Fatty Acid-Containing p(HEMA) Hydrogels; A Promising Coating Platform to Reduce Encrustation on Urinary Catheters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Methods
2.2.1. Preparation of Hydrogels
2.2.2. Dynamic Contact Angle Analysis of Hydrogels
2.2.3. Swelling Properties of Hydrogels
- Solution A (5 L)
- Potassium dihydrogen orthophosphate → 0.76% w/v
- Magnesium chloride hexahydrate → 0.36% w/v
- Urea → 1.60% w/v
- Deionised water ad → 100% w/v
- Solution B (5 L)
- Calcium chloride dihydrate → 0.36% w/v
- Chicken ovalbumin → 0.02% w/v
- Deionised water ad → 100% w/v
2.2.4. Tensile Analysis
2.2.5. Bacterial Adherence to Hydrogels
2.2.6. Resistance of Hydrogels to Encrustation
The CDC Biofilm Reactor Model
The Urease Model
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterisation of the Bulk (Mechanical and Swelling) and Surface Properties (Contact Angle) of the Fatty Acid-Containing p(HEMA) Hydrogels
3.2. Characterisation of the Resistance of Fatty Acid Containing p(HEMA) Hydrogels to Microbial (Proteus mirabilis, Escherichia coli, Staphylococcus epidermidis) Adherence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolle, L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control. 2014, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zarb, P.; Coignard, B.; Griskeviciene, J.; Muller, A.; Vankerckhoven, V.; Weist, K.; Goossens, M.M.; Vaerenberg, S.; Hopkins, S.; Catry, B.; et al. Hosp Contact Points, The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Eurosurveillance 2012, 17, 4–19. [Google Scholar] [CrossRef]
- Adomi, M.; Iwagami, M.; Kawahara, T.; Hamada, S.; Iijima, K.; Yoshie, S.; Ishizaki, T.; Tamiya, N. Factors associated with long-term urinary catheterisation and its impact on urinary tract infection among older people in the community: A population-based observational study in a city in Japan. BMJ Open 2019, 9, e028371. [Google Scholar] [CrossRef] [PubMed]
- Gage, H.; Avery, M.; Flannery, C.; Williams, P.; Fader, M. Community Prevalence of Long-Term Urinary Catheters Use in England. Neurourol. Urodyn. 2017, 36, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Milo, S.; Nzakizwanayo, J.; Hathaway, H.J.; Jones, B.V.; Jenkins, A.T.A. Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Bjarnsholt, T.; Moser, C.; Bassi, G.L.; Coenye, T.; Donelli, G.; Hall-Stoodley, L.; Holá, V.; Imbert, C.; Kirketerp-Møller, K.; et al. ESCMID* guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 2015, 21, S1–S25. [Google Scholar] [CrossRef] [PubMed]
- Eurosurveillance Editorial Team. ECDC publishes 2014 surveillance data on antimicrobial resistance and antimicrobial consumption in Europe. Eurosurveillance 2015, 20, 39. [Google Scholar]
- Yao, Q.; Wu, C.; Yu, X.; Chen, X.; Pan, G.; Chen, B. Current material engineering strategies to prevent catheter encrustation in urinary tracts. Mater. Today Bio 2022, 16, 100413. [Google Scholar] [CrossRef]
- Gilmore, B.F.; Hamill, T.M.; Jones, D.S.; Gorman, S.P. Validation of the CDC Biofilm Reactor as a Dynamic Model for Assessment of Encrustation Formation on Urological Device Materials. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2010, 93B, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Hamill, T.M.; Gilmore, B.F.; Jones, D.S.; Gorman, S.P. Strategies for the development of the urinary catheter. Expert Rev. Med. Devices 2007, 4, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Chai, H.; Niu, L.; Ouyang, M.; Wang, R. A stable dual functional superhydrophobic coating to inhibit Proteus mirabilis colonization, migration, and encrustation formation for urinary catheter applications. J. Mater. Chem. B 2024, 13, 511–523. [Google Scholar] [CrossRef]
- Lethongkam, S.; Paosen, S.; Bilhman, S.; Dumjun, K.; Wunnoo, S.; Choojit, S.; Siri, R.; Daengngam, C.; Voravuthikunchai, S.P.; Bejrananda, T. Eucalyptus-Mediated Synthesized Silver Nanoparticles-Coated Urinary Catheter Inhibits Microbial Migration and Biofilm Formation. Nanomaterials 2022, 12, 4059. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, S.; Keatch, R.; Corner, G.; Nabi, G.; Murdoch, S.; Davidson, F.; Zhao, Q. In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. J. Hosp. Infect. 2019, 103, 55–63. [Google Scholar] [CrossRef]
- Mandakhalikar, K.D.; Wang, R.; Rahmat, J.N.; Chiong, E.; Neoh, K.G.; Tambyah, P.A. Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: A proof of concept study. BMC Infect. Dis. 2018, 18, 370. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; McGovern, J.G.; Woolfson, A.D.; Adair, C.G.; Gorman, S.P. Physicochemical characterization of hexetidine-impregnated endotracheal tube poly(vinyl chloride) and resistance to adherence of respiratory bacterial pathogens. Pharm. Res. 2002, 19, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Srisang, S.; Boongird, A.; Ungsurungsie, M.; Wanasawas, P.; Nasongkla, N. In vivo catheterization study of chlorhexidine-loaded nanoparticle coated Foley urinary catheters in male New Zealand white rabbits. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2021, 109, 1836–1843. [Google Scholar] [CrossRef]
- Slate, A.J.; Clarke, O.E.; Kerio, M.; Nzakizwanayo, J.; Patel, B.A.; Jones, B.V. Infection responsive coatings to reduce biofilm formation and encrustation of urinary catheters. J. Appl. Microbiol. 2023, 134, lxad121. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, J.; Pan, G.; Chen, B. Mussel-Inspired Clickable Antibacterial Peptide Coating on Ureteral Stents for Encrustation Prevention, ACS Appl. Mater. Interfaces 2022, 14, 36473–36486. [Google Scholar]
- Yu, H.; Shi, H.; Zhu, M.; Zhang, X.; Wang, L.; Tian, G.; Song, L.; Luan, S.; Qi, D.; Chen, X. Salt-Triggered Adaptive Dissociation Coating with Dual Effect of Antibacteria and Anti-Multiple Encrustations in Urological Devices. Adv. Healthc. Mater. 2023, 12, e2203328. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, T.; Koyama, N.; Matsuda, J.; Aoyama, Y.; Hirakata, Y.; Kamihira, S.; Kohno, S.; Nakashima, M.; Sasaki, H. Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull. 2004, 27, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhou, J.; Richey, G.; Wang, M.; Hong, S.; Hong, S. Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation. J. Microbiol. Biotechnol. 2021, 31, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Hoa, V.-B.; Song, D.-H.; Seol, K.-H.; Kang, S.-M.; Kim, H.-W.; Kim, Y.-S.; Kim, J.-H.; Cho, S.-H. Coating with chitosan containing lauric acid (C12:0) significantly extends the shelf-life of aerobically-Packaged beef steaks during refrigerated storage. Meat Sci. 2022, 184, 108696. [Google Scholar] [CrossRef] [PubMed]
- Solano, R.; Sierra, C.; Murillo, M. Antifungal activity of LDPE/lauric acid films against Colletotrichum tamarilloi. Food Packag. Shelf Life 2020, 24, 100495. [Google Scholar] [CrossRef]
- Miles, A.A.; Misra, S.S.; Irwin, J.O. The estimation of the bactericidal power of the blood. J. Hyg. 1938, 38, 732–748. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; McLaughlin, D.W.J.; McCoy, C.P.; Gorman, S.P. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials. Biomaterials 2005, 26, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Shackley, D.C.; Whytock, C.; Parry, G.; Clarke, L.; Vincent, C.; Harrison, A.; John, A.; Provost, L.; Power, M. Variation in the prevalence of urinary catheters: A profile of National Health Service patients in England. BMJ Open 2017, 7, e013842. [Google Scholar] [CrossRef] [PubMed]
- CDC, Catheter-Associated Urinary Tract Infection Basics. 2024. Available online: https://www.cdc.gov/uti/about/cauti-basics.html (accessed on 4 December 2024).
- Stickler, D.J. Clinical complications of urinary catheters caused by crystalline biofilms: Something needs to be done. J. Intern. Med. 2014, 276, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Kalpande, S.; Saravanan, P.R.; Saravanan, K. Study of factors influencing the encrustation of indwelling catheters: Prospective case series. Afr. J. Urol. 2021, 27, 50. [Google Scholar] [CrossRef]
- Kanti, S.P.Y.; Csóka, I.; Jójárt-Laczkovich, O.; Adalbert, L. Recent Advances in Antimicrobial Coatings and Material Modification Strategies for Preventing Urinary Catheter-Associated Complications. Biomedicines 2022, 10, 2580. [Google Scholar] [CrossRef]
- Al-Qahtani, M.; Safan, A.; Jassim, G.; Abadla, S. Efficacy of anti-microbial catheters in preventing catheter associated urinary tract infections in hospitalized patients: A review on recent updates. J. Infect. Public Health 2019, 12, 760–766. [Google Scholar] [CrossRef]
- Singha, P.; Locklin, J.; Handa, H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater. 2017, 50, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.B.; Alimova, Y.; Myers, T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 2011, 56, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Wellen, B.; Lach, E.; Allen, H. Surface pKa of octanoic, nonanoic, and decanoic fatty acids at the air-water interface: Applications to atmospheric aerosol chemistry. Phys. Chem. Chem. Phys. 2017, 19, 26551–26558. [Google Scholar] [CrossRef] [PubMed]
- Kanicky, J.; Shah, D. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J. Colloid Interface Sci. 2002, 256, 201–207. [Google Scholar] [CrossRef]
- Lieckfeldt, R.; Villalaín, J.; Gómez-Fernández, J.; Lee, G. Apparent pKa of the fatty acids within ordered mixtures of model human stratum corneum lipids. Pharm. Res. 1995, 12, 1614–1617. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, J.; Suga, K.; Kuhl, T.L. Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions. Biochim. Et Biophys. Acta-Biomembr. 2017, 1859, 211–217. [Google Scholar] [CrossRef]
- Selby, A.; Maldonado-Codina, C.; Derby, B. Influence of specimen thickness on the nanoindentation of hydrogels: Measuring the mechanical properties of soft contact lenses. J. Mech. Behav. Biomed. Mater. 2014, 35, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; McCoy, C.P.; Andrews, G.P.; McCrory, R.M.; Gorman, S.P. Hydrogel antimicrobial capture coatings for endotracheal tubes; a pharmaceutical strategy designed to prevent ventilator-associated pneumonia. Mol. Pharm. 2015, 12, 2928–2936. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Sauer, J.; Hara, M. Influence of plasticizers on poly(methyl methacrylate) ionomers. Polymer 1997, 38, 4425–4431. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, H.; Li, J.; Gu, R.; Dong, Y.; Zhao, Q.; Chen, Y.; Li, Y.; Wang, R. Antibacterial AgNPs-PAAm-CS-PVP nanocomposite hydrogel coating for urinary catheters. Eur. Polym. J. 2023, 196, 112260. [Google Scholar] [CrossRef]
- Chu, W.; Ma, Y.; Zhang, Y.; Cao, X.; Shi, Z.; Liu, Y.; Ding, X. Significantly improved antifouling capability of silicone rubber surfaces by covalently bonded acrylated agarose towards biomedical applications. Colloid Surf. B-Biointerfaces 2023, 222, 112979. [Google Scholar] [CrossRef]
- Grundke, K.; Pöschel, K.; Synytska, A.; Frenzel, R.; Drechsler, A.; Nitschke, M.; Cordeiro, A.; Uhlmann, P.; Welzel, P. Experimental studies of contact angle hysteresis phenomena on polymer surfaces-Toward the understanding and control of wettability for different applications. Adv. Colloid Interface Sci. 2015, 222, 350–376. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Lee, S.; Lee, J.; Kim, S.; Kwon, I.; Chung, S.; Yoon, M. Prophylactic efficacy of a new gentamicin-releasing urethral catheter in short-term catheterized rabbits. BJU Int. 2001, 87, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; Garvin, C.P.; Dowling, D.; Donnelly, K.; Gorman, S.P. Examination of surface properties and in vitro biological performance of amorphous diamond-like carbon-coated polyurethane. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2006, 78B, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Gorman, S.P.; McCafferty, D.F.; Woolfson, A.D.; Jones, D.S. A Comparative-Study of the Microbial Anti-Adherence Capacities of 3 Antimicrobial Agents. J. Clin. Pharm. Ther. 1987, 12, 393–399. [Google Scholar] [CrossRef]
- Raad, I.; Darouiche, R.; Dupuis, J.; Abi-Said, D.; Gabrielli, A.; Hachem, R.; Wall, M.; Harris, R.; Jones, J.; Buzaid, A.; et al. Central venous catheters coated with minocycline and rifampicin for prevention of catheter-related colonisation and bloodstream infections. Ann. Intern. Med. 1997, 127, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Raad, I.; Reitzel, R.; Jiang, Y.; Chemaly, R.F.; Dvorak, T.; Hachem, R. Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria. J. Antimicrob. Chemother. 2008, 62, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Raad, I.I.; Mohamed, J.A.; Reitzel, R.A.; Jiang, Y.; Dvorak, T.L.; Ghannoum, M.A.; Hachem, R.Y.; Chaftari, A.-M. The prevention of biofilm colonization by multidrug-resistant pathogens that cause ventilator-associated pneumonia with antimicrobial-coated endotracheal tubes. Biomaterials 2011, 32, 2689–2694. [Google Scholar] [CrossRef] [PubMed]
- Nye, T.M.; Zou, Z.; Obernuefemann, C.L.P.; Pinkner, J.S.; Lowry, E.; Kleinschmidt, K.; Bergeron, K.; Klim, A.; Dodson, K.W.; Flores-Mireles, A.L.; et al. Microbial co-occurrences on catheters from long-term catheterized patients. Nat. Commun. 2024, 15, 61. [Google Scholar] [CrossRef]
- Dai, L.; Yang, L.; Parsons, C.; Findlay, V.J.; Molin, S.; Qin, Z. Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and "self-renewal" through downregulation of agr. BMC Microbiol. 2012, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, S.L.; Hodgkinson, S.; Wright, S.; Hayter, E.; Spinks, J.; Pellowe, C. Intermittent self catheterisation with hydrophilic, gel reservoir, and non-coated catheters: A systematic review and cost effectiveness analysis. BMJ-Br. Med. J. 2013, 346, e8639. [Google Scholar] [CrossRef] [PubMed]
- Prieto, J.; Murphy, C.; Moore, K. Intermittent catheterisation: Which catheter designs, techniques and strategies affect the incidence of UTI, other complications and user acceptability? A Cochrane systematic review (vol 33, pg 861, 2014). Neurourol. Urodyn. 2015, 34, 802. [Google Scholar]
- Jin, L.; Yao, L.; Yuan, F.; Dai, G.; Xue, B. Evaluation of a novel biodegradable ureteral stent produced from polyurethane and magnesium alloys. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2021, 109, 665–672. [Google Scholar] [CrossRef]
- Dayyoub, E.; Frant, M.; Pinnapireddy, S.R.; Liefeith, K.; Bakowsky, U. Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. Int. J. Pharm. 2017, 531, 205–214. [Google Scholar] [CrossRef] [PubMed]
- El-Nahas, A.R.; Lachine, M.; Elsawy, E.; Mosbah, A.; El-Kappany, H. A randomized controlled trial comparing antimicrobial (silver sulfadiazine)-coated ureteral stents with non-coated stents. Scand. J. Urol. 2018, 52, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Tang, H.; Peng, J.; Gao, S.; Du, Z.; Chen, G.; Wu, D.; Liu, G. Smart Lubricant Coating with Urease-Responsive Antibacterial Functions for Ureteral Stents to Inhibit Infectious Encrustation. Adv. Funct. Mater. 2024, 34, 2307760. [Google Scholar] [CrossRef]
- Torrecilla, C.; Fernández-Concha, J.; Cansino, J.R.; Mainez, J.A.; Amón, J.H.; Costas, S.; Angerri, O.; Emiliani, E.; Martín, M.A.A.; Polo, M.A.A.; et al. Reduction of ureteral stent encrustation by modulating the urine pH and inhibiting the crystal film with a new oral composition: A multicenter, placebo controlled, double blind, randomized clinical trial. BMC Urol. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Tunney, M.; Gorman, S. Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use. Biomaterials 2002, 23, 4601–4608. [Google Scholar] [CrossRef]
- Liu, S.; Qian, L.; Wu, Y.; Zhou, L.; Xu, X.; Yang, J.; Liu, C.; Zhu, Z.; Shu, J.; Wang, Z.; et al. Enhanced long-term performance of ureteral stents with functional coating: Combating bacterial adhesion and inhibiting encrustation. Prog. Org. Coat. 2024, 192, 108512. [Google Scholar] [CrossRef]
- Teng, X.; Yao, C.; McCoy, C.P.; Zhang, S. Comparison of Superhydrophilic, Liquid-Like, Liquid-Infused, and Superhydrophobic Surfaces in Preventing Catheter-Associated Urinary Tract Infection and Encrustation. ACS Biomater. Sci. Eng. 2024, 10, 1162–1172. [Google Scholar] [CrossRef]
- Lim, H.; Chung, J.H.; Park, Y.; Baek, N.; Seo, Y.; Park, H.; Cho, Y.K.; Jung, D.; Han, D.H. Inner surface modification of ureteral stent polyurethane tubes based by plasma-enhanced chemical vapor deposition to reduce encrustation and biofilm formation. Biofouling 2022, 38, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Luangpirom, N.; Dechabumphen, N.; Saiwan, C.; Scamehorn, J.F. Contact angle of surfactant solutions on precipitated surfactant surfaces. J. Surfactants Deterg. 2001, 4, 367–373. [Google Scholar] [CrossRef]
- Balasuwatthi, P.; Dechabumphen, N.; Saiwan, C.; Scamehorn, J.F. Contact angle of surfactant solutions on precipitated surfactant surfaces. II. Effects of surfactant structure, presence of a subsaturated surfactant, pH, and counterion/surfactant ratio. J. Surfactants Deterg. 2004, 7, 31–40. [Google Scholar] [CrossRef]
Biomaterial * | Concentration (w/w) | Mean (±sd.) Ultimate Tensile Strength (MPa) | Mean (±s.d.) Young’s Modulus (MPa) | Mean (±s.d.) % Elongation at Break | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Deionised Water | Artificial Urine pH 6 | Artificial Urine pH 9 | Deionised Water | Artificial Urine pH 6 | Artificial Urine pH 9 | Deionised Water | Artificial Urine pH 6 | Artificial Urine pH 9 | ||
p(HEMA) | 0 | 0.8 ± 0.1 | 0.8 ± 0.2 | 0.8 ± 0.0 | 1.5 ± 0.1 | 1.5 ± 0.2 | 1.6 ± 0.1 | 146.4 ± 12.1 | 152.8 ± 10.1 | 139.2 ± 9.9 |
p(HEMA)/Tween 80 | 2 | 0.7 ± 0.1 | 0.8 ± 0.0 | 0.8 ± 0.1 | 1.0 ± 0.1 | 0.7 ± 0.0 | 0.9 ± 0.1 | 65.9 ± 7.0 | 87.7 ± 4.4 | 74.9 ± 12.0 |
p(HEMA)/Caproic Acid | 1 | 1.1 ± 0.1 | 0.9 ± 0.1 | 0.5 ± 0.0 | 1.4 ± 0.1 | 1.1 ± 0.1 | 0.9 ± 0.0 | 60.0 ± 6.3 | 68.2 ± 9.3 | 61.1 ± 4.6 |
p(HEMA)/Caproic Acid | 10 | 0.8 ± 0.1 | 0.9 ± 0.1 | 0.6 ± 0.1 | 1.2 ± 0.1 | 0.9 ± 0.0 | 0.9 ± 0.0 | 47.8 ± 4.1 | 84.9 ± 7.9 | 60.8 ± 0.9 |
p(HEMA)/Decanoic Acid | 1 | 1.1 ± 0.0 | 0.7 ± 0.1 | 0.7 ± 0.0 | 1.2 ± 0.0 | 0.9 ± 0.0 | 0.9 ± 0.0 | 66.6 ± 7.8 | 79.1 ± 8.1 | 66.3 ± 4.9 |
p(HEMA)/Decanoic Acid | 10 | 0.6 ± 0.1 | 0.6 ± 0.0 | 0.4 ± 0.0 | 0.9 ± 0.1 | 0.9 ± 0.0 | 0.8 ± 0.1 | 68.1 ± 5.3 | 49.6 ± 6.4 | 56.5 ± 5.4 |
p(HEMA)/Myristic Acid | 1 | 0.9 ± 0.0 | 0.8 ± 0.1 | 0.6 ± 0.0 | 1.0 ± 0.1 | 0.9 ± 0.0 | 0.9 ± 0.0 | 78.2 ± 2.3 | 73.3 ± 7.8 | 70.4 ± 3.3 |
p(HEMA)/Myristic Acid | 10 | 0.8 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.0 | 1.1 ± 0.0 | 0.8 ± 0.0 | 1.0 ± 0.1 | 67.9 ± 8.4 | 65.9 ± 4.7 | 50.7 ± 3.5 |
p(HEMA)/Stearic Acid | 1 | 1.0 ± 0.0 | 0.7 ± 0.1 | 0.7 ± 0.0 | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.0 | 74.3 ± 4.9 | 74.3 ± 5.1 | 68.3 ± 5.0 |
p(HEMA)/Stearic Acid | 10 | 0.9 ± 0.1 | 0.7 ± 0.1 | 0.9 ±0.1 | 1.3 ± 0.1 | 0.8 ± 0.0 | 1.0 ± 0.0 | 64.2 ± 4.8 | 62.1 ± 3.9 | 74.9 ± 5.0 |
p(HEMA)/Oleic Acid | 1 | 1.0 ± 0.1 | 0.8 ± 0.1 | 0.7 ± 0.0 | 1.0 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.0 | 77.9 ± 10.7 | 69.1 ± 4.9 | 67.0 ± 5.4 |
p(HEMA)/Oleic Acid | 10 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.0 | 1.0 ± 0.0 | 0.8 ± 0.0 | 0.8 ± 0.0 | 66.3 ± 4.9 | 55.4 ± 5.6 | 88.6 ± 4.8 |
p(HEMA)/Linoleic Acid | 1 | 0.9 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 1.0 ± 0.1 | 0.7 ± 0.0 | 0.7 ± 0.1 | 87.6 ± 7.1 | 93.0 ± 7.3 | 87.3 ± 3.9 |
p(HEMA)/Linoleic Acid | 10 | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.5 ± 0.0 | 0.7 ± 0.0 | 0.5 ± 0.0 | 0.6 ± 0.0 | 76.9 ± 1.6 | 73.4 ± 4.8 | 78.2 ± 4.4 |
Biomaterial Composition and Concentration (% w/v) * | Mean (±sd) Bacterial Adherence (% of Original Inoculum, circa 1 × 108 cfu mL−1) to Each Biomaterial Following 4 h Contact | Mean (±sd) Bacterial Adherence (% of Original Inoculum, circa 1 × 108 cfu mL−1) to Each Biomaterial Following 24 h Contact | |||||
---|---|---|---|---|---|---|---|
E. coli | Pr. mirabilis | S. epidermidis | E. coli | Pr. mirabilis | S. epidermidis | ||
p(HEMA) | 0 | 0.14 ± 0.02 | 0.08 ± 0.02 | 0.03 ± 0.01 | 0.11 ± 0.02 | 0.07 ± 0.02 | 0.04 ± 0.01 |
p(HEMA)/Tween 80 | 2 | 0.11 ± 0.02 | 0.04 ± 0.00 | 0.01 ± 0.00 | 0.07 ± 0.02 | 0.04 ± 0.01 | 0.02 ± 0.00 |
p(HEMA)/Caproic Acid | 1 | 0.05 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.06 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.00 |
p(HEMA)/Caproic Acid | 10 | 0.06 ± 0.01 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.06 ± 0.01 | 0.004 ± 0.002 | 0.01 ± 0.00 |
p(HEMA)/Decanoic Acid | 1 | 0.06 ± 0.02 | 0.03 ± 0.01 | 0.01 ± 0.00 | 0.06 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.00 |
p(HEMA)/Decanoic Acid | 10 | 0.05 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.05 ± 0.01 | 0.02 ± 0.00 | 0.004 ± 0.001 |
p(HEMA)/Myristic Acid | 1 | 0.03 ± 0.00 | 0.11 ± 0.03 | 0.01 ± 0.00 | 0.03 ± 0.01 | 0.09 ± 0.03 | 0.01 ± 0.00 |
p(HEMA)/Myristic Acid | 10 | 0.04 ± 0.01 | 0.10 ± 0.03 | 0.01 ± 0.00 | 0.05 ± 0.01 | 0.11 ± 0.03 | 0.01 ± 0.00 |
p(HEMA)/Stearic Acid | 1 | 0.08 ± 0.02 | 0.11 ± 0.03 | 0.01 ± 0.00 | 0.06 ± 0.01 | 0.11 ± 0.03 | 0.01 ± 0.00 |
p(HEMA)/Stearic Acid | 10 | 0.06 ± 0.02 | 0.12 ± 0.03 | 0.01 ± 0.00 | 0.09 ± 0.02 | 0.11 ± 0.02 | 0.01 ± 0.00 |
p(HEMA)/Oleic Acid | 1 | 0.07 ± 0.01 | 0.09 ± 0.03 | 0.01 ± 0.00 | 0.08 ± 0.02 | 0.07 ± 0.02 | 0.01 ± 0.00 |
p(HEMA)/Oleic Acid | 10 | 0.11 ± 0.02 | 0.10 ± 0.02 | 0.01 ± 0.00 | 0.12 ± 0.03 | 0.07 ± 0.02 | 0.01 ± 0.00 |
p(HEMA)/Linoleic Acid | 1 | 0.12 ± 0.02 | 0.08 ± 0.01 | 0.05 ± 0.01 | 0.11 ± 0.02 | 0.10 ± 0.02 | 0.03 ± 0.01 |
p(HEMA)/Linoleic Acid | 10 | 0.11 ± 0.02 | 0.08 ± 0.00 | 0.05 ± 0.01 | 0.14 ± 0.02 | 0.10 ± 0.03 | 0.07 ± 0.01 |
Biomaterial Composition and Concentration (% w/v) * | Mean (±sd) of Calcium and Magnesium Deposited on Biomaterials Following Storage, Determined Using the CDC Method (24 h) | ||||
---|---|---|---|---|---|
Fresh Samples | Samples Stored for 30 Days in PBS | ||||
Calcium (μg cm−2) | Magnesium (μg cm−2) | Calcium (μg cm−2) | Magnesium (μg cm−2) | ||
p(HEMA) | 0 | 961.1 ± 80.9 | 996.3 ± 79.6 | 991.4 ±87.6 | 1007.0 ± 75.3 |
p(HEMA)/Tween 80 | 2 | 233.3 ± 21.3 | 227.3 ± 19.3 | 381.5 ± 29.6 | 394.7 ± 24.8 |
p(HEMA)/Caproic Acid | 1 | 134.6 ± 6.4 | 121.8 ± 5.9 | 234.6 ± 23.5 | 221.8 ± 16.8 |
p(HEMA)/Caproic Acid | 10 | 87.3 ± 3.0 | 88.7 ± 1.7 | 121.6 ± 18.6 | 134.8 ± 15.2 |
p(HEMA)/Decanoic Acid | 1 | 167.5 ± 8.3 | 143.2 ± 9.4 | 201.6 ± 10.3 | 221.2 ± 9.4 |
p(HEMA)/Decanoic Acid | 10 | 69.2 ± 5.0 | 34.8 ± 2.5 | 97.6 ± 7.9 | 66.4 ± 8.1 |
p(HEMA)/Myristic Acid | 1 | 204.8 ± 9.9 | 188.7 ± 9.1 | 297.6 ± 23.0 | 271.4 ± 18.8 |
p(HEMA)/Myristic Acid | 10 | 101.3 ± 5.0 | 77.7 ± 3.8 | 167.1 ± 11.4 | 134.3 ± 16.3 |
p(HEMA)/Stearic Acid | 1 | 227.6 ± 10.4 | 203.8 ± 9.9 | 239.8 ± 19.6 | 251.2 ± 17.6 |
p(HEMA)/Stearic Acid | 10 | 167.7 ± 7.8 | 104.8 ± 5.4 | 197.6 ±14.8 | 167.6 ±14.6 |
p(HEMA)/Oleic Acid | 1 | 227.9 ± 12.7 | 212.4 ± 11.4 | 312.2 ± 24.7 | 329.7 ± 25.0 |
p(HEMA)/Oleic Acid | 10 | 147.3 ± 7.3 | 108.6 ± 5.2 | 257.3 ± 14.0 | 221.7 ± 21.2 |
p(HEMA)/Linoleic Acid | 1 | 241.2 ± 16.9 | 241.1 ± 19.4 | 337.5 ± 31.3 | 414.2 ± 36.7 |
p(HEMA)/Linoleic Acid | 10 | 271.1 ± 16.8 | 268.1 ± 24.5 | 339.6 ± 16.4 | 374.5 ± 21.2 |
Biomaterial Composition and Concentration (% w/v) * | Mean (±sd) of Calcium and Magnesium Deposited on Biomaterials Following Storage, Determined Using the Urease Method (24 h) | ||||
---|---|---|---|---|---|
Fresh Samples | Samples Stored for 30 Days in PBS | ||||
Calcium (μg cm−2) | Magnesium (μg cm−2) | Calcium (μg cm−2) | Magnesium (μg cm−2) | ||
p(HEMA) | 0 | 347.0 ± 32.4 | 389.0 ± 28.9 | 358.7 ± 35.4 | 402.1 ± 31.2 |
p(HEMA)/Tween 80 | 2 | 137.5 ± 13.8 | 128.5 ± 12.9 | 163.8 ± 16.4 | 189.6 ± 19.0 |
p(HEMA)/Caproic Acid | 1 | 87.6 ± 8.8 | 71.4 ± 7.1 | 127.5 ± 12.8 | 114.5 ± 11.5 |
p(HEMA)/Caproic Acid | 10 | 71.4 ± 7.2 | 61.9 ± 6.2 | 97.6 ± 9.8 | 88.7 ± 8.9 |
p(HEMA)/Decanoic Acid | 1 | 71.8 ± 7.4 | 74.6 ±7.5 | 83.7 ± 8.4 | 88.5 ± 9.9 |
p(HEMA)/Decanoic Acid | 10 | 53.8 ± 5.4 | 52.4 ± 5.2 | 77.4 ± 8.4 | 69.4 ± 7.0 |
p(HEMA)/Myristic Acid | 1 | 64.3 ± 6.4 | 69.6 ± 7.0 | 68.9 ± 6.9 | 78.6 ± 8.0 |
p(HEMA)/Myristic Acid | 10 | 48.6 ± 4.9 | 46.8 ± 4.8 | 59.6 ± 5.1 | 69.8 ± 6.4 |
p(HEMA)/Stearic Acid | 1 | 73.3 ± 7.5 | 79.7 ± 7.0 | 74.5 ± 6.7 | 81.5 ± 9.5 |
p(HEMA)/Stearic Acid | 10 | 64.7 ± 6.5 | 67.0 ± 6.1 | 67.6 ± 7.1 | 76.4 ± 7.5 |
p(HEMA)/Oleic Acid | 1 | 77.8 ± 7.8 | 81.0 ± 6.1 | 101.4 ± 8.9 | 120.3 ± 11.0 |
p(HEMA)/Oleic Acid | 10 | 91.6 ± 8.2 | 69.0 ± 5.9 | 100.1 ± 7.3 | 112.2 ± 11.3 |
p(HEMA)/Linoleic Acid | 1 | 103.8 ± 15.6 | 91.7 ± 7.1 | 124.7 ± 9.9 | 131.4 ± 12.1 |
p(HEMA)/Linoleic Acid | 10 | 99.0 ± 10.9 | 101.0 ± 6.2 | 98.8 ± 10.0 | 117.7 ± 11.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, D.S.; Andrews, G.P.; Hamill, T.; Gilmore, B.F. Fatty Acid-Containing p(HEMA) Hydrogels; A Promising Coating Platform to Reduce Encrustation on Urinary Catheters. Polymers 2025, 17, 518. https://doi.org/10.3390/polym17040518
Jones DS, Andrews GP, Hamill T, Gilmore BF. Fatty Acid-Containing p(HEMA) Hydrogels; A Promising Coating Platform to Reduce Encrustation on Urinary Catheters. Polymers. 2025; 17(4):518. https://doi.org/10.3390/polym17040518
Chicago/Turabian StyleJones, David S., Gavin P. Andrews, Turlough Hamill, and Brendan F. Gilmore. 2025. "Fatty Acid-Containing p(HEMA) Hydrogels; A Promising Coating Platform to Reduce Encrustation on Urinary Catheters" Polymers 17, no. 4: 518. https://doi.org/10.3390/polym17040518
APA StyleJones, D. S., Andrews, G. P., Hamill, T., & Gilmore, B. F. (2025). Fatty Acid-Containing p(HEMA) Hydrogels; A Promising Coating Platform to Reduce Encrustation on Urinary Catheters. Polymers, 17(4), 518. https://doi.org/10.3390/polym17040518