Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,231)

Search Parameters:
Keywords = Risk evaluation issues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 6488 KiB  
Article
A Bio-Inspired Adaptive Probability IVYPSO Algorithm with Adaptive Strategy for Backpropagation Neural Network Optimization in Predicting High-Performance Concrete Strength
by Kaifan Zhang, Xiangyu Li, Songsong Zhang and Shuo Zhang
Biomimetics 2025, 10(8), 515; https://doi.org/10.3390/biomimetics10080515 - 6 Aug 2025
Abstract
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant [...] Read more.
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant challenges to conventional predictive models. Traditional approaches often fail to adequately capture these intricate relationships, resulting in limited prediction accuracy and poor generalization. Moreover, the high dimensionality and noisy nature of HPC mix data increase the risk of model overfitting and convergence to local optima during optimization. To address these challenges, this study proposes a novel bio-inspired hybrid optimization model, AP-IVYPSO-BP, which is specifically designed to handle the nonlinear and complex nature of HPC strength prediction. The model integrates the ivy algorithm (IVYA) with particle swarm optimization (PSO) and incorporates an adaptive probability strategy based on fitness improvement to dynamically balance global exploration and local exploitation. This design effectively mitigates common issues such as premature convergence, slow convergence speed, and weak robustness in traditional metaheuristic algorithms when applied to complex engineering data. The AP-IVYPSO is employed to optimize the weights and biases of a backpropagation neural network (BPNN), thereby enhancing its predictive accuracy and robustness. The model was trained and validated on a dataset comprising 1,030 HPC mix samples. Experimental results show that AP-IVYPSO-BP significantly outperforms traditional BPNN, PSO-BP, GA-BP, and IVY-BP models across multiple evaluation metrics. Specifically, it achieved an R2 of 0.9542, MAE of 3.0404, and RMSE of 3.7991 on the test set, demonstrating its high accuracy and reliability. These results confirm the potential of the proposed bio-inspired model in the prediction and optimization of concrete strength, offering practical value in civil engineering and materials design. Full article
42 pages, 5651 KiB  
Article
Towards a Trustworthy Rental Market: A Blockchain-Based Housing System Architecture
by Ching-Hsi Tseng, Yu-Heng Hsieh, Yen-Yu Chang and Shyan-Ming Yuan
Electronics 2025, 14(15), 3121; https://doi.org/10.3390/electronics14153121 - 5 Aug 2025
Abstract
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, [...] Read more.
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, underlying technologies, and myriad benefits of decentralized rental platforms. The intrinsic characteristics of blockchain—immutability, transparency, and decentralization—are pivotal in enhancing the credibility of rental information and proactively preventing fraudulent activities. Smart contracts emerge as a key innovation, enabling the automated execution of Rental Agreements, thereby significantly boosting efficiency and minimizing reliance on intermediaries. Furthermore, Decentralized Identity (DID) solutions offer a robust mechanism for securely managing identities, effectively mitigating risks associated with data leakage, and fostering a more trustworthy environment. The suitability of platforms such as Hyperledger Fabric for developing such sophisticated rental systems is also critically evaluated. Blockchain-based systems promise to dramatically increase market transparency, bolster transaction security, and enhance fraud prevention. They also offer streamlined processes for dispute resolution. Despite these significant advantages, the widespread adoption of blockchain in the rental sector faces several challenges. These include inherent technological complexity, adoption barriers, the need for extensive legal and regulatory adaptation, and critical privacy concerns (e.g., ensuring compliance with GDPR). Furthermore, blockchain scalability limitations and the intricate balance between data immutability and the necessity for occasional data corrections present considerable hurdles. Future research should focus on developing user-friendly DID solutions, enhancing blockchain performance and cost-efficiency, strengthening smart contract security, optimizing the overall user experience, and exploring seamless integration with emerging technologies. While current challenges are undeniable, blockchain technology offers a powerful suite of tools for fundamentally improving the rental market’s efficiency, transparency, and security, exhibiting significant potential to reshape the entire rental ecosystem. Full article
(This article belongs to the Special Issue Blockchain Technologies: Emerging Trends and Real-World Applications)
Show Figures

Figure 1

14 pages, 1536 KiB  
Article
Control Strategy of Multiple Battery Energy Storage Stations for Power Grid Peak Shaving
by Peiyu Chen, Wenqing Cui, Jingan Shang, Bin Xu, Chao Li and Danyang Lun
Appl. Sci. 2025, 15(15), 8656; https://doi.org/10.3390/app15158656 (registering DOI) - 5 Aug 2025
Abstract
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy [...] Read more.
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy for multiple battery energy storage stations (BESSs), improving the performance of peak shaving. Firstly, the strategy involves constructing an optimization model incorporating load forecasting, capacity constraints, and security indices to design a coordination mechanism tracking the target load band with the equivalent power. Secondly, it establishes a quantitative evaluation system using metrics such as peak–valley difference and load standard deviation. Comparison based on typical daily cases shows that, compared with the constant power strategy, the coordinated variable-power control strategy has a more obvious and comprehensive improvement in overall peak-shaving effects. Furthermore, it employs a “dynamic dispatch of multiple BESS” mode, effectively mitigating the risks and flexibility issues associated with single BESSs. This strategy provides a reliable new approach for large-scale energy storage to participate in high-precision peaking. Full article
Show Figures

Figure 1

26 pages, 792 KiB  
Article
From Green to Adaptation: How Does a Green Business Environment Shape Urban Climate Resilience?
by Lei Li, Xi Zhen, Xiaoyu Ma, Shaojun Ma, Jian Zuo and Michael Goodsite
Systems 2025, 13(8), 660; https://doi.org/10.3390/systems13080660 - 4 Aug 2025
Abstract
Strengthening climate resilience constitutes a foundational approach through which cities adapt to climate change and mitigate associated environmental risks. However, research on the influence of economic policy environments on climate resilience remains limited. Guided by institutional theory and dynamic capability theory, this study [...] Read more.
Strengthening climate resilience constitutes a foundational approach through which cities adapt to climate change and mitigate associated environmental risks. However, research on the influence of economic policy environments on climate resilience remains limited. Guided by institutional theory and dynamic capability theory, this study employs a panel dataset comprising 272 Chinese cities at the prefecture level and above, covering the period from 2009 to 2023. It constructs a composite index framework for evaluating the green business environment (GBE) and urban climate resilience (UCR) using the entropy weight method. Employing a two-way fixed-effect regression model, it examined the impact of GBE optimization on UCR empirically and also explored the underlying mechanisms. The results show that improvements in the GBE significantly enhance UCR, with green innovation (GI) in technology functioning as an intermediary mechanism within this relationship. Moreover, climate policy uncertainty (CPU) exerts a moderating effect along this transmission pathway: on the one hand, it amplifies the beneficial effect of the GBE on GI; on the other hand, it hampers the transformation of GI into improved GBEs. The former effect dominates, indicating that optimizing the GBE becomes particularly critical for enhancing UCR under high CPU. To eliminate potential endogenous issues, this paper adopts a two-stage regression model based on the instrumental variable method (2SLS). The above conclusion still holds after undergoing a series of robustness tests. This study reveals the mechanism by which a GBE enhances its growth through GI. By incorporating CPU as a heterogeneous factor, the findings suggest that governments should balance policy incentives with environmental regulations in climate resilience governance. Furthermore, maintaining awareness of the risks stemming from climate policy volatility is of critical importance. By providing a stable and supportive institutional environment, governments can foster steady progress in green innovation and comprehensively improve urban adaptive capacity to climate change. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

29 pages, 4883 KiB  
Article
Stochastic Vibration of Damaged Cable System Under Random Loads
by Yihao Wang, Wei Li and Drazan Kozak
Vibration 2025, 8(3), 44; https://doi.org/10.3390/vibration8030044 - 4 Aug 2025
Abstract
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and [...] Read more.
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and its static configuration is determined. Using the Pearl River Huangpu Bridge as a case study, the accuracy of the analytical solution for the cable’s sag displacement is validated through the finite difference method (FDM). Furthermore, a quantitative relationship between the damage parameters and structural response under stochastic excitation is developed, and the nonlinear stochastic dynamic equations governing the in-plane and out-of-plane motions of the damaged cable are derived. Subsequently, a Gaussian Radial Basis Function Neural Network (GRBFNN) method is employed to solve for the steady-state probability density function of the system response, enabling a detailed analysis of how various damage parameters affect structural behavior. Finally, the First-Order and Second-Order Reliability Method (FORM/SORM) are used to compute the reliability index and failure probability, which are further validated using Monte Carlo simulation (MCS). Results show that the severity parameter η shows the highest sensitivity in influencing the failure probability among the damage parameters. For the system of the Pearl River Huangpu bridge, an increase in the damage extent δ from 0.1 to 0.4 can reduce the reliability-based service life of by approximately 40% under fixed values of the damage severity and location, and failure risk is highest when the damage is located at the midspan of the cable. This study provides a theoretical framework from the point of stochastic vibration for evaluating the response and associated reliability of mechanical systems; the results can be applied in practice with guidance for the engineering design and avoid potential damages of suspended cables. Full article
Show Figures

Figure 1

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Viewed by 33
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

15 pages, 412 KiB  
Article
Analysis of Risk Factors in the Renovation of Old Underground Commercial Spaces in Resource-Exhausted Cities: A Case Study of Fushun City
by Kang Wang, Meixuan Li and Sihui Dong
Sustainability 2025, 17(15), 7041; https://doi.org/10.3390/su17157041 - 3 Aug 2025
Viewed by 231
Abstract
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such [...] Read more.
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such as modern commerce develop slowly. This results in low economic dynamism and weak motivation for urban development. To address this issue, we propose a systematic method for analyzing construction risks during the decision-making stage of renovation projects. The method includes three steps: risk value assessment, risk factor identification, and risk weight calculation. First, unlike previous studies that only used SWOT for risk factor analysis, we also applied it for project value assessment. Then, using the Work Breakdown Structure–Risk Breakdown Structure framework method (WBS-RBS), we identified specific risk sources by analyzing key construction technologies throughout the entire lifecycle of the renovation project. Finally, to enhance expert consensus, we proposed an improved Delphi–Analytic Hierarchy Process method (Delphi–AHP) to calculate risk indicator weights for different construction phases. The risk analysis covered all lifecycle stages of the renovation and upgrading project. The results show that in the Fushun city renovation case study, the established framework—consisting of five first-level indicators and twenty s-level indicators—enables analysis of renovation projects. Among these, management factors and human factors were identified as the most critical, with weights of 0.3608 and 0.2017, respectively. The proposed method provides a structured approach to evaluating renovation risks, taking into account the specific characteristics of construction work. This can serve as a useful reference for ensuring safe and efficient implementation of underground commercial space renovation projects in resource-exhausted cities. Full article
Show Figures

Figure 1

14 pages, 2889 KiB  
Article
Ensuring Reproducibility and Deploying Models with the Image2Radiomics Framework: An Evaluation of Image Processing on PanNET Model Performance
by Florent Tixier, Felipe Lopez-Ramirez, Emir A. Syailendra, Alejandra Blanco, Ammar A. Javed, Linda C. Chu, Satomi Kawamoto and Elliot K. Fishman
Cancers 2025, 17(15), 2552; https://doi.org/10.3390/cancers17152552 - 1 Aug 2025
Viewed by 181
Abstract
Background/Objectives: To evaluate the importance of image processing in a previously validated model for detecting pancreatic neuroendocrine tumors (PanNETs) and to introduce Image2Radiomics, a new framework that ensures reproducibility of the image processing pipeline and facilitates the deployment of radiomics models. Methods: A [...] Read more.
Background/Objectives: To evaluate the importance of image processing in a previously validated model for detecting pancreatic neuroendocrine tumors (PanNETs) and to introduce Image2Radiomics, a new framework that ensures reproducibility of the image processing pipeline and facilitates the deployment of radiomics models. Methods: A previously validated model for identifying PanNETs from CT images served as the reference. Radiomics features were re-extracted using Image2Radiomics and compared to those from the original model using performance metrics. The impact of nine alterations to the image processing pipeline was evaluated. Prediction discrepancies were quantified using the mean ± SD of absolute differences in PanNET probability and the percentage of classification disagreement. Results: The reference model was successfully replicated with Image2Radiomics, achieving a Cohen’s kappa coefficient of 1. Alterations to the image processing pipeline led to reductions in model performance, with AUC dropping from 0.87 to 0.71 when image windowing was removed. Prediction disagreements were observed in up to 45% of patients. Even minor changes, such as switching the library used for spatial resampling, resulted in up to 21% disagreement. Conclusions: Reproducing image processing pipelines remains challenging and limits the clinical deployment of radiomics models. While this study is limited to one model and imaging modality, the findings underscore a common risk in radiomics reproducibility. The Image2Radiomics framework addresses this issue by allowing researchers to define and share complete processing pipelines in a standardized way, improving reproducibility and facilitating model deployment in clinical and multicenter settings. Full article
Show Figures

Figure 1

41 pages, 1921 KiB  
Article
Digital Skills, Ethics, and Integrity—The Impact of Risky Internet Use, a Multivariate and Spatial Approach to Understanding NEET Vulnerability
by Adriana Grigorescu, Teodor Victor Alistar and Cristina Lincaru
Systems 2025, 13(8), 649; https://doi.org/10.3390/systems13080649 - 1 Aug 2025
Viewed by 285
Abstract
In an era where digitalization shapes economic and social landscapes, the intersection of digital skills, ethics, and integrity plays a crucial role in understanding the vulnerability of youth classified as NEET (Not in Education, Employment, or Training). This study explores how risky internet [...] Read more.
In an era where digitalization shapes economic and social landscapes, the intersection of digital skills, ethics, and integrity plays a crucial role in understanding the vulnerability of youth classified as NEET (Not in Education, Employment, or Training). This study explores how risky internet use and digital skill gaps contribute to socio-economic exclusion, integrating a multivariate and spatial approach to assess regional disparities in Europe. This study adopts a systems thinking perspective to explore digital exclusion as an emergent outcome of multiple interrelated subsystems. The research employs logistic regression, Principal Component Analysis (PCA) with Promax rotation, and Geographic Information Systems (GIS) to examine the impact of digital behaviors on NEET status. Using Eurostat data aggregated at the country level for the period (2000–2023) across 28 European countries, this study evaluates 24 digital indicators covering social media usage, instant messaging, daily internet access, data protection awareness, and digital literacy levels. The findings reveal that low digital skills significantly increase the likelihood of being NEET, while excessive social media and internet use show mixed effects depending on socio-economic context. A strong negative correlation between digital security practices and NEET status suggests that youths with a higher awareness of online risks are less prone to socio-economic exclusion. The GIS analysis highlights regional disparities, where countries with limited digital access and lower literacy levels exhibit higher NEET rates. Digital exclusion is not merely a technological issue but a multidimensional socio-economic challenge. To reduce the NEET rate, policies must focus on enhancing digital skills, fostering online security awareness, and addressing regional disparities. Integrating GIS methods allows for the identification of territorial clusters with heightened digital vulnerabilities, guiding targeted interventions for improving youth employability in the digital economy. Full article
Show Figures

Figure 1

14 pages, 1502 KiB  
Review
A Bibliographic Analysis of Multi-Risk Assessment Methodologies for Natural Disaster Prevention
by Gilles Grandjean
GeoHazards 2025, 6(3), 41; https://doi.org/10.3390/geohazards6030041 - 1 Aug 2025
Viewed by 171
Abstract
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the [...] Read more.
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the worsening of this situation. First, climate change has heightened the incidence and, in conjunction, the seriousness of geohazards that often occur with each other. Second, the complexity of these impacts on societies is drastically exacerbated by the interconnections between urban areas, industrial sites, power or water networks, and vulnerable ecosystems. In front of the recent research on this problem, and the necessity to figure out the best scientific positioning to address it, we propose, through this review analysis, to revisit existing literature on multi-risk assessment methodologies. By this means, we emphasize the new recent research frameworks able to produce determinant advances. Our selection corpus identifies pertinent scientific publications from various sources, including personal bibliographic databases, but also OpenAlex outputs and Web of Science contents. We evaluated these works from different criteria and key findings, using indicators inspired by the PRISMA bibliometric method. Through this comprehensive analysis of recent advances in multi-risk assessment approaches, we highlight main issues that the scientific community should address in the coming years, we identify the different kinds of geohazards concerned, the way to integrate them in a multi-risk approach, and the characteristics of the presented case studies. The results underscore the urgency of developing robust, adaptable methodologies, effectively able to capture the complexities of multi-risk scenarios. This challenge should be at the basis of the keys and solutions contributing to more resilient socioeconomic systems. Full article
Show Figures

Figure 1

25 pages, 7131 KiB  
Article
Spatiotemporal Patterns of Non-Communicable Disease Mortality in the Metropolitan Area of the Valley of Mexico, 2000–2019
by Constantino González-Salazar, Kathia Gasca-Gómez and Omar Cordero-Saldierna
Diseases 2025, 13(8), 241; https://doi.org/10.3390/diseases13080241 - 1 Aug 2025
Viewed by 282
Abstract
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal [...] Read more.
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal patterns of NCD mortality in the Metropolitan Area of the Valley of Mexico (MAVM) from 2000 to 2019 for five International Classification of Diseases chapters (4, 5, 6, 9, and 10) at two spatial scales: the municipal level and metropolitan region. Methods: Mortality rates were calculated for the total population and stratified by sex and age groups at both spatial scales. In addition, the relative risk (RR) of mortality was estimated to identify vulnerable population groups and regions with a high risk of mortality, using women and the 25–34 age group as reference categories for population-level analysis, and the overall MAVM mortality rate as the reference for municipal-level analysis. Results: Mortality trends showed that circulatory-system diseases (Chapter 9) are emerging as a concerning health issue, with 45 municipalities showing increasing mortality trends, especially among older adults. Respiratory-system diseases (Chapter 10), mental and behavioral disorders (Chapter 5) and nervous-system diseases (Chapter 6) predominantly did not exhibit a consistent general mortality trend. However, upon disaggregating by sex and age groups, specific negative or positive trends emerged at the municipal level for some of these chapters or subgroups. Endocrine, nutritional, and metabolic diseases (Chapter 4) showed a complex pattern, with some age groups presenting increasing mortality trends, and 52 municipalities showing increasing trends overall. The RR showed men and older age groups (≥35 years) exhibiting higher mortality risks. The temporal trend of RR allowed us to identify spatial mortality hotspots mainly in chapters related to circulatory, endocrine, and respiratory diseases, forming four geographical clusters in Mexico City that show persistent high risk of mortality. Conclusions: The spatiotemporal analysis highlights municipalities and vulnerable populations with a consistently elevated mortality risk. These findings emphasize the need for monitoring NCD mortality patterns at both the municipal and metropolitan levels to address disparities and guide the implementation of health policies aimed at reducing mortality risk in vulnerable populations. Full article
Show Figures

Figure 1

25 pages, 2082 KiB  
Article
XTTS-Based Data Augmentation for Profanity Keyword Recognition in Low-Resource Speech Scenarios
by Shin-Chi Lai, Yi-Chang Zhu, Szu-Ting Wang, Yen-Ching Chang, Ying-Hsiu Hung, Jhen-Kai Tang and Wen-Kai Tsai
Appl. Syst. Innov. 2025, 8(4), 108; https://doi.org/10.3390/asi8040108 - 31 Jul 2025
Viewed by 174
Abstract
As voice cloning technology rapidly advances, the risk of personal voices being misused by malicious actors for fraud or other illegal activities has significantly increased, making the collection of speech data increasingly challenging. To address this issue, this study proposes a data augmentation [...] Read more.
As voice cloning technology rapidly advances, the risk of personal voices being misused by malicious actors for fraud or other illegal activities has significantly increased, making the collection of speech data increasingly challenging. To address this issue, this study proposes a data augmentation method based on XText-to-Speech (XTTS) synthesis to tackle the challenges of small-sample, multi-class speech recognition, using profanity as a case study to achieve high-accuracy keyword recognition. Two models were therefore evaluated: a CNN model (Proposed-I) and a CNN-Transformer hybrid model (Proposed-II). Proposed-I leverages local feature extraction, improving accuracy on a real human speech (RHS) test set from 55.35% without augmentation to 80.36% with XTTS-enhanced data. Proposed-II integrates CNN’s local feature extraction with Transformer’s long-range dependency modeling, further boosting test set accuracy to 88.90% while reducing the parameter count by approximately 41%, significantly enhancing computational efficiency. Compared to a previously proposed incremental architecture, the Proposed-II model achieves an 8.49% higher accuracy while reducing parameters by about 98.81% and MACs by about 98.97%, demonstrating exceptional resource efficiency. By utilizing XTTS and public corpora to generate a novel keyword speech dataset, this study enhances sample diversity and reduces reliance on large-scale original speech data. Experimental analysis reveals that an optimal synthetic-to-real speech ratio of 1:5 significantly improves the overall system accuracy, effectively addressing data scarcity. Additionally, the Proposed-I and Proposed-II models achieve accuracies of 97.54% and 98.66%, respectively, in distinguishing real from synthetic speech, demonstrating their strong potential for speech security and anti-spoofing applications. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
12 pages, 434 KiB  
Article
Gastroesophageal Reflux Disease 10 Years After Bariatric Surgery—Is It a Problem? A Multicenter Study (BARI-10-POL)
by Natalia Dowgiałło-Gornowicz, Monika Proczko-Stepaniak, Anna Kloczkowska, Paweł Jaworski and Piotr Major
J. Clin. Med. 2025, 14(15), 5405; https://doi.org/10.3390/jcm14155405 - 31 Jul 2025
Viewed by 220
Abstract
Background/Objectives: Gastroesophageal reflux disease (GERD) seems to be a common complaint which persists or develops after metabolic bariatric surgery (MBS). Endoscopic evaluation is vital in both the preoperative and postoperative phases to ensure optimal patient outcomes. The aim of this study was [...] Read more.
Background/Objectives: Gastroesophageal reflux disease (GERD) seems to be a common complaint which persists or develops after metabolic bariatric surgery (MBS). Endoscopic evaluation is vital in both the preoperative and postoperative phases to ensure optimal patient outcomes. The aim of this study was to evaluate the prevalence of GERD after MBS in a 10-year follow-up and analyze the endoscopic outcomes. Methods: This retrospective, multicenter study included 368 patients who underwent single bariatric procedure. The data came from five bariatric centers in Poland, part of the BARI-10-POL project. Data on symptoms of GERD, endoscopic findings, demographics, and surgical outcomes were collected for a 10-year follow-up period. Surgical procedures included SG, Roux-en-Y gastric bypass (RYGB), and one anastomosis gastric bypass (OAGB). Results: Of the 305 patients without symptoms of GERD, 12.3% developed de novo GERD postoperatively. There was no statistical significance regarding the new-onset symptoms and the type of MBS (p = 0.074) and the presence of symptoms of GERD and the type of MBS (p = 0.208). However, SG was associated with a significantly lower likelihood of GERD remission after MBS (p = 0.005). Endoscopic evaluation showed abnormal findings in asymptomatic patients in both preoperative (35.8%) and postoperative (14.1%) examinations (p < 0.001). Conclusions: GERD may be a common issue after MBS. One-quarter of patients after MBS may experience symptoms of GERD, regardless of the type of MBS. SG appears to be associated with a higher risk of persistent symptoms of GERD and a lower likelihood of GERD remission after MBS. Asymptomatic patients both before and after MBS may have abnormal findings in gastroscopy. Full article
(This article belongs to the Special Issue Clinical and Surgical Updates on Bariatric Surgery)
Show Figures

Figure 1

31 pages, 419 KiB  
Review
Neoadjuvant Treatment for Locally Advanced Rectal Cancer: Current Status and Future Directions
by Masayoshi Iwamoto, Kazuki Ueda and Junichiro Kawamura
Cancers 2025, 17(15), 2540; https://doi.org/10.3390/cancers17152540 - 31 Jul 2025
Viewed by 505
Abstract
Locally advanced rectal cancer (LARC) remains a major clinical challenge due to its high risk of local recurrence and distant metastasis. Although total mesorectal excision (TME) has been established as the gold standard surgical approach, high recurrence rates associated with surgery alone have [...] Read more.
Locally advanced rectal cancer (LARC) remains a major clinical challenge due to its high risk of local recurrence and distant metastasis. Although total mesorectal excision (TME) has been established as the gold standard surgical approach, high recurrence rates associated with surgery alone have driven the development of multimodal preoperative strategies, such as radiotherapy and chemoradiotherapy. More recently, total neoadjuvant therapy (TNT)—which integrates systemic chemotherapy and radiotherapy prior to surgery—and non-operative management (NOM) for patients who achieve a clinical complete response (cCR) have further expanded treatment options. These advances aim not only to improve oncologic outcomes but also to enhance quality of life (QOL) by reducing long-term morbidity and preserving organ function. However, several unresolved issues persist, including the optimal sequencing of therapies, precise risk stratification, accurate evaluation of treatment response, and effective surveillance protocols for NOM. The advent of molecular biomarkers, next-generation sequencing, and artificial intelligence (AI) presents new opportunities for individualized treatment and more accurate prognostication. This narrative review provides a comprehensive overview of the current status of preoperative treatment for LARC, critically examines emerging strategies and their supporting evidence, and discusses future directions to optimize both oncological and patient-centered outcomes. By integrating clinical, molecular, and technological advances, the management of rectal cancer is moving toward truly personalized medicine. Full article
(This article belongs to the Special Issue Multidisciplinary Management of Rectal Cancer)
27 pages, 565 KiB  
Review
Review of the Use of Waste Materials in Rigid Airport Pavements: Opportunities, Benefits and Implementation
by Loretta Newton-Hoare, Sean Jamieson and Greg White
Sustainability 2025, 17(15), 6959; https://doi.org/10.3390/su17156959 - 31 Jul 2025
Viewed by 160
Abstract
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies [...] Read more.
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies is the lack of guidance relating to the opportunities, potential benefits, associated risks and an implementation plan specific to airport pavements. This research reviewed opportunities to incorporate waste materials into rigid airport pavements, focusing on concrete base slabs. Commonly used supplementary cementitious materials (SCMs), such as fly ash and ground granulated blast furnace slag (GGBFS) were considered, as well as recycled aggregates, including recycled concrete aggregate (RCA), recycled crushed glass (RCG), and blast furnace slag (BFS). Environmental Product Declarations (EPDs) were also used to quantify the potential for environmental benefit associated with various concrete mixtures, with findings showing 23% to 50% reductions in embodied carbon are possible for selected theoretical concrete mixtures that incorporate waste materials. With considered evaluation and structured implementation, the integration of waste materials into rigid airport pavements offers a practical and effective route to improve environmental outcomes in aviation infrastructure. It was concluded that a Triple Bottom Line (TBL) framework—assessing financial, environmental, and social factors—guides material selection and can support sustainable decision-making, as does performance-based specifications that enable sustainable technologies to be incorporated into airport pavement. The study also proposed a consequence-based implementation hierarchy to facilitate responsible adoption of waste materials in airside pavements. The outcomes of this review will assist airport managers and pavement designers to implement practical changes to achieve more sustainable rigid airport pavements in the future. Full article
Show Figures

Figure 1

Back to TopTop