Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,194)

Search Parameters:
Keywords = SARS-CoV-2 omicron variant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2472 KB  
Article
Molecular Epidemiology of SARS-CoV-2 in Northern Greece from the Index Case up to Early 2025 Using Nanopore Sequencing
by Georgios Meletis, Styliani Pappa, Georgia Gioula, Maria Exindari, Maria Christoforidi and Anna Papa
Epidemiologia 2025, 6(4), 78; https://doi.org/10.3390/epidemiologia6040078 - 12 Nov 2025
Abstract
Background/Objectives: Since its emergence in late 2019, SARS-CoV-2 has demonstrated remarkable genetic diversity driven by mutations and recombination events that shaped the course of the COVID-19 pandemic. Continuous genomic monitoring is essential to track viral evolution, assess the spread of variants of concern [...] Read more.
Background/Objectives: Since its emergence in late 2019, SARS-CoV-2 has demonstrated remarkable genetic diversity driven by mutations and recombination events that shaped the course of the COVID-19 pandemic. Continuous genomic monitoring is essential to track viral evolution, assess the spread of variants of concern (VOCs), and inform public health strategies. The present study aimed to characterize the molecular epidemiology of SARS-CoV-2 in northern Greece from the first national case in February 2020 through early 2025. Methods: A total of 66 respiratory samples collected from hospitalized patients across Northern Greece were subjected to whole-genome sequencing using Oxford Nanopore Technologies’ MinION Mk1C platform and the ARTIC protocol. Sequences were analyzed with PANGO, Nextclade, and GISAID nomenclature systems for lineage and clade assignment, and the WHO nomenclature for VOCs. Results: Across 66 genomes, 34 PANGO lineages were identified. Early introductions included B.1 (2/66), B.1.177 (3/66), and B.1.258 (1/66). Alpha (5/66) and Beta (5/66) circulated in February–June 2021. Delta (AY.43) was detected in early 2022 (2/66; Jan–Feb) but was rapidly displaced by Omicron and reached 100% of the sequences by May 2022. Omicron diversified into BA.1/BA.1.1 (3/66), BA.2 (6/66), BA.4/BA.5 (14/66), BF.5 (1/66), EG.5 (1/66; designated a WHO Variant of Interest in 2023), JN.1 (4/66; globally dominant lineage prompting vaccine updates in 2024–2025), KS.1 (2/66; together with KS.1.1 are recognized PANGO lineages that were tracked internationally but remained less prevalent), KP.3 (5/66; together with KP.3.1.1, prominent “FLiRT” descendants circulating in 2024), and recombinants XDK, XDD, and XEC (5/66), reported by their PANGO names in accordance with the WHO’s current framework, which reserves Greek letters only for newly designated VOCs. Conclusions: This five-year genomic analysis provides an insight into the continuous evolution of SARS-CoV-2 in northern Greece. The findings underscore the importance of sustained genomic surveillance, integrated with epidemiological data, to detect emerging variants, monitor recombination, and strengthen preparedness for future coronavirus threats. Full article
Show Figures

Figure 1

15 pages, 921 KB  
Article
Genomic Characterization of Predominant Delta Variant (B.1.617.2 and AY.120 Sub-Lineages) SARS-CoV-2 Detected from AFI Patients in Ethiopia During 2021–2022
by Musse Tadesse Chekol, Dejenie Shiferaw Teklu, Adamu Tayachew, Wolde Shura, Admikew Agune, Aster Hailemariam, Aynalem Alemu, Mesfin Wossen, Abdulhafiz Hassen, Melaku Gonta, Neamin Tesfay, Tesfu Kasa and Nigatu Kebede
Genes 2025, 16(11), 1366; https://doi.org/10.3390/genes16111366 - 11 Nov 2025
Abstract
Background: The Delta variant of SARS-CoV-2 virus, one of the alarming variants of concern (VOC) with a distinct mutation characteristic, was immensely detrimental and a significant cause of the prolonged pandemic waves. This study aimed to analyze the genetic characteristics of the [...] Read more.
Background: The Delta variant of SARS-CoV-2 virus, one of the alarming variants of concern (VOC) with a distinct mutation characteristic, was immensely detrimental and a significant cause of the prolonged pandemic waves. This study aimed to analyze the genetic characteristics of the predominant Delta variant in acute febrile illness (AFI) patients in Ethiopia. Method: Nasopharyngeal swab samples were collected from AFI patients in four hospitals from February 2021 to June 2022 and tested for SARS-CoV-2 by using RT-qPCR. Of 101 positive samples, 48 stored specimens were re-tested, and 26 with sufficient RNA quality (Ct < 30) were sequenced using whole-genome sequencing to identify variants of concern, specific virus lineages and mutation features. Result: Delta variants (21J clade) were found predominant among all the sequenced SARS-CoV-2 isolate (80.8%, 21/26). AY.120 (46.2%) and B.1.617.2 (26.9%) were the predominant sub-lineages of the Delta variant. Omicron (21k, Pango BA.1.1/BA.1.17/BA.1) and Alpha (20I, Pango B.1.1.7) variants accounted for 11.5% and 7.7% of the total sequenced samples. Phylogenetic analysis showed evidence of local transmission and possible multiple introductions of SARS-CoV-2 VOCs in Ethiopia. The number of mutations increases dramatically from Alpha (~35 avg) to Delta (~42 avg) to Omicron (~56 avg). The Delta variant revealed a spike mutation on L452R and T478K and P681R, and was characterized by the double deletion E156-F157- in Spike protein. Conclusions: The findings are indicative of a gradual change in the genetic coding of the virus underscoring the importance of ongoing genomic surveillance to track the evolution and spread of SARS-CoV-2 and other emerging virus. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3748 KB  
Article
Pseudovirus-Based Neutralization Assays as Customizable and Scalable Tools for Serological Surveillance and Immune Profiling
by Caio Bidueira Denani, Bruno Pimenta Setatino, Denise Pereira, Ingrid Siciliano Horbach, Adriana Souza Azevedo, Gabriela Coutinho, Clara Lucy Ferroco, Janaína Xavier, Robson Leite, Ewerton Santos, Maria de Lourdes Maia, Waleska Dias Schwarcz and Ivanildo Pedro Sousa
Pathogens 2025, 14(11), 1129; https://doi.org/10.3390/pathogens14111129 - 6 Nov 2025
Viewed by 260
Abstract
Neutralizing antibodies (nAbs) are key indicators of protection against SARS-CoV-2, and their measurement remains essential for monitoring vaccine responses and population immunity. While the plaque reduction neutralization test (PRNT) is the gold standard, it relies on replicative viruses and is not suited for [...] Read more.
Neutralizing antibodies (nAbs) are key indicators of protection against SARS-CoV-2, and their measurement remains essential for monitoring vaccine responses and population immunity. While the plaque reduction neutralization test (PRNT) is the gold standard, it relies on replicative viruses and is not suited for high-throughput applications. Here, both an in-house and a commercial pseudovirus-based neutralization (PBN) assay were standardized and compared with PRNT to assess performance and concordance. The in-house PBN employed a VSV-ΔG pseudovirus encoding NanoLuc and displaying the SARS-CoV-2 Spike from the Wuhan or Omicron BA.1 variants in HEK293T-hACE2 cells, whereas the commercial assay (Integral Molecular, Philadelphia, PA, USA) used a lentiviral backbone with Renilla or GFP reporters and Wuhan or Omicron XBB.1.5/XBB.1.9 Spikes in Vero E6-ACE2-TMPRSS2 cells. Both assays showed strong correlations with PRNT, the commercial assay; moreover, they offered superior reproducibility and scalability, while the in-house version provided a cost-effective alternative suitable for BSL-2 settings. A total of 600 serum samples from vaccinated individuals were analyzed by commercial PBN at collection time points, from pre-vaccination to twelve months post–second dose, enabling large-scale screening, revealing marked differences in neutralization between Wuhan and Omicron XBB.1.5/1.9, and allowing unbiased classification of low, medium, and high responders using k-means clustering. The geometric mean titers (log10 GMT) highlighted a ~1.5 log10 (eightfold) reduction in neutralizing activity against Omicron, reflecting antibody waning and antigenic drift. Altogether, this study integrates assay standardization, PRNT comparison, and large-scale immune profiling, establishing a robust framework for harmonized pseudovirus-based neutralization testing. Full article
Show Figures

Figure 1

19 pages, 2036 KB  
Article
SARS-CoV-2 Serological Surveillance of Both Vaccinated and Unvaccinated Zoo Animals with the Identification of a Sloth Bear and a Tapir with Previous Infection
by Marie Arvidson, Yashaswi Raj Subedi, Sandipty Kayastha, Angel Mitchell, Kami Alvarado, Xufang Deng, Karen Terio, Matthew Allender and Leyi Wang
Viruses 2025, 17(11), 1459; https://doi.org/10.3390/v17111459 - 31 Oct 2025
Viewed by 517
Abstract
Since its discovery in 2019, SARS-CoV-2 has continued to be detected in both humans and animals worldwide. Currently there is limited research focusing on serological surveillance of wildlife under human care. Here we tested 230 serum samples of 134 animals from two zoological [...] Read more.
Since its discovery in 2019, SARS-CoV-2 has continued to be detected in both humans and animals worldwide. Currently there is limited research focusing on serological surveillance of wildlife under human care. Here we tested 230 serum samples of 134 animals from two zoological institutions collected between 2015 and 2024. To assess prior exposure and antibody responses from natural infection or vaccination, we used three serological assays: a nucleocapsid protein-based ELISA (N-ELISA), a surrogate virus neutralization test (sVNT) for spike (S) protein and a neutralization assay with S-pseudotyped viral particles. Among the 114 samples collected from 58 animals at Fort Wayne Zoo in Indiana, 37 samples from 20 vaccinated animals were sVNT-positive, and 2 of the positive animals had 2 samples prior to vaccination that tested positive by N-ELISA. Of the 116 samples from 76 animals at Brookfield Zoo in Illinois, 20 samples of 20 animals were sVNT-positive, and 19 of the positive animals had been vaccinated. Among these 20 sVNT-positive samples, only one sample from a South American Tapir was positive from prior to vaccination and 1 sample from a sloth bear was also positive by N-ELISA, marking the first documented cases of SARS-CoV-2 exposure in both species. Neutralization assays with S-pseudotyped virus revealed that some of the sVNT-positive samples have strong activity against the WH1-S pseudovirus but showed significantly reduced neutralization against the Omicron LP.8.1-S pseudovirus. These results underscore the need for updated vaccines tailored to emerging variants. Overall, our findings highlight the importance of continued serological surveillance across multiple species to detect new SARS-CoV-2 exposures and monitor vaccine-induced immunity in captive animal populations. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

17 pages, 2971 KB  
Article
Neutralizing Antibody Response Characteristics in Elderly Patients with SARS-CoV-2 Infection and Their Association with Clinical Phenotypes
by Yunhui Li, Li Wang, Jiayue Ma, Wenqi Geng and Yajie Wang
Vaccines 2025, 13(11), 1107; https://doi.org/10.3390/vaccines13111107 - 29 Oct 2025
Viewed by 366
Abstract
Background/Objectives: Although SARS-CoV-2 infection often follows a self-limiting course, its public health impact remains persistent. Older adults exhibit unique susceptibility to infection due to immunosenescence. Therefore, in order to offer recommendations for improving management options for older persons, this study intends to [...] Read more.
Background/Objectives: Although SARS-CoV-2 infection often follows a self-limiting course, its public health impact remains persistent. Older adults exhibit unique susceptibility to infection due to immunosenescence. Therefore, in order to offer recommendations for improving management options for older persons, this study intends to examine the immunological properties of NAb in the elderly population. Methods: Elderly patients aged 60 years and older infected during the prevalence of BF.7 and EG.5 variants were enrolled. The patterns of NAb responses in infected patients under both natural and vaccine-induced immunity were explored using bead-based proteomics techniques. The associations between NAb and IgG antibody levels, clinical characteristics, and traditional inflammatory indicators were evaluated using systematic analysis. Based on NAb levels, SARS-CoV-2 strains were immunologically classified. Results: There was a positive correlation between the severity of the disease and the strength of the NAb response. Because of more extensive immune activation, severe instances in elderly patients showed higher levels of NAb responses. When compared to the uninfected group, people who had received two doses of vaccination exhibited greater NAb levels. Additionally, there was a link between NAb and IgG levels, but as the virus evolved, this correlation progressively diminished. Three serotypes of SARS-CoV-2 were identified based on NAb response characteristics: pre-Omicron, Omicron, and XBB serotypes. Conclusions: The results show the features of NAb responses in older patients, which could help with the creation of future vaccines and public health initiatives. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

20 pages, 1726 KB  
Article
Heterologous SARS-CoV-2 Buccal Immunization with Oral Dissolving Films Generated a Strong Systemic and Mucosal Immunity in a Murine Model
by Tanisha Manoj Arte, Smital Patil, Emmanuel Adediran, Mahek Gulani, Amarae Ferguson, Sarthak Shah, Priyal Bagwe, Susu M. Zughaier and Martin J. D’Souza
Vaccines 2025, 13(11), 1105; https://doi.org/10.3390/vaccines13111105 - 29 Oct 2025
Viewed by 378
Abstract
Background: In response to the emergence of immune-evasive variants of SARS-CoV-2, this study explores a novel heterologous vaccination strategy using a microparticulate formulation approach that is delivered via oral dissolving film (ODF) formulations into the buccal cavity. Heterologous administration has the potential to [...] Read more.
Background: In response to the emergence of immune-evasive variants of SARS-CoV-2, this study explores a novel heterologous vaccination strategy using a microparticulate formulation approach that is delivered via oral dissolving film (ODF) formulations into the buccal cavity. Heterologous administration has the potential to generate cross-reactive antibodies, which can be especially beneficial against viruses with ever-mutating variants. Moreover, the microparticulate oral dissolving film-based vaccine approach is a non-invasive vaccine delivery platform. Methods: The vaccine design incorporated whole inactivated Delta and Omicron variants of the virus, administered at prime and booster doses, respectively, effectively encapsulated in a Poly(lactic-co-glycolic) acid (PLGA) polymer matrix, and adjuvanted with Alum to enhance immune activation. Following vaccination, serum, mucosal, and tissue samples were analyzed to evaluate humoral and cellular immune responses against the model antigen, as well as other variants such as Alpha and Beta variants, to understand the cross-reactive response. Result: In vitro evaluations confirmed the vaccine’s safety and its ability to stimulate immune responses. On administering microparticulate oral dissolving films to mice, whole inactivated delta and omicron variant-specific antibodies were observed in serum samples along with neutralizing titers in terminal week. The formulated vaccine showed significant secretory IgA antibody levels in mucosal samples. Moreover, CD4+ and CD8a cellular responses were observed in tissue samples of spleen and lymph nodes, along with antibodies (IgG, IgA, and IgM) detected in lung supernatant samples. Humoral and cellular cross-reactive antibodies were observed in the samples. Conclusions: This approach offers a promising platform for developing next-generation vaccines capable of inducing broad immunity. Full article
Show Figures

Figure 1

11 pages, 1259 KB  
Communication
Attenuated Molecular Response to SARS-CoV-2 in MDMs Isolated from Immunosuppressed Transplanted Patients
by Roberta Vazzana, Josè Camilla Sammartino, Nicola Cuscino, Roberto Giambruno, Claudia Carcione, Vitale Miceli, Matteo Bulati, Valentina Agnese, Daniele Lilleri, Pier Giulio Conaldi, Fausto Baldanti, Irene Cassaniti and Alessia Gallo
Int. J. Mol. Sci. 2025, 26(21), 10489; https://doi.org/10.3390/ijms262110489 - 28 Oct 2025
Viewed by 325
Abstract
Immunosuppressive therapies used in clinics to reduce the risk of rejection in transplanted patients unfortunately also decrease the response of the immune system to the pathogens. Previous data has shown that the most diffuse SARS-CoV-2 variants of concern between 2020 and 2021 showed [...] Read more.
Immunosuppressive therapies used in clinics to reduce the risk of rejection in transplanted patients unfortunately also decrease the response of the immune system to the pathogens. Previous data has shown that the most diffuse SARS-CoV-2 variants of concern between 2020 and 2021 showed a different modulation of the host immune response in healthy subjects, with the Delta B.1.617.2 variant leading to a failure in the activation of the adaptive immune response. In this study, the transcriptomic profiles of monocyte-derived macrophages (MDM), isolated from four immunosuppressed kidney transplant patients and exposed to SARS-CoV-2 VOCs, were analyzed and compared with previously published data gathered from immune-competent subjects. Human monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of four kidney transplant patients admitted to the IRCCS Policlinico San Matteo of Pavia (Italy), differentiated into macrophages, and exposed to the active and the UV-inactivated particles of the different SARS-CoV-2 VOCs (D614G, Alpha B.1.1.7, Gamma P.1, Delta B.1.617.2 and Omicron BA.1). Bulk RNA-Seq was performed and significant transcripts were assessed based on Student’s t-test (p-value < 0.05) and Fold change > 2. RNA-Seq data analyses of immunosuppressed MDMs showed that SARS-CoV-2 VOCs, although transcriptionally active, did not induce strong alterations in the transcriptomic profiles of these cells, while a strong down-regulation of key genes involved in the innate immunity pathways was observed when comparing these data to the ones obtained from immunocompetent participants. Overall, this study suggests that patients under immunosuppressive therapies do have an altered macrophage response to SARS-CoV-2 viral infection. Full article
Show Figures

Figure 1

13 pages, 2384 KB  
Article
Phylodynamics of SARS-CoV-2 Lineages B.1.1.7, B.1.1.529 and B.1.617.2 in Nigeria Suggests Divergent Evolutionary Trajectories
by Babatunde O. Motayo, Olukunle O. Oluwasemowo, Anyebe B. Onoja, Paul A. Akinduti and Adedayo O. Faneye
Pathogens 2025, 14(11), 1091; https://doi.org/10.3390/pathogens14111091 - 26 Oct 2025
Viewed by 523
Abstract
Background: The early months of the COVID-19 pandemic were characterized by high transmission rates and mortality, compounded by the emergence of multiple SARS-CoV-2 lineages, including Variants of Concern (VOCs). This study investigates the phylodynamic and spatio-temporal trends of VOCs during the peak of [...] Read more.
Background: The early months of the COVID-19 pandemic were characterized by high transmission rates and mortality, compounded by the emergence of multiple SARS-CoV-2 lineages, including Variants of Concern (VOCs). This study investigates the phylodynamic and spatio-temporal trends of VOCs during the peak of the pandemic in Nigeria. Methods: Whole-genome sequencing (WGS) data from three major VOCs circulating in Nigeria, B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.529 (Omicron), were analyzed using tools such as Nextclade, R Studio v 4.2.3, and BEAST X v 10.5.0. The spatial distribution, evolutionary history, viral ancestral introductions, and geographic dispersal patterns were characterized. Results: Three major lineages following WHO nomenclature were identified: Alpha, Delta, and Omicron. The Delta variant exhibited the widest geographic spread, detected in 14 states, while the Alpha variant was the least distributed, identified in only eight states but present across most epidemiological weeks studied. Evolutionary rates varied slightly, with Alpha exhibiting the slowest rate (2.66 × 10−4 substitutions/site/year). Viral population analyses showed distinct patterns: Omicron sustained elevated population growth over time, while Delta declined after initial expansion. The earliest Times to Most Recent Common Ancestor (TMRCA) were consistent with the earliest outbreaks of SARS-CoV-2 globally. Geographic transmission analysis indicated a predominant coastal-to-inland spread for all variants, with Omicron showing the most diffuse dispersal, highlighting commercial routes as significant drivers of viral diffusion. Conclusion: The SARS-CoV-2 epidemic in Nigeria was characterized by multiple variant introductions and a dominant coastal-to-inland spread, emphasizing that despite lockdown measures, commercial trade routes played a critical role in viral dissemination. These findings provide insights into pandemic control strategies and future outbreak preparedness. Full article
Show Figures

Figure 1

11 pages, 1203 KB  
Article
Genomic Diversity of SARS-CoV-2 Omicron Sublineages and Co-Circulation with Respiratory Viruses in Pediatric Patients in Sao Paulo, Brazil
by Erick Gustavo Dorlass, Guilherme Pereira Scagion, Fabyano Bruno Leal de Oliveira, Bruna Larotonda Telezynski, Ana Karolina Antunes Eisen, Giovana Santos Caleiro, Isabela Barbosa de Assis, Camila Araújo Valério, Vanessa Nascimento Chalup, Cairo Monteiro de Oliveira, Camila Ohomoto de Morais, Marcelo Otsuka, Vera Bain, Mariana Pereira Soledade, Luciano Matsumiya Thomazelli, Carolina Sucupira, Luciana Becker Mau, Andressa Simões Aguiar, Flávia Jacqueline Almeida, Marco Aurélio Palazzi Safadi, João Renato Rebello Pinho, Danielle Bruna Leal de Oliveira, Jansen de Araujo and Edison Luiz Durigonadd Show full author list remove Hide full author list
Viruses 2025, 17(11), 1421; https://doi.org/10.3390/v17111421 - 25 Oct 2025
Viewed by 670
Abstract
The SARS-CoV-2 Omicron variant caused a global surge in COVID-19 cases following its emergence in November 2021, rapidly diversifying in the subsequent months. Although many studies have documented Omicron’s diversification, few have explored its impact on pediatric populations or the seasonality of other [...] Read more.
The SARS-CoV-2 Omicron variant caused a global surge in COVID-19 cases following its emergence in November 2021, rapidly diversifying in the subsequent months. Although many studies have documented Omicron’s diversification, few have explored its impact on pediatric populations or the seasonality of other respiratory viruses in children. This study aims to investigate the diversity and circulation patterns of SARS-CoV-2 Omicron sublineages in pediatric patients in São Paulo, Brazil, and assess their co-circulation with other respiratory pathogens. Respiratory samples collected from patients under 18 years old across five hospitals between January 2022 and April 2023 were tested for different respiratory viruses using real-time RT-PCR. Whole-genome sequencing was performed on SARS-CoV-2-positive samples. Among the 7868 pediatric respiratory samples tested, 3902 were positive for viral pathogens. Respiratory Syncytial Virus accounted for the highest number of positive cases (n = 1248), exhibiting an atypical off-season peak in November 2022. SARS-CoV-2 was detected in 297 samples, of which 103 were sequenced. BA.1 and BA.5 sublineages had predominant genomic diversity and circulation time. These findings highlight the Omicron variant’s significant impact on the epidemiology and seasonal distribution of respiratory viruses in children, emphasizing the ongoing need for vaccination and robust surveillance efforts in pediatric populations. Full article
Show Figures

Figure 1

16 pages, 980 KB  
Article
Markers of Antiviral Response in SLE Patients After Vaccination Against SARS-CoV-2
by Michał Komorniczak, Katarzyna Aleksandra Lisowska, Barbara Bułło-Piontecka, Alicja Dębska-Ślizień and Anna Wardowska
Int. J. Mol. Sci. 2025, 26(20), 10241; https://doi.org/10.3390/ijms262010241 - 21 Oct 2025
Viewed by 388
Abstract
Patients with systemic lupus erythematosus (SLE) and lupus nephritis (LN) are at increased risk of severe infections, making effective vaccination strategies essential. While antibody responses to SARS-CoV-2 vaccination have been studied in SLE, less is known about innate immune correlates. Therefore, we evaluated [...] Read more.
Patients with systemic lupus erythematosus (SLE) and lupus nephritis (LN) are at increased risk of severe infections, making effective vaccination strategies essential. While antibody responses to SARS-CoV-2 vaccination have been studied in SLE, less is known about innate immune correlates. Therefore, we evaluated cytokines with a particular emphasis on interferon and chemokine profiles. To fulfill the immunological picture, we also assessed neutralizing antibodies against SARS-CoV-2 variants, lymphocyte subpopulations, and selected gene expression signatures in 33 patients stratified by vaccination status: fully vaccinated (FV, n = 23) and partially vaccinated (PV, n = 10). Serum analyses showed that FV patients exhibited increased type I (IFN-α2, IFN-β) and type III (IFN-λ1, IFN-λ2/3) interferons, as well as elevated pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-12p70) and IL-10, whereas neutralizing antibody (Neut. Ab.) titers against wild-type and variant strains, including Omicron, were comparable between groups. Immunophenotyping demonstrated preserved T- and B-cell subset distributions, except for reduced CD8+CD197+CD45RA (central memory) T cells in FV patients. ISG15 gene expression was upregulated in the T cells of FV patients. Correlation analyses linked IL-6 with disease activity and IL-8, GM-CSF, IFN-β, IL-10, and Alpha Neut. Ab. with organ damage. Complement C3 correlated inversely with IFN-α2 and IFN-γ, while C4 correlated positively with Alpha and Omicron Neut. Ab. These findings highlight that vaccination in SLE induces distinct interferon and cytokine signatures without consistent enhancement of neutralizing antibodies against SARS-CoV-2, underscoring the importance of integrated immune correlates in assessing vaccine responses in this population. Full article
Show Figures

Figure 1

19 pages, 3526 KB  
Article
Selective Endocytosis-Mediated Omicron S1-RBD Internalization Revealed by Reconstitution of ACE2-S1-RBD Interaction on Micropatterned Membrane Substrates
by Angelin M. Philip, S. M. Nasir Uddin, Zeyaul Islam, Prasanna R. Kolatkar and Kabir H. Biswas
Int. J. Mol. Sci. 2025, 26(20), 10216; https://doi.org/10.3390/ijms262010216 - 21 Oct 2025
Viewed by 319
Abstract
The SARS-CoV-2 spike protein, through its receptor binding domain (S1-RBD), binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane, leading to viral infection. Several mutations in S1-RBD in SARS-CoV-2 variants are known to enhance infection through an increased affinity [...] Read more.
The SARS-CoV-2 spike protein, through its receptor binding domain (S1-RBD), binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane, leading to viral infection. Several mutations in S1-RBD in SARS-CoV-2 variants are known to enhance infection through an increased affinity for ACE2. While many reports are available describing the SARS-CoV-2 infection mechanism, there is a dearth of studies towards understanding the initial interaction of the S1-RBD with ACE2 on living host cells and the role of endocytosis and cytoskeleton in the process. Here, we reconstituted the interaction between S1-RBD- and ACE2-expressing host cells in a hybrid live cell-supported lipid bilayer (SLB) platform enabling live monitoring of the interaction between S1-RBD on SLBs and the ACE2 receptor on living cells and showed that cells depleted Omicron S1-RBD from SLB corrals, likely through endocytosis. Specifically, interaction of living host cells with S1-RBD-functionalized SLB substrates resulted in the enrichment of S1-RBD and ACE2 at the cell–SLB interface. Interaction of host cells with wild type (WT), Omicron, and Omicron Revertant S1-RBD functionalized on micron-scale SLB corrals, which mimic viral membranes but are flat, also resulted in their enrichment. However, cells interacting with Omicron S1-RBD revealed a depletion of the protein from many corrals, which was generally not observed with the WT S1-RBD and was reduced with the Omicron Revertant, which contains the Q493R mutation reversion, S1-RBD. Further, S1-RBD depletion coincided with the localization of the early endosomal marker EEA1. Importantly, treatment of cells with the clathrin inhibitor, pitstop 2, but not the myosin II inhibitor, blebbistatin, significantly reduced Omicron S1-RBD depletion. Collectively, these observations suggest that the SARS-CoV-2 Omicron variant has evolved, through mutations in its S1-RBD, to take advantage of the cellular endocytic pathway for enhanced infection, which is not observed with the parental SARS-CoV-2 and appears to be lost in the Omicron Revertant variant. Additionally, these results underscore the significance of the hybrid live cell–SLB platform in studying SARS-CoV-2 S1-RBD-ACE2 interaction and the potential impact of mutations in the S1-RBD on adapting to a specific cellular entry mechanism. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 2098 KB  
Article
SARS-CoV-2 Entry Can Be Mimicked in C. elegans Expressing Human ACE2: A New Tool for Pharmacological Studies
by Margherita Romeo, Sara Baroni, Maria Monica Barzago, Samuela Gambini, Ada De Luigi, Daniela Iaconis, Andrea Rosario Beccari, Maddalena Fratelli and Luisa Diomede
Viruses 2025, 17(10), 1387; https://doi.org/10.3390/v17101387 - 18 Oct 2025
Viewed by 445
Abstract
Testing medical countermeasures for SARS-CoV-2 transmission using vertebrates can be hindered by legislation regulating animal experimentation, high costs, and ethical concerns. To overcome these challenges, we propose a new Caenorhabditis elegans strain that constitutively expresses the human angiotensin-converting enzyme 2 receptor (ACE2). This [...] Read more.
Testing medical countermeasures for SARS-CoV-2 transmission using vertebrates can be hindered by legislation regulating animal experimentation, high costs, and ethical concerns. To overcome these challenges, we propose a new Caenorhabditis elegans strain that constitutively expresses the human angiotensin-converting enzyme 2 receptor (ACE2). This resulted in significant impairment of reproduction and a defect in pharyngeal function compared to wild-type (WT) worms. SARS-CoV-2 infection was simulated by treating worms with the receptor-binding domain (RBD) of the spike protein, which caused dose-dependent and time-dependent pharyngeal impairment in ACE2 worms but not in WT worms. The toxicity of RBD was prevented by administering an anti-human ACE2 antibody, demonstrating that interactions with the ACE2 receptor are essential. The ACE2-expressing worm strain was further used for pharmacological research with Raloxifene. In vitro, 1–3 μM of Raloxifene reduced the entry of lentiviral particles carrying the Wuhan variant and B.1.1.7 UK and B.1.1.529 Omicron strains into HEK293-ACE2, in addition to particles expressing N501Y-mutated or P681H-mutated spike proteins. Raloxifene (0.1–1 μM) completely counteracted RBD toxicity in ACE2 worms, indicating that this strain offers a cost-effective in vivo screening platform for molecules with effects involving interactions with the ACE2 receptor. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

21 pages, 4481 KB  
Article
An Intranasal Challenge Model in African Green Monkeys (Chlorocebus aethiops) for Mild-to-Moderate COVID-19 Disease Caused by Subvariant XBB.1.5
by Nadia Storm, Ming Lo, Nicholas Crossland, Margaux Seyler-Schmidt, Hilary Staples, Daniela Silva-Ayala, Ambre M. Laprise, Lauren St. Denis, Kyle Grosz, Aoife O’Connell, Hans Gertje, Tillie Ripin, Claire Decker, M. Mazur, Colleen Thurman, Marlene Espinoza, Gavin Morrow, Christopher L. Parks, Christopher L. Cooper and Anthony Griffiths
Viruses 2025, 17(10), 1373; https://doi.org/10.3390/v17101373 - 14 Oct 2025
Viewed by 557
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily causes mild to moderate respiratory illness in humans, but infection can also lead to long-term complications, including chronic fatigue, respiratory and cardiac issues, or even death. In November 2021, the emergence of the highly transmissible [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily causes mild to moderate respiratory illness in humans, but infection can also lead to long-term complications, including chronic fatigue, respiratory and cardiac issues, or even death. In November 2021, the emergence of the highly transmissible Omicron variant marked a significant shift in the pandemic, with its subvariants rapidly spreading and continuing to evolve worldwide. The continuing introduction of Omicron subvariants underscores the need for the development of up-to-date vaccines, as well as for appropriate animal models in which they can be evaluated. Among these subvariants, XBB.1.5 stands out for its ability to evade the immune response from previous infection or vaccination. The objective of this study was to determine the disease course in African green monkeys (AGMs) following intranasal exposure to the XBB.1.5 subvariant. In four intranasally exposed AGMs, histopathological findings in the lungs consistent with SARS-CoV-2 infection included lymphohistiocytic and neutrophilic bronchiolitis with variable numbers of syncytial cells, to terminal bronchiole-centric, bronchointerstitial pneumonia with alveolar type II (AT2) pneumocyte hyperplasia, with evidence of acute alveolar injury, including alveolar septal necrosis and hyaline membrane formation. The two males showed more severe pneumonia compared to the two females. SARS-CoV-2 RNA was detected in the lungs or tracheobronchial lymph nodes in the males but not in the females, which correlated with higher cumulative lung pathology scores in the males. In the females, SARS-CoV-2 RNA was limited to the colon and nasal turbinates. Our results indicate that AGMs exhibit a disease course similar to most humans when exposed intranasally, making them a suitable model for studying mild to moderate SARS-CoV-2 infection. Therefore, further work is warranted to determine if this model could have utility for the evaluation of vaccine and therapeutic candidates against contemporary SARS-CoV-2 variants. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

20 pages, 2771 KB  
Article
Strain-Specific Variability in Viral Kinetics, Cytokine Response, and Cellular Damage in Air–Liquid Cultures of Human Nasal Organoids After Infection with SARS-CoV-2
by Gina M. Aloisio, Trevor J. McBride, Letisha Aideyan, Emily M. Schultz, Ashley M. Murray, Anubama Rajan, Erin G. Nicholson, David Henke, Laura Ferlic-Stark, Amal Kambal, Hannah L. Johnson, Elina A. Mosa, Fabio Stossi, Sarah E. Blutt, Pedro A. Piedra and Vasanthi Avadhanula
Viruses 2025, 17(10), 1343; https://doi.org/10.3390/v17101343 - 6 Oct 2025
Cited by 1 | Viewed by 737
Abstract
SARS-CoV-2 variants have demonstrated distinct epidemiological patterns and clinical presentations throughout the COVID-19 pandemic. Understanding variant-specific differences at the respiratory epithelium is crucial for understanding their pathogenesis. Here, we utilized human nasal organoid air–liquid interface (HNO-ALI) cell cultures to compare the viral replication [...] Read more.
SARS-CoV-2 variants have demonstrated distinct epidemiological patterns and clinical presentations throughout the COVID-19 pandemic. Understanding variant-specific differences at the respiratory epithelium is crucial for understanding their pathogenesis. Here, we utilized human nasal organoid air–liquid interface (HNO-ALI) cell cultures to compare the viral replication kinetics, innate immune response, and epithelial damage of six different strains of SARS-CoV-2 (B.1.2, WA, Alpha, Beta, Delta, and Omicron). All variants replicated efficiently in HNO-ALIs, but with distinct replication kinetic patterns. The Delta variant exhibited delayed replication kinetics, achieving a steady state at 6 days post-infection compared to 3 days for other variants. Cytokine analysis revealed robust pro-inflammatory and chemoattractant responses (IL-6, IL-8, IP-10, CXCL9, and CXCL11) in WA1, Alpha, Beta, and Omicron infections, while Delta significantly dampened the innate immune response, with no significant induction of IL-6, IP-10, CXCL9, or CXCL11. Immunofluorescence and H&E analysis showed that all variants caused significant ciliary damage, though WA1 and Delta demonstrated less destruction at early time points (3 days post-infection). Together, these data show that, in our HNO-ALI model, the Delta variant employs a distinct “stealth” strategy characterized by delayed replication kinetics and epithelial cell innate immune evasion when compared to other variants of SARS-CoV-2, potentially explaining a mechanism that the Delta variant can use for its enhanced transmissibility and virulence observed clinically. Our findings demonstrate that variant-specific differences at the respiratory epithelium could explain some of the distinct clinical presentations and highlight the utility of the HNO-ALI system for the rapid assessment of emerging variants. Full article
(This article belongs to the Special Issue Viral Infection in Airway Epithelial Cells)
Show Figures

Figure 1

19 pages, 1644 KB  
Article
Omicron Subvariants Infection Kinetics and Nirmatrelvir Efficacy in Transgenic K18-hACE2 Mice
by Vijeta Sharma, Enriko Dolgov, Taylor Tillery, Camila Mendez Romero, Alberto Rojas-Triana, Diana M. Villalba Guzman, Kira Goldgirsh, Risha Rasheed, Irene Gonzalez-Jimenez, Nadine Alvarez, Steven Park, Madhuvika Murugan, Andrew M. Nelson and David S. Perlin
Int. J. Mol. Sci. 2025, 26(19), 9509; https://doi.org/10.3390/ijms26199509 - 29 Sep 2025
Viewed by 607
Abstract
The persistent evolution of SARS-CoV-2 has led to the emergence of antigenically distinct Omicron subvariants exhibiting increased transmissibility, immune evasion, and altered pathogenicity. Among these, recent subvariants such as JN.1, KP.3.1.1, and LB.1 possess unique antigenic and virological features, underscoring the need for [...] Read more.
The persistent evolution of SARS-CoV-2 has led to the emergence of antigenically distinct Omicron subvariants exhibiting increased transmissibility, immune evasion, and altered pathogenicity. Among these, recent subvariants such as JN.1, KP.3.1.1, and LB.1 possess unique antigenic and virological features, underscoring the need for continued surveillance and therapeutic evaluation. As vaccines and commercial monoclonal antibodies show reduced effectiveness against these variants, the role of direct-acting antivirals, such as Nirmatrelvir, targeting conserved viral elements like the main protease inhibitor, becomes increasingly crucial. In this study, we investigated the replication kinetics, host immune responses, and therapeutic susceptibility of three recently circulating Omicron subvariants in the K18-hACE2 transgenic mouse model, using the SARS-CoV-2 parent WA1/2020 strain as a reference. Omicron subvariants exhibited a marked temporal shift in viral infection kinetics characterized by an early lung viral titer peak (~7–8 Log PFU) at 2 days post-infection (dpi), followed by a decline (1–3 Log PFU) by 4 dpi. Pulmonary cytokine and chemokine responses (GM-CSF, TNF-α, IL-1β, IL-6) showed an earlier increase in subvariant-infected mice compared to a gradual response in WA1/2020 infection. Notably, Nirmatrelvir treatment led to significant reductions in lung viral titers in subvariant-infected mice compared to WA1/2020, surpassing its efficacy against the parent strain. These findings highlight that infection with Omicron subvariants yields a broad dynamic range in viral burden with minimum variability, while retaining a prominent therapeutic response to Nirmatrelvir. This study provides insights into the emerging subvariants’ pathogenesis and therapeutic responsiveness, reinforcing the importance of continued variant monitoring and the development of effective countermeasures. Full article
Show Figures

Graphical abstract

Back to TopTop