Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = S. boulardii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1831 KiB  
Article
Saccharomyces boulardii CNCM I-745 Supernatant Improves Markers of Gut Barrier Function and Inflammatory Response in Small Intestinal Organoids
by Louisa Filipe Rosa, Steffen Gonda, Nadine Roese and Stephan C. Bischoff
Pharmaceuticals 2025, 18(8), 1167; https://doi.org/10.3390/ph18081167 - 6 Aug 2025
Abstract
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic [...] Read more.
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic and regulatory effects on the intestinal barrier, mediated either by the yeast or yeast-derived substrates, have been discussed. Methods: To examine the effects of Saccharomyces boulardii released substrates (S.b.S) on gastrointestinal (GI) barrier function, a murine small intestinal organoid cell model under stress was used. Stress was induced by lipopolysaccharide (LPS) exposure or withdrawal of growth factors from cell culture medium (GFRed). Stressed organoids were treated with S.b.S (200 µg/mL), and markers of GI barrier and inflammatory response were assessed. Results: GFRed-induced stress was characterized by disturbances in selected tight junction (TJ) (p < 0.05), adherent junction (AJ) (p < 0.001), and mucin (Muc) formation (p < 0.01), measured by gene expressions, whereby additional S.b.S treatment was found to reverse these effects by increasing Muc2 (from 0.22 to 0.97-fold change, p < 0.05), Occludin (Ocln) (from 0.37 to 3.5-fold change, p < 0.0001), and Claudin (Cldn)7 expression (from 0.13 ± 0.066-fold change, p < 0.05) and by decreasing Muc1, Cldn2, Cldn5, and junctional adhesion molecule A (JAM-A) expression (all p < 0.01). Further, S.b.S normalized expression of nucleotide binding oligomerization domain (Nod)2- (from 44.5 to 0.51, p < 0.0001) and matrix metalloproteinase (Mmp)7-dependent activation (from 28.3 to 0.02875 ± 0.0044 ** p < 0.01) of antimicrobial peptide defense and reduced the expression of several inflammatory markers, such as myeloid differentiation primary response 88 (Myd88) (p < 0.01), tumor necrosis factor α (Tnfα) (p < 0.01), interleukin (IL)-6 (p < 0.01), and IL-1β (p < 0.001). Conclusions: Our data provide new insights into the molecular mechanisms by which Saccharomyces boulardii CNCM I-745-derived secretome attenuates inflammatory responses and restores GI barrier function in small intestinal organoids. Full article
(This article belongs to the Topic Probiotics: New Avenues)
Show Figures

Graphical abstract

15 pages, 421 KiB  
Article
Fermentation of Sainfoin Seed Flour with Saccharomyces boulardii: Effects on Total Dietary Fiber, Anti-Nutrients, Antimicrobial Activity, and Bioaccessibility of Bioactive Compounds
by Havva Polat Kaya, Burcu Kaya, Necati Barış Tuncel, Gulay Ozkan, Esra Capanoglu, Seedhabadee Ganeshan and Mehmet Caglar Tulbek
Microorganisms 2025, 13(6), 1421; https://doi.org/10.3390/microorganisms13061421 - 18 Jun 2025
Viewed by 415
Abstract
This study investigates the effects of fermentation on sainfoin seed flour using Saccharomyces boulardii for total dietary fiber (TDF) content, anti-nutritional profiles (including phytates, tannins, saponins, and trypsin inhibitors), and bioactive compounds. It also focused on assessing the in vitro availability of phenolic [...] Read more.
This study investigates the effects of fermentation on sainfoin seed flour using Saccharomyces boulardii for total dietary fiber (TDF) content, anti-nutritional profiles (including phytates, tannins, saponins, and trypsin inhibitors), and bioactive compounds. It also focused on assessing the in vitro availability of phenolic compounds, antioxidant potential, and anti-nutrient compounds after gastrointestinal digestion. Four treatment groups were designed: a non-fermented control group, and flour samples fermented with S. boulardii CNCM I-745 for 24, 48, and 72 h. All fermentations were carried out at 30 °C. The effects of fermentation and the analysis results were statistically evaluated at the significance level of p < 0.05, and significant differences were detected. Fermentation significantly increased soluble dietary fiber (from 3.32% to 4.43%) and reduced anti-nutritional factors, including phytates (by 18%), tannin (by 19%), and trypsin inhibitor activity (TIA) (by 79%). However, saponin content increased by 21% after 72 h of fermentation. Tannin levels of non-fermented and fermented sainfoin flour decreased dramatically after in vitro digestion. Moreover, it was concluded that the bioaccessibility of phytic acid significantly increased through fermentation, while that of tannins declined. Antimicrobial activity against Escherichia coli ATCC 25922 improved after fermentation, while the antioxidant capacity was enhanced post-digestion. In addition, the highest phenolic content (612 mg GAE/100 g) and antioxidant capacity (1745 mg TE/100 g by CUPRAC assay and 1127 mg TE/100 g by DPPH assay) were determined in fermented sainfoin seed flour at 72 h after gastrointestinal digestion. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

23 pages, 5946 KiB  
Article
Inactivated Cells and Metabolites of Saccharomyces boulardii Alleviate Inflammation Damage in Caco-2 Monolayer Cells and Mice with Ulcerative Colitis
by Yuxin Jin, Zehui Niu, Menglin Feng, Huilian Che and Zhihong Liang
Antioxidants 2025, 14(6), 737; https://doi.org/10.3390/antiox14060737 - 16 Jun 2025
Viewed by 642
Abstract
Saccharomyces boulardii (S. boulardii) has attracted widespread attention due to its antimicrobial and anti-inflammatory properties. In this study, we prepared postbiotics from the heat-inactivated cells (HIC) and cell-free supernatant (CFS) of S. boulardii, with the important component L-arginine (Arg) from [...] Read more.
Saccharomyces boulardii (S. boulardii) has attracted widespread attention due to its antimicrobial and anti-inflammatory properties. In this study, we prepared postbiotics from the heat-inactivated cells (HIC) and cell-free supernatant (CFS) of S. boulardii, with the important component L-arginine (Arg) from the metabolic products included as one of the experimental groups. The results showed that in LPS-stimulated Caco-2 cells, HIC, CFS, and Arg protect intestinal epithelial barrier integrity by inhibiting the expression of TNF-α, IL-1β, and IL-6 while enhancing the expression of occludin and ZO-1 proteins. In dextran sulfate sodium (DSS)-induced colitis mice, HIC, CFS, and Arg alleviate symptoms such as weight loss and colonic damage while suppressing the upregulation of pro-inflammatory factors and the downregulation of tight junction proteins. Moreover, these postbiotics help restore the gut microbiota composition and functionality in colitis mice, with potentially superior regulatory effects compared to sulfasalazine (SASP). Overall, HIC and CFS protect the intestinal barrier function and improve DSS-induced colitis, supporting the development of functional food supplements. Full article
(This article belongs to the Topic Functional Food and Anti-Inflammatory Function)
Show Figures

Figure 1

14 pages, 1970 KiB  
Article
Production of “Melomel” from Cupuaçu (Theobroma grandiflorum) Using the Probiotic Yeast Saccharomyces cerevisiae var. boulardii
by Karina Nascimento Pereira, Handray Fernandes de Souza, Amanda Cristina Dias de Oliveira, Marcela Aparecida Deziderio, Victor Dédalo Di Próspero Gonçalves, Marina Vieira de Carvalho and Eliana Setsuko Kamimura
Fermentation 2025, 11(5), 253; https://doi.org/10.3390/fermentation11050253 - 2 May 2025
Viewed by 590
Abstract
Mead is a fermented alcoholic beverage obtained by diluting honey in water and adding yeast. However, the addition of fruit to this beverage gives rise to melomel. In this study we are proposing an interesting novelty which consists of developing cupuaçu (Theobroma [...] Read more.
Mead is a fermented alcoholic beverage obtained by diluting honey in water and adding yeast. However, the addition of fruit to this beverage gives rise to melomel. In this study we are proposing an interesting novelty which consists of developing cupuaçu (Theobroma grandiflorum) melomel by fermenting Saccharomyces cerevisiae var. boulardii. The aim of this study was to develop cupuaçu (Theobroma grandiflorum) melomel produced by S. boulardii and to evaluate its physicochemical and microbiological characteristics after refrigerated storage at 4 °C. To do this, a central composite design (CCD) was employed, with two independent variables, i.e., the initial soluble solids content of the honey must (°Brix) and the concentration of the cupuaçu pulp (%). A standardized amount of 1 g/L of S. boulardii yeast was used at a temperature of 25 °C and a fermentation time of 30 days. Using the results of the central composite design (CCD), the best conditions for producing the beverage were defined according to the objectives of the study. Thus, the experimental comparison was carried out under the conditions of 25 °Brix of initial soluble solids in the honey must, 10% cupuaçu pulp, and 10 days of fermentation at 25 °C. The cupuaçu melomel exhibited a cell viability of the probiotic yeast S. boulardii above 107 log CFU/mL, with an alcohol content of 8.22% (v/v), a pH of 3.43, a total acidity of 54.8 of (mEq/L), and soluble solids of 12.42°Brix. In addition, the beverage was subjected to simulated gastric and intestinal juices in vitro to evaluate the survival of the microorganisms under these conditions, and a concentration of 106 log CFU/mL of S. boulardii was obtained. In this way, it was possible to produce a probiotic fermented alcoholic beverage made from honey and cupuaçu. Full article
Show Figures

Figure 1

18 pages, 5886 KiB  
Article
Effects of Compound Microecological Preparation Supplementation on Production Performance and Nutrient Apparent Digestibility in Hu Sheep from the Rumen Perspective
by Mu-Long Lu, Long Pan, Chen Zheng, Ruo-Yu Mao, Guo-Hong Yuan, Chen-Yang Shi, Zhe-Huan Pu, Hui-Xin Su, Qi-Yu Diao, Halidai Rehemujiang and Gui-Shan Xu
Microorganisms 2025, 13(5), 999; https://doi.org/10.3390/microorganisms13050999 - 27 Apr 2025
Cited by 1 | Viewed by 552
Abstract
This study evaluates the effects of a compound microecological preparation named ATABG, which is composed of antimicrobial peptide ID13 and Saccharomyces boulardii, on Hu sheep’s growth performance, feed digestibility, and rumen parameters. A total of 40 three-month-old Hu sheep (21.65 ± 0.33 [...] Read more.
This study evaluates the effects of a compound microecological preparation named ATABG, which is composed of antimicrobial peptide ID13 and Saccharomyces boulardii, on Hu sheep’s growth performance, feed digestibility, and rumen parameters. A total of 40 three-month-old Hu sheep (21.65 ± 0.33 kg) were randomly assigned to two groups: the control group (Con), which received a basal diet, and the experimental group (ATABG), which received the same diet supplemented with 1 g/kg ATABG on a dry matter basis. After a 10-day pre-feeding period to adapt the animals to the experimental diet, dry matter intake and weight gain were recorded during the subsequent 63-day trial period. Body weight was measured on days 1, 21, 42, and 63 of the trial, and animals were slaughtered on day 63 to collect rumen fluid and tissue. Results indicated that ATABG supplementation significantly increased the apparent digestibility of crude protein, neutral detergent fiber, acid detergent fiber, and organic matter (p < 0.05). Rumen fluid analysis revealed increased microbial protein concentration and cellulase activity (p < 0.05) in the ATABG group. Microbiota analysis indicated that ATABG increased the relative abundance of Ruminococcus and Proteobacteria, elevated Firmicutes, and reduced Bacteroidota (p < 0.05). Correlation analysis showed Ruminococcus was positively associated with crude protein digestibility, while Quinella correlated with growth-related indices (r > 0.4, p < 0.05). In conclusion, ATABG supplementation improves protein digestibility and rumen microbial protein synthesis by enriching Ruminococcus and enhancing cellulase activity, potentially optimizing nitrogen utilization in Hu sheep. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

13 pages, 12905 KiB  
Article
Metabolic Influence of S. boulardii and S. cerevisiae in Cross-Kingdom Models of S. mutans and C. albicans
by Ting Li, Xingyi Lu, Yan Wu, Tongtong Wu and Jin Xiao
J. Fungi 2025, 11(4), 325; https://doi.org/10.3390/jof11040325 - 19 Apr 2025
Viewed by 643
Abstract
Recent studies highlight the potential of Saccharomyces species as probiotics due to their ability to modulate microbial interactions and reduce cariogenic activity, yet the underlying metabolic mechanisms remain unclear. This study investigates the cross-kingdom metabolic effects of Saccharomyces boulardii and Saccharomyces cerevisiae on [...] Read more.
Recent studies highlight the potential of Saccharomyces species as probiotics due to their ability to modulate microbial interactions and reduce cariogenic activity, yet the underlying metabolic mechanisms remain unclear. This study investigates the cross-kingdom metabolic effects of Saccharomyces boulardii and Saccharomyces cerevisiae on the metabolic processes of Streptococcus mutans and Candida albicans using a metabolomics-based approach. Untargeted LC-MS/MS analysis was conducted to assess metabolites in a planktonic model, followed by metabolomic profiling and pathway analysis to identify key metabolic alterations. The results revealed that S. boulardii and S. cerevisiae demonstrated metabolic regulatory effects on S. mutans and C. albicans. Specifically, S. boulardii down-regulated 262 metabolites and up-regulated 168, while S. cerevisiae down-regulated 265 metabolites and up-regulated 168. Both yeast species down-regulated carbohydrate and amino acid metabolism in S. mutans and C. albicans, resulting in reduced biomolecule synthesis and a less acidic environment. S. boulardii and S. cerevisiae also up-regulated certain metabolic processes, including purine metabolism, suggesting a compensatory mechanism for nucleotide synthesis. Notably, dual regulatory effects were observed, where specific metabolites were simultaneously up-regulated and down-regulated, indicating complex metabolic crosstalk. These findings suggest that both S. boulardii and S. cerevisiae modulate microbial metabolism through a shared mechanism, offering potentials for dental caries prevention. Full article
(This article belongs to the Special Issue Alternative Therapeutic Approaches of Candida Infections, 4th Edition)
Show Figures

Figure 1

15 pages, 1572 KiB  
Article
Development of a High-Cell-Density Production Process for a Biotherapeutic Yeast, Saccharomyces cerevisiae var. boulardii, for Use as a Human Probiotic
by Ghaneshree Moonsamy, Sarisha Singh, Yrielle Roets-Dlamini, Koketso Kenneth Baikgaki and Santosh Omrajah Ramchuran
Fermentation 2025, 11(4), 186; https://doi.org/10.3390/fermentation11040186 - 1 Apr 2025
Viewed by 1594
Abstract
Saccharomyces cerevisiae var. boulardii is a probiotic yeast widely recognized for its ability to enhance gut health and modulate a host’s microbiome. However, there are limited data on its large-scale cultivation in stirred tank bioreactors and subsequent downstream processing into a functional probiotic [...] Read more.
Saccharomyces cerevisiae var. boulardii is a probiotic yeast widely recognized for its ability to enhance gut health and modulate a host’s microbiome. However, there are limited data on its large-scale cultivation in stirred tank bioreactors and subsequent downstream processing into a functional probiotic product. Different recipe formulations were evaluated and the recipe with the highest biomass yield and lowest process time was selected. Once the optimised batch was validated in the replicate batches, the statistical analysis indicated a high level of reproducibility, with low variability across key performance indicators such as biomass concentration (unit), CFU production (CFU.mL−1), and substrate utilization efficiency (g.g−1). The mean growth age in the bioreactor was 25.33 ± 1.16 h, with a CV of 4.56%, indicating minimal deviation between batches. Similarly, the final viable concentration exhibited a mean of 1.46 × 108 CFU.mL−1 with a CV of 11.68%, remaining within an acceptable range for biological processes, while the final biomass concentration had the lowest variability (CV of 3.94%) and a 95% CI of 12.134–13.266 g.L−1, highlighting the accuracy and consistency of the process. Productivity indicators, including cell productivity (growth time—biomass) and YPP (biomass), maintained low CV values (3.933% and 3.389%, respectively), reinforcing process efficiency and stability. The overlapping 95% confidence intervals across batches further confirmed that no statistically significant deviations existed, ensuring minimal batch-to-batch variability, and validating the scalability and robustness of the fermentation process. These findings provide strong evidence for the feasibility of large-scale probiotic yeast production that meets industrial production standards. The final freeze-dried product retained an 81% viability post-exposure to simulated gastrointestinal conditions, meeting WHO probiotic viability standards. These findings establish a scalable, optimized process for probiotic yeast production, with potential applications in biopharmaceutical manufacturing and functional food development, as confirmed by the techno-economic evaluations performed using SuperPro Designer®. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

15 pages, 9790 KiB  
Article
Pre-Administration of Saccharomyces boulardii-Derived Postbiotics Effectively Prevents Dextran Sulfate Sodium-Induced Colitis in Mice
by Yuxin Jin, Xinge Xu, Kunlun Huang and Zhihong Liang
Foods 2025, 14(7), 1109; https://doi.org/10.3390/foods14071109 - 23 Mar 2025
Cited by 2 | Viewed by 1603
Abstract
Ulcerative colitis (UC) is effectively alleviated by Saccharomyces boulardii (S. boulardii), an important probiotic. Postbiotics, defined as beneficial non-viable microorganisms and/or their components, can potentially improve gut health. In this study, we utilized S. boulardii to prepare postbiotics via freeze-drying and [...] Read more.
Ulcerative colitis (UC) is effectively alleviated by Saccharomyces boulardii (S. boulardii), an important probiotic. Postbiotics, defined as beneficial non-viable microorganisms and/or their components, can potentially improve gut health. In this study, we utilized S. boulardii to prepare postbiotics via freeze-drying and spray-drying methods, characterized the resulting postbiotics, and investigated their efficacy and underlying mechanisms in preventing UC. In a mouse model of UC induced by dextran sulfate sodium (DSS), we found that prevention with two forms of S. boulardii postbiotics alleviated colitis symptoms triggered by DSS, mitigated colon tissue damage, maintained the distribution of intestinal occludin and ZO-1 proteins, and suppressed the secretion and expression of TNF-α, IL-1β, and IL-6 in serum and colon tissues. Additionally, S. boulardii postbiotics mitigated dysbiosis by modulating gut microbiota composition, including the balance between Bacteroidota and Firmicutes (F/B), as well as the levels of Akkermansia, Muribaculaceae, Dubosiella, and Turicibacter. In conclusion, as a novel biotherapeutic agent, S. boulardii postbiotics effectively prevent DSS-induced UC in mice. Compared to live S. boulardii, postbiotics may hold greater potential for UC prevention. Full article
Show Figures

Figure 1

12 pages, 1224 KiB  
Article
Spectroscopic Analysis of Selenium Nanoparticles Synthesized by Saccharomyces boulardii for the Production of Craft Beer
by Lourdes González-Salitre, Luis Guillermo González-Olivares, Alexis Alejandro Salazar-Navarro, David Cervantes-García, Dagoberto Durán-Hernández, Ricardo Torres-Ramos, Mary Triny Beleño-Cabarcas and Ulin Antobelli Basilio-Cortes
Fermentation 2025, 11(3), 144; https://doi.org/10.3390/fermentation11030144 - 13 Mar 2025
Cited by 1 | Viewed by 1313
Abstract
Selenium is an essential micronutrient which is found in many foods and beverages in low concentrations. Craft beer, one of the most widely consumed fermented beverages globally, presents a strategic opportunity for selenium intake through organic nanoparticles. This study aimed to confirm the [...] Read more.
Selenium is an essential micronutrient which is found in many foods and beverages in low concentrations. Craft beer, one of the most widely consumed fermented beverages globally, presents a strategic opportunity for selenium intake through organic nanoparticles. This study aimed to confirm the presence of selenium nanoparticles in the fermentation process of an ale-style beer using S. boulardii yeast selenized with Na2SeO3 (74 ppm), through spectroscopic analysis and TEM. The yeast accumulated 5.92 mg/g of dry cell mass, and the beer contained 0.642 mg/g of selenium. UV-VIS detected nanoparticles with a peak at 300 nm and FT-IR at a wavelength of 1398.85 cm−1. The particle size ranged between 74 to 175 nm, with a maximum ζ-potential of −4.2 mV, an electrophoretic mobility of −0.3492 μm × cm Vs−1, and a conductivity of 2.656 mS cm−1. TEM analysis revealed that the nanoparticles exhibited circular/ovoid shapes. The fermentation process, combined with the ingredients used to produce ale-type craft beer, proved to be a feasible method for the biosynthesis of selenium nanoparticles using S. boulardii, offering a reliable option for developing and innovating functional craft beers. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

22 pages, 2982 KiB  
Article
Effect of Selective Substrates on Germination of Pomegranate (Punica granatum) and Trifoliate Orange (Poncirus trifoliata) Seeds with and Without the Presence of Plant-Beneficial Microorganisms
by Helen Kalorizou, Dimitra Stefanopoulou, Paschalis Giannoulis and Stefanos Leontopoulos
Seeds 2025, 4(1), 12; https://doi.org/10.3390/seeds4010012 - 6 Mar 2025
Viewed by 777
Abstract
Insect-based (silkworm cocoons) and plant-based (cotton wool pads and gauzes) fiber substrates were used to support and ameliorate seed germination originating from trifoliate orange (Poncirus trifoliata) and pomegranate (Punica granatum) trees. Three different commercial formulations of beneficial microorganisms (Bacillus [...] Read more.
Insect-based (silkworm cocoons) and plant-based (cotton wool pads and gauzes) fiber substrates were used to support and ameliorate seed germination originating from trifoliate orange (Poncirus trifoliata) and pomegranate (Punica granatum) trees. Three different commercial formulations of beneficial microorganisms (Bacillus spp.-Azotobacter spp., Saccharomyces boulardii, and Saccharomyces cerevisiae) were administered to seeds in order to evaluate their contribution to germination and growth. The silkworm cocoons provided better germination rates for P. trifoliata seeds (83.33%) among the tested media without any microbial supplementation. These rates increased towards the absolute maximum (100%) when Bacillus spp.-Azotobacter spp., S. boulardii and S. cerevisiae were applied. Furthermore, inoculums of Bacillus spp.-Azotobacter spp. 2 mL and S. cerevisiae 3 g raised the pomegranate seed germination ability by 30–33.33% and 50–67.7%, respectively, on silkworm cocoon substrates when compared to plant-derived, cellulosic fiber substrates under the same biotic exposure. On increasing the size of applied microbial inoculums, seed germination moved from optimum to suboptimum for all germination media. Examination of multipartite pH compatibility (between seeds, microorganisms, and germination media) was beneficial and of functional value. In conclusion, the germination rates of both tree species can be raised using bacterial and yeast supplementation, including medical-grade S. boulardii, on environmentally friendly materials such as insect- and plant-based fiber substrates. Full article
Show Figures

Figure 1

13 pages, 3558 KiB  
Article
Development of a Dihydrofolate Reductase Selection System for Saccharomyces boulardii
by Hua Yu, Lydia Nyasae, Rachel Lee, Wenyan Lu, Edward So, Hanping Feng and Zhiyong Yang
Int. J. Mol. Sci. 2025, 26(5), 2073; https://doi.org/10.3390/ijms26052073 - 27 Feb 2025
Viewed by 667
Abstract
Saccharomyces boulardii, the only commercially available probiotic yeast, has gained attention as a recombinant live biotherapeutic product (rLBP) empowered with the expression of heterologous therapeutic proteins for treating gastrointestinal diseases. However, the genetic modification of S. boulardii intended for clinical use is [...] Read more.
Saccharomyces boulardii, the only commercially available probiotic yeast, has gained attention as a recombinant live biotherapeutic product (rLBP) empowered with the expression of heterologous therapeutic proteins for treating gastrointestinal diseases. However, the genetic modification of S. boulardii intended for clinical use is hindered by regulatory and technical challenges. In this study, we developed a dihydrofolate reductase (DHFR)-based selection system as an innovative alternative to traditional auxotrophic selection strategies for engineering S. boulardii. The DHFR selection system overcame inherent resistance of the yeast to methotrexate (MTX) by incorporating sulfanilamide, a dihydrofolate synthesis inhibitor, to enhance selection efficiency. The system demonstrated robust functionality, enabling the efficient screening of high-expression clones and tunable expression of therapeutic proteins, such as cytokines and antibodies, by modulating MTX concentrations. Furthermore, the yeast’s endogenous DHFR homolog, DFR1, was shown to be a viable selection marker, providing greater host compatibility while maintaining functionality compared to DHFR. This selection system avoids reliance on foreign antibiotic selection markers and the construction of auxotrophic strains, thus simplifying engineering and allowing for a tunable protein expression. These advancements establish the DHFR/DFR1 selection system as a robust and versatile platform for developing S. boulardii-based live biotherapeutics. Full article
(This article belongs to the Special Issue Recent Research in Probiotic Yeasts: Molecular Aspects)
Show Figures

Figure 1

18 pages, 309 KiB  
Article
Determination of the Probiotic and Functional Properties of Yeasts Isolated from Different Dairy Products
by Eda Kılıç Kanak and Suzan Öztürk Yılmaz
Fermentation 2025, 11(2), 104; https://doi.org/10.3390/fermentation11020104 - 18 Feb 2025
Cited by 1 | Viewed by 1507
Abstract
This study aimed to explore new probiotic yeast strains, considering that Saccharomyces cerevisiae is the only yeast used industrially. To this end, yeasts were isolated from various dairy products and their probiotic potential was investigated. All yeast strains demonstrated survival potential under simulated [...] Read more.
This study aimed to explore new probiotic yeast strains, considering that Saccharomyces cerevisiae is the only yeast used industrially. To this end, yeasts were isolated from various dairy products and their probiotic potential was investigated. All yeast strains demonstrated survival potential under simulated gastrointestinal conditions, mimicking the stomach and intestinal passage. Among the isolates, 13.04% were identified as moderate biofilm producers, 34.78% as weak biofilm producers, and 52.17% exhibited no biofilm-forming ability. Catalase enzyme production was detected in all isolates, and it was determined that their hydrophobicity varied depending on hydrocarbon interactions. In this study, the percentage of autoaggregation increased with prolonged incubation times across all strains. After 24 h, the percentage of autoaggregation exceeded 60% for all isolates. It was concluded that the coaggregation ability depended on incubation time and strain type. Most of the isolated yeasts exhibited antimicrobial activity against E. coli ATCC 25922, E. coli O157:H7, B. cereus, C. sakazakii ATCC 29544, L. monocytogenes ATCC 7644, S. aureus ATCC 25923, and S. typhimurium ATCC 140828. Furthermore, the yeast strains were resistant to all tested antibiotics. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity revealed that the antioxidant activity of the cells was higher than that of their intracellular extracts for all tested strains. The yeasts were initially identified using MALDI-TOF and further characterized through 18S-28S rRNA analysis. There are not many recent studies on the selection of probiotic yeasts for use in the dairy industry. Therefore, in this study we wanted to investigate some functional properties of different yeasts to be proposed as probiotic cultures in this specific sector. In particular, the antimicrobial and antioxidant properties and enzymatic activity highlighted by isolates have promising implications for food safety and health. These preliminary results provide a valuable basis for the future industrial application of probiotic yeasts in the dairy sector. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
20 pages, 2448 KiB  
Article
Evaluation of Probiotic Saccharomyces boulardii Yeast as a Distillery Strain
by Andrea Maria Patelski, Ksawery Pragłowski, Katarzyna Pielech-Przybylska, Maria Balcerek and Urszula Dziekońska-Kubczak
Appl. Sci. 2025, 15(3), 1392; https://doi.org/10.3390/app15031392 - 29 Jan 2025
Viewed by 1849
Abstract
The probiotic properties of the yeast Saccharomyces boulardii are fairly well recognised, and research into the use of this strain in fermentation processes has been ongoing for several years. In this article, we have described the research results to evaluate the distillery potential [...] Read more.
The probiotic properties of the yeast Saccharomyces boulardii are fairly well recognised, and research into the use of this strain in fermentation processes has been ongoing for several years. In this article, we have described the research results to evaluate the distillery potential of S. boulardii yeast. Compared to Ethanol Red and Thermosacc Dry yeast, the probiotic strain formed slightly different amounts of volatile compounds and fermented the available sugars less vigorously. The final ethanol concentration formed by the probiotic yeast was close to that observed for the distillery strains. Rye distillates with an alcohol content of 40% (v/v) obtained with S. boulardii yeast, according to the sensory panel, were distinguished by their delicately composed flavour and were rated better than distillates after fermentation by distillery yeast. The results are promising for the possibility of production of niche distillates using probiotic yeast. Full article
Show Figures

Figure 1

16 pages, 1343 KiB  
Article
The Probiotication of a Lychee Beverage with Saccharomyces boulardii: An Alternative to Dairy-Based Probiotic Products
by Marcela Moreira Terhaag, Otávio Akira Sakai, Fabiana Ruiz, Sandra Garcia, Fernando Rodrigo Bertusso and Sandra Helena Prudêncio
Foods 2025, 14(2), 156; https://doi.org/10.3390/foods14020156 - 7 Jan 2025
Cited by 1 | Viewed by 1639
Abstract
Probiotic vegetable-based beverages, such as lychee, can be rich in nutrients, free of cholesterol and lactose, and also have few allergenic components. Saccharomyces boulardii is an alternative to make lychee juice a probiotic beverage. This work aimed to develop probiotic lychee beverage (LB) [...] Read more.
Probiotic vegetable-based beverages, such as lychee, can be rich in nutrients, free of cholesterol and lactose, and also have few allergenic components. Saccharomyces boulardii is an alternative to make lychee juice a probiotic beverage. This work aimed to develop probiotic lychee beverage (LB) using S. boulardii by evaluating the effect of refrigerated storage on cell viability, physicochemical characteristics, and acceptance. LB supplemented with S. boulardii was fermented (24 h/30 °C), supplemented with sucrose (4–12 °Brix), and refrigerated (up to 28 days/4 °C). The yeast viability, total soluble solid (TSS) and, ethanol content, pH, total phenolic compounds (TPC), and antioxidant activity (AA) levels were evaluated over 28 days of storage. Also, the profiles of sugars, organic acids, and phenolic were determined via chromatographic analysis. The sensory acceptance of the probiotic beverage was evaluated. Higher sucrose levels (12 °Brix) resulted in greater yeast viability (6.9 log CFU/mL) on the 21st day of storage and superior TPC (153 µmol TEAC/mL) and ethanol levels (8.7%). Storage reduced the TPC, AA, and TSS. LB supplemented with sucrose to 12 °Brix, probioticated by S. boulardii, and stored for 21 days became accepted by the consumer and presented an adequate physicochemical profile with probiotic potential. The probiotication of lychee beverage is an alternative to dairy-based probiotic beverages. Full article
Show Figures

Figure 1

12 pages, 2269 KiB  
Article
Immunomodulatory Properties of Multi-Strain Postbiotics on Human CD14+ Monocytes
by Kyle D. Roberts, Sadia Ahmed, Erin San Valentin, Luca Di Martino, Thomas S. McCormick and Mahmoud A. Ghannoum
Life 2024, 14(12), 1673; https://doi.org/10.3390/life14121673 - 17 Dec 2024
Cited by 2 | Viewed by 1656
Abstract
The ability of probiotics, comprising live microbiota, to modulate the composition of intestinal microbiomes has been connected to modulation of the central nervous system (Gut–Brain axis), neuroendocrine system (Gut–Skin axis), and immune response (Gut–Immune axis). Less information is known regarding the ability of [...] Read more.
The ability of probiotics, comprising live microbiota, to modulate the composition of intestinal microbiomes has been connected to modulation of the central nervous system (Gut–Brain axis), neuroendocrine system (Gut–Skin axis), and immune response (Gut–Immune axis). Less information is known regarding the ability of postbiotics (cell wall components and secreted metabolites derived from live organisms) to regulate host immunity. In the present study, we tested postbiotics comprising single strains of bacteria and yeast (Lactobacillus acidophilus 16axg, Lacticaseibacillus rhamnosus 18fx, Saccharomyces cerevisiae var. boulardii 16mxg) as well as combinations of multiple strains for their ability to stimulate cytokine production by human CD14+ monocytes. We quantified cytokine gene and protein expression levels in monocytes following stimulation with postbiotics. Both heat-killed L. acidophilus and L. rhamnosus stimulated naïve monocytes without significant differences between them. Heat-killed S. boulardii stimulated less cytokine production compared to postbiotic bacteria at the same concentration. Interestingly, the addition of heat-killed yeast to heat-killed L. acidophilus and L. rhamnosus resulted in an enhancement of immune stimulation. Thus, heat-killed postbiotics have immune-modulating potential, particularly when bacteria and yeast are combined. This approach may hold promise for developing targeted interventions that can be fine-tuned to modulate host immune response with beneficial health impact. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

Back to TopTop