
A General Model for Converting All-Wave Net Radiation at Instantaneous to Daily Scales Under Clear Sky
by Jiakun Han, Bo Jiang, Yu Zhao, Jianghai Peng, Shaopeng Li, Hui Liang, Xiuwan Yin and Yingping Chen
Remote Sens. 2025, 17(14), 2364; https://doi.org/10.3390/rs17142364 - 9 Jul 2025
Viewed by 208
Abstract
Surface all-wave net radiation (Rn) is one of the essential parameters to describe surface radiative energy balance, and it is of great significance in scientific research and practical applications. Among various acquisition approaches, the estimation of Rn from satellite [...] Read more.
Surface all-wave net radiation (Rn) is one of the essential parameters to describe surface radiative energy balance, and it is of great significance in scientific research and practical applications. Among various acquisition approaches, the estimation of Rn from satellite data is gaining more and more attention. In order to obtain the daily Rn (Rnd) from the instantaneous satellite observations, a parameter Cd, which is defined as the ratio between the Rn at daily and at instantaneous under clear sky was proposed and has been widely applied. Inspired by the sinusoidal model, a new model for Cd estimation, namely New Model, was proposed based on the comprehensive clear-sky Rn measurements collected from 105 global sites in this study. Compared with existing models, New Model could estimate Cd at any moment during 9:30~14:30 h, only depending on the length of daytime. Against the measurements, New Model was evaluated by validating and comparing it with two popular existing models. The results demonstrated that the Rnd obtained by multiplying Cd from New Model had the best accuracy, yielding an overall R2 of 0.95, root mean square error (RMSE) of 14.07 Wm−2, and Bias of −0.21 Wm−2. Additionally, New Model performed relatively better over vegetated surfaces than over non- or less-vegetated surfaces with a relative RMSE (rRMSE) of 11.1% and 17.89%, respectively. Afterwards, the New Model Cd estimate was applied with MODIS data to calculate Rnd. After validation, the Rnd computed from Cd was much better than that from the sinusoidal model, especially for the case MODIS transiting only once in a day, with Rnd-validated R2 of 0.88 and 0.84, RMSEs of 19.60 and 27.70 Wm−2, and Biases of −0.76 and 8.88 Wm−2. Finally, more analysis on New Model further pointed out the robustness of this model under various conditions in terms of moments, land cover types, and geolocations, but the model is suggested to be applied at a time scale of 30 min. In summary, although the new Cd  model only works for clear-sky, it has the strong potential to be used in estimating Rnd from satellite data, especially for those having fine spatial resolution but low temporal resolution. Full article
(This article belongs to the Special Issue Remote Sensing of Solar Radiation Absorbed by Land Surfaces)
Show Figures

Figure 1

25 pages, 9127 KiB  
Article
Applicability and Design Considerations of Chaotic and Quantum Entropy Sources for Random Number Generation in IoT Devices
by Wieslaw Marszalek, Michał Melosik, Mariusz Naumowicz and Przemysław Głowacki
Entropy 2025, 27(7), 726; https://doi.org/10.3390/e27070726 - 4 Jul 2025
Viewed by 340
Abstract
This article presents a comparative analysis of two types of generators of random sequences: one based on a discrete chaotic system being the logistic map, and the other being a commercial quantum random number generator QUANTIS-USB-4M. The results of the conducted analysis serve [...] Read more.
This article presents a comparative analysis of two types of generators of random sequences: one based on a discrete chaotic system being the logistic map, and the other being a commercial quantum random number generator QUANTIS-USB-4M. The results of the conducted analysis serve as a guide for selecting the type of generator that is more suited for a specific IoT solution, depending on the functional profile of the target application and the amount of random data required in the cryptographic process. This article discusses both the theoretical foundations of chaotic phenomena underlying the pseudorandom number generator based on the logistic map, as well as the theoretical principles of photon detection used in the quantum random number generators. A hardware IP Core implementing the logistic map was developed, suitable for direct implementation either as a standalone ASIC using the SkyWater PDK process or on an FPGA. The generated bitstreams from the implemented IP Core were evaluated for randomness. The analysis of the entropy levels and evaluation of randomness for both the logistic map and the quantum random number generator were performed using the ent tool and NIST test suite. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

30 pages, 15808 KiB  
Article
Exploring the Streetscape Perceptions from the Perspective of Salient Landscape Element Combination: An Interpretable Machine Learning Approach for Optimizing Visual Quality of Streetscapes
by Wanyue Suo and Jing Zhao
Land 2025, 14(7), 1408; https://doi.org/10.3390/land14071408 - 4 Jul 2025
Viewed by 446
Abstract
Understanding how people perceive urban streetscapes is essential for enhancing the visual quality of the urban environment and optimizing street space design. While perceptions are shaped by the interplay of multiple visual elements, existing studies often isolate single semantic features, overlooking their combinations. [...] Read more.
Understanding how people perceive urban streetscapes is essential for enhancing the visual quality of the urban environment and optimizing street space design. While perceptions are shaped by the interplay of multiple visual elements, existing studies often isolate single semantic features, overlooking their combinations. This study proposes a Landscape Element Combination Extraction Method (SLECEM), which integrates the UniSal saliency detection model and semantic segmentation to identify landscape combinations that play a dominant role in human perceptions of streetscapes. Using street view images (SVIs) from the central area of Futian District, Shenzhen, China, we further construct a multi-dimensional feature–perception coupling analysis framework. The key findings are as follows: 1. Both low-level visual features (e.g., color, contrast, fractal dimension) and high-level semantic features (e.g., tree, sky, and building proportions) significantly influence streetscape perceptions, with strong nonlinear effects from the latter. 2. K-Means clustering of salient landscape element combinations reveals six distinct streetscape types and perception patterns. 3. Combinations of landscape features better reflect holistic human perception than single variables. 4. Tailored urban design strategies are proposed for different streetscape perception goals (e.g., beauty, safety, and liveliness). Overall, this study deepens the understanding of streetscape perception mechanisms and proposes a highly operational quantitative framework, offering systematic theoretical guidance and methodological tools to enhance the responsiveness and sustainability of urban streetscapes. Full article
Show Figures

Figure 1

51 pages, 5106 KiB  
Article
Evaluating Solar Energy Potential Through Clear Sky Index Characterization Across Elevation Profiles in Mozambique
by Fernando Venâncio Mucomole, Carlos Augusto Santos Silva and Lourenço Lázaro Magaia
Solar 2025, 5(3), 30; https://doi.org/10.3390/solar5030030 - 1 Jul 2025
Viewed by 368
Abstract
The characteristics and types of the sky can greatly influence photovoltaic (PV) power generation, potentially leading to a reduction in both the lifespan and efficiency of the entire system. Driven by the challenge of addressing fluctuations in solar PV energy utilization, the aim [...] Read more.
The characteristics and types of the sky can greatly influence photovoltaic (PV) power generation, potentially leading to a reduction in both the lifespan and efficiency of the entire system. Driven by the challenge of addressing fluctuations in solar PV energy utilization, the aim was to assess the solar energy potential by analyzing the clear sky index Kt* across elevation profiles. To achieve this, a theoretical model for determining Kt* was employed, which encapsulated the solar energy analysis. Initially, solar energy data collected from approximately 16 stations in various provinces of Mozambique, as part of the solar energy measurement initiatives by INAM, FUNAE, AERONET, and Meteonorm, was processed. Subsequently, the clear sky radiation was calculated, and Kt* was established. The statistical findings indicate a reduction in energy contribution from the predictors, accounting for 28% of the total incident energy; however, there are progressive increases averaging around ~0.02, with Kt* values ranging from 0.4 to 0.9, demonstrating a strong correlation between 0.7 and 0.9 across several stations and predictor parameters. No significant climate change effects were noted. The radiation flux is directed from areas with higher Kt* to those with lower values, as illustrated in the heat map. The region experiences an increase in atmospheric parameter deposition, with concentrations around ~0.20, yet there remains a substantial energy flow potential of 92% for PV applications. This interaction can also be applied in other locations to assess the potential for available solar energy, as the analyzed solar energy spectrum aligns closely with the theoretical statistical calibration of energy distribution relevant to the global solar energy population process. Full article
(This article belongs to the Topic Solar Forecasting and Smart Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 4788 KiB  
Article
Heat Impact Assessment and Heat Prevention Suggestions for Thermal Comfort at Large-Area and Long-Duration Outdoor Sport Events in Taiwan
by Si-Yu Yu, Tzu-Ping Lin and Andreas Matzarakis
Atmosphere 2025, 16(7), 805; https://doi.org/10.3390/atmos16070805 - 1 Jul 2025
Viewed by 374
Abstract
This study aims to (1) analyze thermal comfort at outdoor sport events held outside of fixed venues or locations; (2) establish a method for evaluating environmental thermal comfort for large-scale, long-term outdoor activities; and (3) provide suggestions for the arrangement of shifts in [...] Read more.
This study aims to (1) analyze thermal comfort at outdoor sport events held outside of fixed venues or locations; (2) establish a method for evaluating environmental thermal comfort for large-scale, long-term outdoor activities; and (3) provide suggestions for the arrangement of shifts in routes and participants for heat warning and mitigation. Taiwan ReAnalysis Downscaling (TReAD) data, Sky View Factors (SVFs), GSV2SVF tool, and RayMan Pro were applied to analyze and evaluate thermal comfort at the 2021 Torch Relay Round the Island, Taiwan. In this study, modified Physiologically Equivalent Temperature (mPET), Wet Bulb Globe Temperature (WBGT), and Universal Thermal Climate Index (UTCI) were estimated and selected as thermal indicators for the purpose of obtaining a more comprehensive perspective. We also define and present thermal performance with a simple traffic light symbol (green: comfortable/yellow: warm/red: hot) and try to go beyond the concept of heat and visualize it in an easy-to-understand way. Full article
Show Figures

Figure 1

24 pages, 5026 KiB  
Article
Quantifying the Thermal and Energy Impacts of Urban Morphology Using Multi-Source Data: A Multi-Scale Study in Coastal High-Density Contexts
by Chenhang Bian, Chi Chung Lee, Xi Chen, Chun Yin Li and Panpan Hu
Buildings 2025, 15(13), 2266; https://doi.org/10.3390/buildings15132266 - 27 Jun 2025
Viewed by 294
Abstract
Urban thermal environments, characterized by the interplay between indoor and outdoor conditions, pose growing challenges in high-density coastal cities. This study proposes a multi-scale, integrative framework that couples a satellite-derived land surface temperature (LST) analysis with microscale building performance simulations to holistically evaluate [...] Read more.
Urban thermal environments, characterized by the interplay between indoor and outdoor conditions, pose growing challenges in high-density coastal cities. This study proposes a multi-scale, integrative framework that couples a satellite-derived land surface temperature (LST) analysis with microscale building performance simulations to holistically evaluate the high-density urban thermal environment in subtropical climates. The results reveal that compact, high-density morphologies reduce outdoor heat stress (UTCI) through self-shading but lead to significantly higher cooling loads, energy use intensity (EUI), and poorer daylight autonomy (DA) due to restricted ventilation and limited sky exposure. In contrast, more open, vegetation-rich forms improve ventilation and reduce indoor energy demand, yet exhibit higher UTCI values in exposed areas and increased lighting energy use in poorly oriented spaces. This study also proposes actionable design strategies, including optimal building spacing (≥15 m), façade orientation (30–60° offset from west), SVF regulation (0.4–0.6), and the integration of vertical greenery to balance solar access, ventilation, and shading. These findings offer evidence-based guidance for embedding morphological performance metrics into planning policies and building design codes. This work advances the integration of outdoor and indoor performance evaluation and supports climate-adaptive urban form design through quantitative, policy-relevant insights. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop