An Intranasal Challenge Model in African Green Monkeys (Chlorocebus aethiops) for Mild-to-Moderate COVID-19 Disease Caused by Subvariant XBB.1.5
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Care
2.3. Viruses and Cell Lines
2.4. Anesthesia
2.5. Virus Exposure and Verification
2.6. Sample Collection
2.7. RNA Extraction and RT-qPCR
2.8. Crystal Violet Plaque Assay
2.9. Cytokine and Chemokine Analysis
2.10. Clinical Pathology
2.11. Histopathology
2.12. Immunohistochemistry and Digital Quantification of Immunohistochemical Staining
3. Results
3.1. Morbidity and Mortality
3.2. Body Weights
3.3. Viral Burden
3.4. Body Temperature
3.5. Hematology
3.6. Clinical Chemistry
3.7. Cytokine and Chemokine Expression
3.8. Gross Pathology and Histopathology Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAALAC | Association for Assessment and Accreditation of Laboratory Animal Care |
ABLS-4 | Animal biosafety level 4 |
ACURO | Animal Care and Use Review Office |
AGM | African green monkey |
ARDS | Acute respiratory distress syndrome |
AT2 | Alveolar type 2 |
BALF | Bronchioalveolar lavage fluid |
COVID-19 | Coronavirus disease 2019 |
CXCL10 | C-X-C motif chemokine 10 |
DAB | 3,3′-diaminobenzidine |
dpi | Days post-infection |
DMEM | Dulbecco’s Modified Eagle Medium |
EDTA | Ethylenediaminetetraacetic acid |
FFPE | Formalin fixed paraffin embedded |
G-CSF | Granulocyte colony-stimulating factor |
IACUC | Institutional Animal Care and Use Committee |
IFN | Interferon |
IHC | Immunohistochemistry |
IL | Interleukin |
IN | Intranasal |
MCP-1 | Monocyte chemoattractant protein-1 |
NHP | Nonhuman primate |
PBS | Phosphate-buffered saline |
PFU | Plaque forming units |
RT-qPCR | Quantitative reverse transcription polymerase chain reaction |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SIV | Simian immunodeficiency virus |
SRV | Simian retrovirus |
STLV-1 | Simian T-lymphotrophic virus-1 |
TNF | Tumor necrosis factor |
USAMRAA | U.S. Army Medical Research Acquisition Activity |
VEGF | Vascular endothelial growth factor |
References
- Liu, J.; Liao, X.; Qian, S.; Yuan, J.; Wang, F.; Liu, Y.; Wang, Z.; Wang, F.; Liu, L.; Zhang, Z. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg. Infect. Dis. 2020, 26, 1320–1323. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- World Health Organization COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 13 September 2024).
- Zhao, Z.; Zhou, J.; Tian, M.; Huang, M.; Liu, S.; Xie, Y.; Han, P.; Bai, C.; Han, P.; Zheng, A.; et al. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nat. Commun. 2022, 13, 4958. [Google Scholar] [CrossRef]
- Wang, Q.; Iketani, S.; Li, Z.; Liu, L.; Guo, Y.; Huang, Y.; Bowen, A.D.; Liu, M.; Wang, M.; Yu, J.; et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023, 186, 279–286.e8. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Staropoli, I.; Michel, V.; Lemoine, F.; Donati, F.; Prot, M.; Porrot, F.; Guivel-Benhassine, F.; Jeyarajah, B.; Brisebarre, A.; et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. Nat. Commun. 2024, 15, 2254. [Google Scholar] [CrossRef]
- Hartman, A.L.; Nambulli, S.; McMillen, C.M.; White, A.G.; Tilston-Lunel, N.L.; Albe, J.R.; Cottle, E.; Dunn, M.D.; Frye, L.J.; Gilliland, T.H. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog. 2020, 16, e1008903. [Google Scholar] [CrossRef] [PubMed]
- Woolsey, C.; Borisevich, V.; Prasad, A.N.; Agans, K.N.; Deer, D.J.; Dobias, N.S.; Heymann, J.C.; Foster, S.L.; Levine, C.B.; Medina, L.; et al. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat. Immunol. 2021, 22, 86–98. [Google Scholar] [CrossRef]
- Lim, H.; Baek, A.; Kim, J.; Kim, M.S.; Liu, J.; Nam, K.Y.; Yoon, J.; No, K.T. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein-protein interaction obtained by density functional tight binding fragment molecular orbital method. Sci. Rep. 2020, 10, 16862. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.; Doyle-Meyers, L.A.; Russell-Lodrigue, K.E.; Golden, N.; Threeton, B.; Song, K.; Pierre, G.; Baribault, C.; Bohm, R.P.; Maness, N.J.; et al. Similarities and differences in the acute-phase response to SARS-CoV-2 in Rhesus macaques and African green monkeys. Front. Immunol. 2021, 12, 754642. [Google Scholar] [CrossRef]
- Blair, R.V.; Vaccari, M.; Doyle-Meyers, L.A.; Roy, C.J.; Russell-Lodrigue, K.; Fahlberg, M.; Monjure, C.J.; Beddingfield, B.; Plante, K.S.; Plante, J.A.; et al. Acute respiratory distress in aged, SARS-CoV-2-infected African green monkeys but not rhesus macaques. Am. J. Pathol. 2021, 191, 274–282. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Honko, A.N.; Storm, N.; Bean, D.J.; Henao Vasquez, J.; Downs, S.N.; Griffiths, A. Rapid quantification and neutralization assays for novel coronavirus SARS-CoV-2 using Avicel RC-591 semi-solid overlay. Preprints 2020, 2020050264. [Google Scholar] [CrossRef]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Roth, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef]
- Cross, R.W.; Agans, K.N.; Prasad, A.N.; Borisevich, V.; Woolsey, C.; Deer, D.J.; Dobias, N.S.; Geisbert, J.B.; Fenton, K.A.; Geisbert, T.W. Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still present in the early convalescence phase. Virol. J. 2020, 17, 125. [Google Scholar] [CrossRef]
- Liddie, S.; Goody, R.; Valles, R.; Lawrence, M.S. Clinical chemistry and hematology values in a Caribbean population of African green monkeys. J. Med. Primatol. 2010, 39, 389–398. [Google Scholar] [CrossRef]
- Fan, B.E.; Chong, V.C.L.; Chan, S.S.W.; Lim, G.H.; Lim, K.G.E.; Tan, G.B.; Mucheli, S.S.; Kuperan, P.; Ong, K.H. Hematologic parameters in patients with COVID-19 infection. Am. J. Hematol. 2020, 95, E131–E134. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Kanneganti, T.D. Innate immunity: The first line of defense against SARS-CoV-2. Nat. Immunol. 2022, 23, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Fall, A.; Norton, J.M.; Eldesouki, R.E.; Abdullah, O.; Han, L.; Yunker, M.; Mostafa, H.H. Severity outcomes associated with SARS-CoV-2 XBB variants, an observational analysis. J. Clin. Virol. 2023, 165, 105500. [Google Scholar] [CrossRef]
- Maison, D.P.; Deng, Y.; Gerschenson, M. SARS-CoV-2 infection and the host immune response. Front. Immunol. 2023, 14, 1195871. [Google Scholar] [CrossRef]
- Dagotto, G.; Mercado, N.B.; Martinez, D.R.; Hou, Y.J.; Nkolola, J.P.; Carnahan, R.H.; Crowe, J.E.; Baric, R.S.; Barouch, D.H. Comparison of subgenomic and total RNA in SARS-CoV-2-challenged rhesus macaques. J. Virol. 2021, 95, e02370-20. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Stotts, C.; Corrales-Medina, V.F.; Rayner, K.J. Pneumonia-induced inflammation, resolution and cardiovascular disease: Causes, consequences and clinical opportunities. Circ. Res. 2023, 132, 751–774. [Google Scholar] [CrossRef]
- Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020, 53, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; García, J.; Meslé, F.; Barbieri, M.; Bonnet, F.; Camarda, C.G.; Cambois, E.; Caporali, A.; Couppié, É.; Poniakina, S.; et al. Identifying age- and sex-specific COVID-19 mortality trends over time in six countries. Int. J. Infect. Dis. 2023, 128, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Castellan, M.; Zamperin, G.; Franzoni, G.; Foiani, G.; Zorzan, M.; Drzewnioková, P.; Mancin, M.; Brian, I.; Bortolami, A.; Pagliari, M.; et al. Host response of Syrian hamster to SARS-CoV-2 infection including differences with humans and between sexes. Viruses 2023, 15, 428. [Google Scholar] [CrossRef]
RNA Copies Per Gram Tissue 1 | ||||
---|---|---|---|---|
Tissue | Subject 01 | Subject 02 | Subject 03 | Subject 04 |
Right cranial lung | BLD | BLD | BLD | BLD |
Right middle/caudal lung | BLD | BLD | BLD | BLD |
Accessory lung | BLD | BLD | 1.33 × 106 | BLD |
Left cranial lung | BLD | BLD | 3.88 × 107 | BLD |
Left caudal lung | BLD | BLD | BLD | BLD |
Tracheobronchial lymph node | BLD | BLD | BLD | 3.38 × 104 |
Brain frontal lobe | BLD | BLD | BLD | BLD |
Cerebellum | BLD | BLD | BLD | BLD |
Brainstem | BLD | BLD | BLD | BLD |
Olfactory bulb | BLD | BLD | BLD | BLD |
Nasal turbinate | BLD | 1.90 × 105 | 1.85 × 106 | 1.85 5 |
Tonsil | BLD | BLD | BLD | 6.35 × 104 |
Spleen | BLD | BLD | BLD | BLD |
Liver | BLD | BLD | BLD | BLD |
Colon | 1.93 × 107 | BLD | BLD | BLD |
Submandibular lymph node | BLD | BLD | BLD | BLD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Storm, N.; Lo, M.; Crossland, N.; Seyler-Schmidt, M.; Staples, H.; Silva-Ayala, D.; Laprise, A.M.; St. Denis, L.; Grosz, K.; O’Connell, A.; et al. An Intranasal Challenge Model in African Green Monkeys (Chlorocebus aethiops) for Mild-to-Moderate COVID-19 Disease Caused by Subvariant XBB.1.5. Viruses 2025, 17, 1373. https://doi.org/10.3390/v17101373
Storm N, Lo M, Crossland N, Seyler-Schmidt M, Staples H, Silva-Ayala D, Laprise AM, St. Denis L, Grosz K, O’Connell A, et al. An Intranasal Challenge Model in African Green Monkeys (Chlorocebus aethiops) for Mild-to-Moderate COVID-19 Disease Caused by Subvariant XBB.1.5. Viruses. 2025; 17(10):1373. https://doi.org/10.3390/v17101373
Chicago/Turabian StyleStorm, Nadia, Ming Lo, Nicholas Crossland, Margaux Seyler-Schmidt, Hilary Staples, Daniela Silva-Ayala, Ambre M. Laprise, Lauren St. Denis, Kyle Grosz, Aoife O’Connell, and et al. 2025. "An Intranasal Challenge Model in African Green Monkeys (Chlorocebus aethiops) for Mild-to-Moderate COVID-19 Disease Caused by Subvariant XBB.1.5" Viruses 17, no. 10: 1373. https://doi.org/10.3390/v17101373
APA StyleStorm, N., Lo, M., Crossland, N., Seyler-Schmidt, M., Staples, H., Silva-Ayala, D., Laprise, A. M., St. Denis, L., Grosz, K., O’Connell, A., Gertje, H., Ripin, T., Decker, C., Mazur, M., Thurman, C., Espinoza, M., Morrow, G., Parks, C. L., Cooper, C. L., & Griffiths, A. (2025). An Intranasal Challenge Model in African Green Monkeys (Chlorocebus aethiops) for Mild-to-Moderate COVID-19 Disease Caused by Subvariant XBB.1.5. Viruses, 17(10), 1373. https://doi.org/10.3390/v17101373