Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (134)

Search Parameters:
Keywords = S. mirabilis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 259 KB  
Article
A Two-Year Retrospective Study of Blood Cultures in a Secondary Western Greece Healthcare Setting
by Eirini Tsolakidou, Ioannis Angelidis, Apostolos Asproukos, Aikaterini Chalmouki, Nikolaos Zalavras, Kyriakos Louca, Panagiota Spyropoulou, Aliki Markopoulou, Eleni Katsorida, Paraskevi Stathakopoulou, Konstantina Filioti, Dimitrios Markopoulos, Konstantina Tsitsa, Charalampos Potsios, Konstantinos Letsas and Panagiota Xaplanteri
Microorganisms 2026, 14(1), 107; https://doi.org/10.3390/microorganisms14010107 - 4 Jan 2026
Viewed by 154
Abstract
Blood culture remains the gold standard for identifying bloodstream infections caused by bacteria and fungi. Isolation of the culprit microorganism onto agar plates also facilitates antimicrobial susceptibility testing. The purpose of this study was to determine the contamination rates, pathogen profile, and antimicrobial [...] Read more.
Blood culture remains the gold standard for identifying bloodstream infections caused by bacteria and fungi. Isolation of the culprit microorganism onto agar plates also facilitates antimicrobial susceptibility testing. The purpose of this study was to determine the contamination rates, pathogen profile, and antimicrobial resistance in a secondary healthcare setting in a two-year timeframe. In this study, data regarding blood cultures of the years 2023 and 2024 were retrospectively analyzed to address the above questions. Blood cultures were incubated for seven days before being discarded as negative. The percentage of positive blood cultures for both years was 14.3%. Most positive cultures contained Gram-positive cocci, with a prevalence of coagulase-negative Staphylococci. In descending order, 72.72% were coagulase-negative Staphylococci, 15.15% were Staphylococcus aureus, and 12.12% were Streptococci. One strain of S. aureus was methicillin-resistant (MRSA), and one strain of Enterococcus faecium was vancomycin-resistant (VRE). Of the Gram-negative rods, 78.3% were Enterobacterales. Of these, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were the top pathogens. The remainder comprised eight strains of Pseudomonas aeruginosa, four strains of Acinetobacter baumannii (one pandrug-resistant), three strains of Stenotrophomonas maltophilia, one strain of Sphingomonas paucimobilis, and one strain of Campylobacter jejuni. The isolated fungi comprised Candida parapsilosis, Candida glabrata, and Candida tropicalis. Of the isolated Escherichia coli strains, 39.5% were resistant to ciprofloxacin regardless of origin (outpatient or hospitalized patients). Outpatient samples were taken in a Hemodialysis Unit that collaborates with our laboratory, obtained from patients with fever or other signs of infection. Distinguishing true bacteremia from contamination remains challenging. The contamination rate in our study was quite high at 5.3%. Since there is no dedicated phlebotomy team in our healthcare setting, in light of our results, educational courses have been conducted to demonstrate the best practices for sample collection. Full article
17 pages, 574 KB  
Article
The Prevalence of Microorganisms on Vegetables and Fruit from Wet Markets in Chiang Mai Province, Northern Thailand
by Sirikwan Dokuta, Sumed Yadoung, Phadungkiat Khamnoi, Sayamon Hongjaisee, Bajaree Chuttong and Surat Hongsibsong
Foods 2026, 15(1), 80; https://doi.org/10.3390/foods15010080 - 26 Dec 2025
Viewed by 236
Abstract
Foodborne diseases remain a public health issue worldwide. Inadequate attention to food safety and hygiene increases the risk of opportunistic pathogens and resistant bacteria spreading to people through the food chain, leading to foodborne diseases. To investigate food safety in our region, this [...] Read more.
Foodborne diseases remain a public health issue worldwide. Inadequate attention to food safety and hygiene increases the risk of opportunistic pathogens and resistant bacteria spreading to people through the food chain, leading to foodborne diseases. To investigate food safety in our region, this study aims to measure the prevalence of microorganisms on raw food materials randomly purchased from wet markets in Chiang Mai province, Northern Thailand. In this study, microbial cultures, identified by MALDITOF-MS techniques, were used to determine the microflora and antibiotic-resistance organisms on raw vegetables and fruit. Consequently, to confirm antibiotic resistance, the antimicrobial susceptibility techniques were performed. The results found no Salmonella enterica was detected on the overall food samples. For Proteus spp. detection, P. mirabilis were detected at 3.23% in cabbage, 3.57% in Chinese cabbage, and 6.67% in lettuce, while P. vulgaris were detected at 7.14% in Chinese cabbage and 3.57% in peppermint. No Proteus spp. was detected in basils, tomatoes and grapes. In addition, for antibiotic-resistance detection, only ESBL-producing Klebsiella oxytoca was detected in the raw tomato sample (3.57%). According to the study’s findings, people who participate in the food process should be aware of their food safety and hygiene. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

14 pages, 4099 KB  
Article
Structure of Ribosome-Inactivating Protein from Mirabilis jalapa and Its L12-Stalk-Dependent Inhibition of Escherichia coli Ribosome
by Nanami Nishida, Yuki Ninomiya, Toru Yoshida, Takehito Tanzawa, Yasushi Maki, Hideji Yoshida, Hideaki Tsuge and Noriyuki Habuka
Toxins 2025, 17(12), 575; https://doi.org/10.3390/toxins17120575 - 28 Nov 2025
Viewed by 637
Abstract
Mirabilis antiviral protein (MAP) is the type I ribosome-inactivating protein (RIP), which consists of an RNA N-glycosylase domain with no carbohydrate-binding domain. Unlike many RIPs, such as ricin or trichosanthin, which inactivate eukaryotic ribosomes, MAP also inactivates the E. coli ribosome by [...] Read more.
Mirabilis antiviral protein (MAP) is the type I ribosome-inactivating protein (RIP), which consists of an RNA N-glycosylase domain with no carbohydrate-binding domain. Unlike many RIPs, such as ricin or trichosanthin, which inactivate eukaryotic ribosomes, MAP also inactivates the E. coli ribosome by cleaving the N-glycosidic bond at A2660 of 23S ribosomal RNA. The structure of the wild-type MAP has not been revealed yet. Here, we expressed, purified, and crystallized the plural recombinant MAPs, including both E168Q and R171Q mutations (MAP-EQRQ) in E. coli, and determined the crystal structure of MAP-EQRQ at 2.1 Å resolution. According to the predicted structure with RNA (sarcin-ricin loop) and the mutant protein’s activities using quantitative RT-PCR, we showed that residue R171 at the active site of MAP is a key residue to form the stable complex with target adenine. Furthermore, we showed that MAP bound the C-terminal domains of eukaryotic P2-stalk as well as E. coli L12-stalk. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Figure 1

14 pages, 4398 KB  
Article
Investigation of the Antibacterial Mechanism of the Bacteriocin-like Substance (FC) Produced by Limosilactobacillus fermentum z-6 Against Salmonella enterica Serovar Typhimurium
by Yuhang Zheng, Xinyue Wang, Hannuo Li, Nuo Xu, Jiayue Wang, Baishuang Yin, Wenlong Dong and Wanli Sha
Fermentation 2025, 11(12), 656; https://doi.org/10.3390/fermentation11120656 - 22 Nov 2025
Viewed by 946
Abstract
The excessive use of synthetic preservatives poses significant threats to food safety and human health. This study systematically investigated the genetic characteristics of the Limosilactobacillus fermentum (L. fermentum) z-6 strain, the antibacterial properties of the bacteriocin-like substance (FC) it produces, and [...] Read more.
The excessive use of synthetic preservatives poses significant threats to food safety and human health. This study systematically investigated the genetic characteristics of the Limosilactobacillus fermentum (L. fermentum) z-6 strain, the antibacterial properties of the bacteriocin-like substance (FC) it produces, and its mechanism of action. The results demonstrated that this bacteriocin-like substance exhibited remarkable antimicrobial activity and exceptional stability, maintaining high activity across a broad pH range (4.0–8.0) and withstanding heat treatment at 100 °C and UV irradiation, indicating robust environmental adaptability. Its proteinaceous nature was confirmed by its detection below 1 kDa on Tricine-SDS-PAGE and its inactivation by trypsin and pepsin. The FC showed broad-spectrum inhibition against foodborne pathogens, including Salmonella enterica serovar Typhimurium, E. coli, A. baumannii, S. aureus, P. mirabilis and L. monocytogenes. Mechanistic investigation demonstrated that the FC exerts antibacterial effects primarily through membrane disruption, as evidenced by a live-dead staining assay confirming significantly enhanced permeability in Salmonella enterica serovar Typhimurium, and scanning electron microscopy revealing distinct pore formation on bacterial surfaces. It is speculated that the FC produced by z-6, due to its excellent properties and outstanding antibacterial performance, could potentially serve as a natural biopreservative. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

22 pages, 4575 KB  
Article
Geo-Hydrological Characteristics That Contributed to the Choice and Configuration of the Ancient Roman Aqueduct Aqua Augusta from Serino Springs
by Libera Esposito, Michele Ginolfi, Guido Leone and Francesco Fiorillo
Water 2025, 17(23), 3342; https://doi.org/10.3390/w17233342 - 21 Nov 2025
Viewed by 792
Abstract
The Augustan Aqueduct, built between 33 and 12 BC at the command of Augustus and designed by Marcus Vipsanio Agrippa, stands as one of the most remarkable hydraulic engineering feats of the Roman era. The main route of the aqueduct extends over 100 [...] Read more.
The Augustan Aqueduct, built between 33 and 12 BC at the command of Augustus and designed by Marcus Vipsanio Agrippa, stands as one of the most remarkable hydraulic engineering feats of the Roman era. The main route of the aqueduct extends over 100 km, starting from the caput aquae, represented by the Acquaro-Pelosi springs located at the foot of the Terminio karst massif, near the village of Serino (Campania region) and ending at Castellum Aquae, which corresponds to the Piscina Mirabilis in Bacoli, near Neapolis. Hydrogeological and hydrological features have been analyzed to reconstruct the rationale behind the selection of the aqueduct’s water sources: flow rate, ground level, and quality of the karst waters of the Serino springs best met the supply requirements. These characteristics, and others of historical and archaeological nature, suggest that the Augustan Aqueduct had a hydraulic connection with the Sannitico Aqueduct, also fed by Serino springs. The Sannitico Aqueduct fed the town of Benevento towards Nord, and it is believed to have been built in the first century AD. As shown by this study, both aqueduct systems could be part of a unique and great hydraulic system, built in the 1st century BC to supply areas of great residential importance (cities and patrician villas) or military importance (Miseno harbor and Benevento). The several studies available on the Augustan Aqueduct primarily focus on archaeological, architectural, and engineering aspects and less on hydrogeological aspects. In this paper we highlight that the hydrogeological perspective represents a key to understand the rationale behind the selection of the water sources feeding both aqueducts, built probably at the same time, and their interconnection. Full article
(This article belongs to the Special Issue Hydrogeology and Water Management in Ancient Hydraulic Systems)
Show Figures

Figure 1

47 pages, 10263 KB  
Article
Effectiveness of Chitosan and Its Nanoparticles Against ampC- and ESBL-Producing Pan-Drug-Resistant Proteus mirabilis in Egyptian Livestock
by Ibtisam Faeq Hasona, Amal Awad, Gamal Younis and Wafaa Farouk Mohamed
Pathogens 2025, 14(11), 1176; https://doi.org/10.3390/pathogens14111176 - 18 Nov 2025
Viewed by 864
Abstract
Proteus mirabilis (P. mirabilis) serves as a multi-host–pathogen regarded as an alarming foodborne infectious disease, causing illnesses of variable severity in both livestock and human beings. The present study aimed to estimate the prevalence, antibiotic susceptibility profiles, and associated antimicrobial resistance [...] Read more.
Proteus mirabilis (P. mirabilis) serves as a multi-host–pathogen regarded as an alarming foodborne infectious disease, causing illnesses of variable severity in both livestock and human beings. The present study aimed to estimate the prevalence, antibiotic susceptibility profiles, and associated antimicrobial resistance genes (ARGs) of P. mirabilis isolates obtained from diseased broiler chickens and native Egyptian buffaloes in Kafr El-Sheikh and Dakahlia governorates, Egypt. In addition, this study investigated the antibacterial activity of chitosan (CS) and chitosan nanoparticles (CSNPs), including the estimation of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CS at concentrations of 1% and 2%, as well as CSNPs. Furthermore, the sub-MIC values were utilized to assess the inhibitory effects of CS and CSNPs on swarming motility. P. mirabilis was detected in 68% (34/50) of broiler chickens and 40.74% (11/27) of buffaloes. Interestingly, all P. mirabilis isolates were tested against 21 antimicrobial drugs and showed high resistance against either critical, highly important, or important antimicrobial drugs. For chicken-originated P. mirabilis, 50% (17/34) of isolates were revealed to be extensively drug-resistant (XDR) and 50% (17/34) of isolates were revealed to be pan-drug-resistant (PDR). Meanwhile, 9.09% (1/11) of buffalo-originated P. mirabilis isolates were revealed to be XDR and 90.91% (10/11) of the isolates were revealed to be PDR. Among P. mirabilis isolates from broiler chickens, the prevalence of resistance genes was as follows: int1 (97.06%), dfrA1 (100%), sul2 (97.06%), catA1 (44.12%), aadA1 (97.06%), tet(M) (81.82%), ermB (23.53%), msrA (0%), qnrA (47.06%), qnrS (0%), gyrA (0%), mcr-1 (11.76%), blaTEM (97.06%), blaCTX-M (26.47%), blaOXA-10 (2.94%), blaCMY-2 (41.18%), and blaSHV (0%). The corresponding detection rates in buffalo-derived isolates were 100%, 100%, 90.91%, 63.64%, 100%, 70.59%, 18.18%, 0%, 9.09%, 0%, 0%, 18.18%, 81.82%, 18.18%, 18.18%, 63.64%, and 0%, respectively. Carbapenemase genes were found in none of the isolates from either species. CSNPs demonstrated superior antibacterial and anti-virulence activity against resistant P. mirabilis. CSNPs exhibited significantly lower MIC (0.067–0.081 mg/mL) and MBC (0.167–0.177 mg/mL) values compared with conventional CS formulations (MIC: 3.25–4.5 mg/mL; MBC: 6.67–9.08 mg/mL) in both broiler and buffalo isolates. In inhibition zone assays, the CSNPs + ciprofloxacin (CIP) combination showed the highest efficacy with a 50–58% increase in the inhibition area. Both CSNPs and CS 2% substantially reduced swarming motility by 45–52%, with CSNPs showing the strongest inhibitory effect. These outcomes highlight how P. mirabilis carries and disseminates antibiotic resistance, presenting serious threats to health policy and livestock. Also, CS or CSNPs, either alone or enhanced with CIP, are effective in vitro against resistant P. mirabilis, which promotes the treatment of Proteus infections to guarantee a bactericidal impact. Full article
(This article belongs to the Special Issue Current Progress on Bacterial Antimicrobial Resistance)
Show Figures

Figure 1

13 pages, 999 KB  
Article
Bacterial Agents and Antimicrobial-Resistance Patterns in Canine Otitis Externa
by Sónia Saraiva, Rita Calouro, Telma de Sousa, Maria de Lurdes Enes Dapkevicius, João R. Mesquita, Ana C. Coelho and Patrícia Poeta
Animals 2025, 15(22), 3317; https://doi.org/10.3390/ani15223317 - 17 Nov 2025
Viewed by 1188
Abstract
Canine otitis externa is a common and recurrent ear infection in dogs, often caused by bacterial pathogens, and complicated by increasing antimicrobial resistance. The analysis of bacterial isolates from dogs with otitis externa revealed a predominance of Staphylococcus pseudintermedius, representing 41% of [...] Read more.
Canine otitis externa is a common and recurrent ear infection in dogs, often caused by bacterial pathogens, and complicated by increasing antimicrobial resistance. The analysis of bacterial isolates from dogs with otitis externa revealed a predominance of Staphylococcus pseudintermedius, representing 41% of all cases, followed by Staphylococcus aureus (23%), and Pseudomonas aeruginosa (19%). Other less frequently isolated organisms included Escherichia coli, Streptococcus canis, and Proteus mirabilis. These results highlight the significant role of S. pseudintermedius in the pathogenesis of otitis externa in dogs, as well as the relevance of Gram-negative opportunistic pathogens like P. aeruginosa, which exhibits the highest recurrence rate, with 90% of the cases associated with highly resistant to β-lactams (93% for amoxicillin–clavulanic acid; >70% for third-generation cephalosporins). P. mirabilis showed complete resistance to tetracycline, partial resistance to doxycycline, and reduced susceptibility to carbapenems, nitrofurantoin, and polymyxin B. S. canis exhibited limited resistance to erythromycin and clindamycin, while S. epidermidis displayed extensive multidrug resistance, including β-lactams, fluoroquinolones, sulfonamides, and polymyxins. These findings highlight the high prevalence of multidrug-resistant pathogens in canine otitis externa, emphasizing the need for culture-guided therapy and raising concerns regarding One Health, due to potential zoonotic transmission and dissemination of genetic determinants of antimicrobial resistance. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

14 pages, 1402 KB  
Article
Assessment of the Ecotoxicity of Marine Sediments from the Eastern Kamchatka Using Bioassays
by Valentina Vladimirovna Slobodskova, Victor Pavlovich Chelomin, Sergey Petrovich Kukla, Andrey Alexandrovich Mazur, Nadezhda Vladimirovna Dovzhenko, Aleksandra Anatolyevna Istomina and Elena Vladimirovna Zhuravel
J. Mar. Sci. Eng. 2025, 13(10), 1891; https://doi.org/10.3390/jmse13101891 - 2 Oct 2025
Viewed by 575
Abstract
Because of the active influx of chemical compounds into the marine environment, a significant portion is transformed and accumulates in bottom sediments (BS), posing a threat to benthic organisms. The eastern coast of the Kamchatka Peninsula, with its characteristic volcanic, seismic, and gas–chemical [...] Read more.
Because of the active influx of chemical compounds into the marine environment, a significant portion is transformed and accumulates in bottom sediments (BS), posing a threat to benthic organisms. The eastern coast of the Kamchatka Peninsula, with its characteristic volcanic, seismic, and gas–chemical features, is of particular interest to our research. This study is the first to assess the cyto- and genotoxicity of BS in coastal waters off the eastern coast of the Kamchatka Peninsula using biotesting on representatives of the benthic community (the mussel Mytilus trossulus and the sand dollar Scaphehinus mirabilis). Of the aqueous extracts exposure of BS from all stations, M. trossulus showed destabilization of lysosomal membranes in gills and digestive gland cells. It was shown that aqueous extracts from BS of Kamchatka Bay (station 1) and Avachinskaya Bay (station 3) had no negative effect on DNA molecules in the gills and digestive gland cells of mussels, and the values obtained corresponded to the control. Extracts from BS of Kronotsky Bay (station 2) and Avacha Bay (station 4) damaged the integrity of the genome in the cells of the gills M. trossulus and sperm of S. mirabilis. The level of DNA damage in sperm increased by 3 and 3.5 times, respectively, compared with that in control gametes. The results of the biotests on two biological models show that sediments from Kronotsky Bay and Avacha Bay exhibit cytotoxicity and induce DNA damage in both somatic cells and gametes. Full article
(This article belongs to the Special Issue Ecological Risk Assessments in Marine Pollutants)
Show Figures

Figure 1

19 pages, 1817 KB  
Article
Urinary Tract Infections in a Single-Center Bulgarian Hospital: Trends in Etiology, Antibiotic Resistance, and the Impact of the COVID-19 Pandemic (2017–2022)
by Milena Yancheva Rupcheva, Kostadin Kostadinov, Yordan Kalchev, Petya Gardzheva, Eli Hristozova, Zoya Rachkovska, Gergana Lengerova, Andreana Angelova, Marianna Murdjeva and Michael M. Petrov
Antibiotics 2025, 14(10), 982; https://doi.org/10.3390/antibiotics14100982 - 30 Sep 2025
Cited by 1 | Viewed by 1051
Abstract
Background: Urinary tract infections (UTIs) are among the most common hospital- and community-acquired infections, creating a substantial healthcare burden due to recurrence, complications, and rising antimicrobial resistance. Accurate diagnosis and timely antimicrobial therapy are essential. This study aimed to identify trends in [...] Read more.
Background: Urinary tract infections (UTIs) are among the most common hospital- and community-acquired infections, creating a substantial healthcare burden due to recurrence, complications, and rising antimicrobial resistance. Accurate diagnosis and timely antimicrobial therapy are essential. This study aimed to identify trends in the etiology, treatment, and resistance patterns of UTIs through a retrospective analysis of urine isolates processed at the Laboratory of Microbiology at University Hospital St. George in Plovdiv, the largest tertiary care and reference microbiology center in Bulgaria, between 2017 and 2022. Materials and Methods: A retrospective single-center study was performed at the hospital’s Microbiology Laboratory. During the study period, 74,417 urine samples from 25,087 hospitalized patients were screened with the HB&L UROQUATTRO system. Positive specimens were cultured on blood agar, Eosin-Methylene Blue, and chromogenic media. Identification was performed using biochemical assays, MALDI-TOF MS, and the Vitek 2 Compact system. Antimicrobial susceptibility testing included disk diffusion, MIC determination, broth microdilution (for colistin), and Vitek 2 Compact, interpreted according to EUCAST standards. Descriptive analysis and temporal resistance trends were evaluated with regression models, and interrupted time-series analysis was applied to assess COVID-19-related effects. Results: Out of 10,177 isolates, Gram-negative bacteria predominated (73%), with Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis as the leading pathogens. Among Gram-positives, Enterococcus faecalis was the most frequent. In the post-COVID-19 period, ESBL production increased in E. coli (34–38%), K. pneumoniae (66–77%), and P. mirabilis (13.5–24%). Carbapenem resistance rose in K. pneumoniae (to 40.6%) and P. aeruginosa (to 24%), while none was detected in E. coli. Colistin resistance increased in K. pneumoniae but remained absent in E. coli and P. aeruginosa. High-level aminoglycoside resistance in E. faecalis was stable (~70%), and vancomycin resistance in E. faecium rose from 4.6% to 8.9%. Conclusions: Both community- and hospital-acquired UTIs in Southeastern Bulgaria are increasingly linked to multidrug-resistant pathogens, particularly ESBL-producing and carbapenem-resistant Enterobacterales. Findings from the region’s largest referral center highlight the urgent need for continuous surveillance, rational antibiotic use, and novel therapeutic approaches. Full article
Show Figures

Figure 1

32 pages, 1307 KB  
Review
Catheter-Associated Urinary Tract Infections: Understanding the Interplay Between Bacterial Biofilm and Antimicrobial Resistance
by Desiye Tesfaye Tegegne, Iain J. Abbott and Błażej Poźniak
Int. J. Mol. Sci. 2025, 26(18), 9193; https://doi.org/10.3390/ijms26189193 - 20 Sep 2025
Viewed by 5361
Abstract
The increasing use of urinary catheters in healthcare, driven by an aging population and escalating antimicrobial resistance, presents both benefits and challenges. While they are essential to managing urinary retention and enabling precise urine output monitoring, their use significantly increases the risk of [...] Read more.
The increasing use of urinary catheters in healthcare, driven by an aging population and escalating antimicrobial resistance, presents both benefits and challenges. While they are essential to managing urinary retention and enabling precise urine output monitoring, their use significantly increases the risk of catheter-associated urinary tract infections (CAUTIs), the most common type of healthcare-associated infection. CAUTI risk is closely linked to the duration of catheterization and the formation of bacterial biofilms on catheter surfaces. These biofilms, often composed of polymicrobial communities encased in an extracellular matrix, promote persistent infections that are highly resistant to conventional antimicrobial therapies. Common CAUTI uropathogens include E. coli, E. faecalis, P. aeruginosa, P. mirabilis, K. pneumoniae, S. aureus, and Candida spp. The complexity and resilience of these biofilm-associated infections underscore the urgent need for innovative treatment strategies. Therefore, dynamic in vitro bladder infection models, which replicate physiological conditions such as urine flow and bladder voiding, have become valuable tools for studying microbial behavior, biofilm development, and therapeutic interventions under real clinical conditions. This review provides an overview of CAUTIs, explores the role of biofilms in sub-optimal responses to antimicrobial treatment and advances in model systems, and presents promising new approaches to combating these infections. Full article
(This article belongs to the Special Issue Mechanisms in Biofilm Formation, Tolerance and Control: 2nd Edition)
Show Figures

Figure 1

23 pages, 1594 KB  
Article
Bioprospecting of Goat Rumen Microbiota for Optimum Cellulase Enzyme Production to Support Sustainable Bioenergy Systems
by Kgodiso J. Rabapane and Tonderayi S. Matambo
Microorganisms 2025, 13(9), 2170; https://doi.org/10.3390/microorganisms13092170 - 17 Sep 2025
Viewed by 940
Abstract
This study reports the isolation and optimization of cellulase-producing bacteria from the gastrointestinal tract of South African goats for the pretreatment of lignocellulosic biomass in bioenergy applications. Among the isolates, three strains, Bacillus KC50, Bacillus KC70, and Proteus mirabilis KC94, were identified by [...] Read more.
This study reports the isolation and optimization of cellulase-producing bacteria from the gastrointestinal tract of South African goats for the pretreatment of lignocellulosic biomass in bioenergy applications. Among the isolates, three strains, Bacillus KC50, Bacillus KC70, and Proteus mirabilis KC94, were identified by 16S rDNA sequencing. To our knowledge, this is the first report of cellulolytic optimization in P. mirabilis derived from goat rumen. Enzyme production was optimized under varying pH, temperature, and incubation conditions. P. mirabilis KC94 exhibited robust enzyme activity at pH 7 and 35 °C, with stability across a broader range than the Bacillus strains. Peak activity occurred at 84 h of incubation, reflecting strain-specific metabolic adaptation. The presence of organic solvents and surfactants inhibited enzyme activity, whereas mild oxidative stress induced by H2O2 stimulated cellulase production. Amplification of GH39, GH45, and GH48 genes revealed KC94’s strong genetic potential for efficient lignocellulose degradation. These findings highlight the biotechnological potential of rumen-derived cellulolytic bacteria, particularly P. mirabilis KC94, for advancing sustainable bioenergy systems. Full article
(This article belongs to the Special Issue Advances in Microbial Cell Factories, 3rd Edition)
Show Figures

Figure 1

18 pages, 760 KB  
Article
Antineutrophil Cytoplasmic Autoantibodies Specific to Bactericidal/Permeability-Increasing Protein: A Cross-Road Between Prolonged Gram-Negative Bacterial Infections and Ulcerative Colitis/Primary Sclerosing Cholangitis
by Dragana Jovanovic, Rada Miskovic, Aleksandra Plavsic, Sara Radovic, Ljudmila Nagorni-Obradovic, Dragan Popovic, Milos M. Nikolic and Branka Bonaci-Nikolic
Diagnostics 2025, 15(18), 2309; https://doi.org/10.3390/diagnostics15182309 - 11 Sep 2025
Viewed by 927
Abstract
Background/Objectives: Binding of bactericidal/permeability-increasing (BPI) protein to Gram-negative (GN) bacteria plays a major role in bacterial elimination. The relationship between BPI-antineutrophil cytoplasmic autoantibodies (ANCA), persistent infections and immunoinflammatory diseases has not been elucidated. Methods: In total, 193 ANCA-positive patients detected by [...] Read more.
Background/Objectives: Binding of bactericidal/permeability-increasing (BPI) protein to Gram-negative (GN) bacteria plays a major role in bacterial elimination. The relationship between BPI-antineutrophil cytoplasmic autoantibodies (ANCA), persistent infections and immunoinflammatory diseases has not been elucidated. Methods: In total, 193 ANCA-positive patients detected by IIF with ANCA-associated vasculitides (AAV, n-40), connective tissue diseases (CTD, n-28), drug-induced vasculitides (DIV, n-17), ulcerative colitis (UC, n-24), UC with primary sclerosing cholangitis (UC/PSC, n-14), Crohn’s disease (CD, n-10), autoimmune hepatitis (AIH, n-19) and chronic infections (n-41) were tested using the BPI-ANCA quantitative and semiquantitative ELISA (ANCA-profile: BPI, proteinase 3, myeloperoxidase, elastase, cathepsin G, lactoferrin). BPI-ANCA were analyzed in 52 healthy persons. Results: A total of 46/193 (23.8%) patients had BPI-ANCA positivity. BPI-ANCA were more frequently present in patients with prolonged GN bacterial infections and inflammatory bowel diseases than in AAV, DIV, AIH, CTD and healthy controls (p < 0.001). UC/PSC patients more frequently had BPI-ANCA than UC and CD patients (p < 0.001). GN bacterial infections more frequently had BPI-ANCA than Gram-positive bacterial infections (p < 0.001). Infections caused by Pseudomonas aeruginosa and Mycobacterium tuberculosis had monospecific BPI-ANCA (sensitivity 79% and 71%, respectively). UC/PSC and chronic GN bacterial infections caused by Klebsiella pneumoniae, Proteus mirabilis, or Escherichia coli had multispecific BPI-ANCA (sensitivity 64% and 100%, respectively). Odds ratio analysis showed that patients with IBD who were positive for multispecific BPI-ANCA had a 13.5-fold increased risk of UC/PSC (95% CI 2.98–61.18). Conclusions: Monospecific BPI-ANCA may be a valuable biomarker for persistent Pseudomonas aeruginosa and Mycobacterium tuberculosis infections. In contrast, multispecific BPI-ANCA are associated with UC/PSC and persistent infections caused by intestinal Gram-negative bacteria. Suppression of antimicrobial function by multispecific BPI-ANCA could impair the elimination of Gram-negative bacteria, sustaining the immunoinflammation. Dysregulated antimicrobial response might be the target of immunomodulatory therapy in the initial phase of BPI-ANCA-positive UC/PSC. Full article
Show Figures

Figure 1

14 pages, 4501 KB  
Article
The Small Molecule Inhibitor of the Type III Secretion System Fluorothiazinone Affects Flagellum Surface Presentation and Restricts Motility in Gram-Negative Bacteria
by Alexey Slonov, Mariam Abdulkadieva, Egor Kalinin, Natalya Bondareva, Lydia Kapotina, Svetlana Andreevskaya, Natalia Shevlyagina, Anna Sheremet, Elena Sysolyatina, Vladimir Zhukhovitsky, Mikhail Vasiliev, Oleg Petrov, Svetlana Ermolaeva, Nailya Zigangirova and Alexander Gintsburg
Antibiotics 2025, 14(8), 820; https://doi.org/10.3390/antibiotics14080820 - 11 Aug 2025
Cited by 2 | Viewed by 1548
Abstract
Background/Objectives: Fluorothiazinone (FT), a small molecule of the 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-one class, is known to inhibit the type III secretion system (T3SS) in Gram-negative bacteria and has shown therapeutic potential in animal models and clinical trials. Given the evolutionary relationship between the T3SS and the [...] Read more.
Background/Objectives: Fluorothiazinone (FT), a small molecule of the 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-one class, is known to inhibit the type III secretion system (T3SS) in Gram-negative bacteria and has shown therapeutic potential in animal models and clinical trials. Given the evolutionary relationship between the T3SS and the bacterial flagellar apparatus, this study aimed to investigate the effects of FT on bacterial motility and flagellum assembly. Methods: Motility was assessed in Pseudomonas aeruginosa, Proteus mirabilis, pathogenic Escherichia coli, and Listeria monocytogenes using a semisolid agar assay and a microfluidic motility system. The mechanism of FT’s action was further examined through time-course analysis, Western blotting of surface flagella proteins, and transmission electron microscopy (TEM). Results: FT inhibited motility of P. aeruginosa, P. mirabilis, and E. coli in a dose-dependent manner, while L. monocytogenes motility remained unaffected. The inhibitory effect was not immediate but delayed 2–3 h post FT addition. Western blotting revealed the absence of surface flagella in EHEC grown with FT, and TEM confirmed structural disruption of flagella in P. mirabilis. Conclusions: FT selectively inhibits flagellum-based motility in Gram-negative bacteria. Obtained data suggested FT interference with flagellum biosynthesis rather than disruption of rotation. Motility inhibition can contribute to FT therapeutic effects on Gram-negative bacterial infections. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

19 pages, 9488 KB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 - 1 Aug 2025
Cited by 1 | Viewed by 820
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

23 pages, 3211 KB  
Article
Investigation of Bacterial Species and Their Antimicrobial Drug Resistance Profile in Feline Urinary Tract Infection in Thailand
by Kankanit Lapcharoen, Chunyaput Bumrungpun, Wiyada Chumpol, Kamonwan Lunha, Suganya Yongkiettrakul, Porntippa Lekcharoensuk and Chantima Pruksakorn
Animals 2025, 15(15), 2235; https://doi.org/10.3390/ani15152235 - 30 Jul 2025
Cited by 1 | Viewed by 2875
Abstract
Feline urinary tract infections (UTIs) present a common challenge in veterinary practice, underscoring the importance of understanding local bacterial pathogens and antimicrobial resistance (AMR). This study determined bacterial prevalence and antimicrobial susceptibility in cats at Kasetsart University’s Veterinary Teaching Hospital in Bangkok, Thailand. [...] Read more.
Feline urinary tract infections (UTIs) present a common challenge in veterinary practice, underscoring the importance of understanding local bacterial pathogens and antimicrobial resistance (AMR). This study determined bacterial prevalence and antimicrobial susceptibility in cats at Kasetsart University’s Veterinary Teaching Hospital in Bangkok, Thailand. Of the 543 cystocentesis urine samples collected from 428 cats, 115 (21.2%) tested positive for bacterial cultures, leading to a diagnosis of UTIs in 95 cats (22.2%). The most prevalent isolates included Escherichia coli (24.8%), Staphylococcus species (19.2%), Proteus mirabilis (13.6%), Pseudomonas aeruginosa (12.0%), and Enterococcus species (12.0%). Staphylococcus felis (8.8%) and Staphylococcus pseudintermedius (5.6%) were the predominant Staphylococcus species. Rare pathogens such as Corynebacterium urealyticum and Lactococcus garvieae were also identified. Antimicrobial testing revealed alarming resistance, with 69.2% of isolates exhibiting multidrug resistance (MDR). Escherichia coli and Proteus mirabilis showed high resistance to amoxicillin/clavulanic acid (AMC) (45.2–70.6%) and sulfamethoxazole/trimethoprim (SXT) (51.6–52.9%). Enterococcus faecium exhibited 85.7% resistance to AMC. Methicillin resistance was identified in 41.7% of Staphylococcus isolates, particularly high in Staphylococcus epidermidis (75.0%) and Staphylococcus pseudintermedius (71.4%). High fluoroquinolone resistance among MDR isolates further exacerbates AMR concerns. These results indicate that MDR Gram-negative, Staphylococcus, and Enterococcus species complicate the empirical treatment of feline UTIs, highlighting significant implications for AMR in veterinary practice. Full article
Show Figures

Figure 1

Back to TopTop