Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Rift Valley lakes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2459 KiB  
Review
Climate-Sensitive Health Outcomes in Kenya: A Scoping Review of Environmental Exposures and Health Outcomes Research, 2000–2024
by Jessica Gerard, Titus Kibaara, Iris Martine Blom, Jane Falconer, Shamsudeen Mohammed, Zaharat Kadri-Alabi, Roz Taylor, Leila Abdullahi, Robert C. Hughes, Bernard Onyango and Ariel A. Brunn
Climate 2025, 13(7), 133; https://doi.org/10.3390/cli13070133 - 20 Jun 2025
Viewed by 2544
Abstract
Climate change threatens health and social development gains in Kenya, necessitating health policy planning for risk reduction and mitigation. To understand the state of knowledge on climate-related health impacts in Kenya, a scoping review of 25 years of environmental health research was conducted. [...] Read more.
Climate change threatens health and social development gains in Kenya, necessitating health policy planning for risk reduction and mitigation. To understand the state of knowledge on climate-related health impacts in Kenya, a scoping review of 25 years of environmental health research was conducted. In compliance with a pre-registered protocol, nine bibliographic databases and grey literature sources were searched for articles published from 2000 to 2024. Of 19,234 articles screened, 816 full texts were reviewed in duplicate, and a final 348 articles underwent data extraction for topic categorisation, trend analysis, and narrative summary. Most of the studies (97%, n = 336) were journal articles, with 64% published after 2014 (n = 224). The health topics centred on vector-borne diseases (45%, n = 165), primarily vector abundance (n = 111) and malaria (n = 67), while mental health (n = 12) and heat exposure (n = 9) studies were less frequent. The research was geographically concentrated on the Lake Victoria Basin, Rift Valley, and Coastal regions, with fewer studies from the northern arid and semi-arid regions. The findings show a shift from a focus on infectious diseases towards broader non-communicable outcomes, as well as regional disparities in research coverage. This review highlights the development of baseline associations between environmental exposures and health outcomes in Kenya, providing a necessary foundation for evidence-informed climate change and health policy. However, challenges in data and study designs limit some of the evidentiary value. Full article
(This article belongs to the Special Issue Climate, Ecosystem and Human Health: Impacts and Adaptation)
Show Figures

Figure 1

13 pages, 7031 KiB  
Article
Sand Distribution Controlled by Paleogeomorphology in Marine–Continental Rift Basin
by Bochuan Geng, Peidong Su and Shilin Wang
J. Mar. Sci. Eng. 2025, 13(6), 1077; https://doi.org/10.3390/jmse13061077 - 29 May 2025
Viewed by 390
Abstract
The analysis of sand distribution in a marine–continental rift basin is of practical value for hydrocarbon prediction. The primary objective of this study is to investigate the correlation between Paleoproterozoic sand development and paleomorphology in the Nanpu sag, and to focus on identifying [...] Read more.
The analysis of sand distribution in a marine–continental rift basin is of practical value for hydrocarbon prediction. The primary objective of this study is to investigate the correlation between Paleoproterozoic sand development and paleomorphology in the Nanpu sag, and to focus on identifying the key factors controlling sand deposition in the marine–continental rift basin. Correspondence between the development of the Paleoproterozoic sand in the Nanpu sag and the paleogeomorphology shows that the gully limited the deposition of the sand into the lake. The differentiation and aggregation of the sand in the lake basin were influenced by two kinds of slope break zones (the syn-sedimentary fracture tectonic slope break zone and the paleo-topographic flexural depositional slope break zone). Due to tectonic movements in the marine–continental rift basin, as well as provenance supply and weather during chasmic stages, the impact of valley and syndeposit slope break zone on sand development varies. In areas where allocation is better as valley–syndeposit slope break zone, basal slope and its vicinity usually are favorable for delta (braided channel) and fan delta sand development, which extend basinward through hydraulic transport. Meanwhile, under the influence of syntectonic and gravitational disequilibrium, gravity flow sand can be seen sporadically distributed in the deep end of fan fronts. This study is of great significance for oil and gas exploration in the Bohai Bay Basin region and contributes to a better understanding of depositional processes in similar marine–continental rift basins around the globe. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

32 pages, 3036 KiB  
Article
Agricultural Productivity of Solar Pump and Water Harvesting Irrigation Technologies and Their Impacts on Smallholder Farmers’ Income and Food Security: Evidence from Ethiopia
by Mebratu Negera, Zeleke Agide Dejen, Dagmawi Melaku, Desalegn Tegegne, Muluken Elias Adamseged and Amare Haileslassie
Sustainability 2025, 17(4), 1486; https://doi.org/10.3390/su17041486 - 11 Feb 2025
Cited by 1 | Viewed by 3551
Abstract
Irrigation plays a crucial role in enhancing food production, increasing land productivity, and improving the livelihoods of smallholder farmers in Sub-Saharan Africa (SSA). Solar pumps and water harvesting ponds have emerged as promising technologies for sustainable agriculture for smallholders in SSA and beyond. [...] Read more.
Irrigation plays a crucial role in enhancing food production, increasing land productivity, and improving the livelihoods of smallholder farmers in Sub-Saharan Africa (SSA). Solar pumps and water harvesting ponds have emerged as promising technologies for sustainable agriculture for smallholders in SSA and beyond. The socio-economic impacts of these systems are less studied in the existing literature. This study examined the agricultural productivity of solar pump and water harvesting irrigation technologies and their impacts on income and food security among smallholder farmers in the Central Rift Valley, Lake Hawassa, and Upper Awash sub-basin areas in Ethiopia. Data were collected from 161 farming households that were selected randomly from woredas where solar pump and water harvesting pond irrigation systems had been implemented. The sample size was determined using the power calculation method. Bio-physical observation and measurements were also conducted at field levels. The benefit–cost ratio (BCR) and net water value (NWV) from the use of solar pump and water harvesting pond irrigations were analyzed to assess the viability of these systems. The household food consumption score (HFCS) and household dietary diversity score (HDDS) were calculated to measure food security, while the revenue from crop production was used to measure crop income. An endogenous switching regression model was applied to address the endogeneity nature of the adoption of the irrigation technologies. The counterfactual analysis, specifically the Average Treatment Effect on the Treated (ATT), was used to evaluate the impacts of the irrigation technologies on income and food security. Results indicate that the ATT of crop income, HFCS, and HDDS are positive and statistically significant, illustrating the role of these irrigation systems in enhancing smallholder farmers’ welfare. Moreover, smallholder farmers’ solar pump irrigation systems were found to be economically viable for few crops, with a BCR greater than 1.0 and an NWV ranging from 0.21 to 1.53 USD/m³. It was also found that bundling agricultural technologies with solar pump irrigation systems leads to enhanced agricultural outputs and welfare. The sustainable adoption and scale-up of these irrigation systems demand addressing technical and financial constraints, as well as input and output market challenges. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

14 pages, 2088 KiB  
Article
Biodegradation of Cyanide Using Soda Lake-Derived Alkaliphilic Microbial Consortia
by Getnet Belay, Carolina Suarez, Catherin J. Paul and Addis Simachew
Water 2024, 16(20), 2956; https://doi.org/10.3390/w16202956 - 17 Oct 2024
Cited by 1 | Viewed by 1157
Abstract
Biological treatment processes at low or neutral pH are ineffective for gold mine wastewater treatment. The aim of this study was to develop a new cyanide-rich gold mine wastewater treatment system using alkaliphilic microbial consortia from the Ethiopian Rift Valley soda lake, Lake [...] Read more.
Biological treatment processes at low or neutral pH are ineffective for gold mine wastewater treatment. The aim of this study was to develop a new cyanide-rich gold mine wastewater treatment system using alkaliphilic microbial consortia from the Ethiopian Rift Valley soda lake, Lake Chitu. The treatment setup incorporates aerobic and anoxic reactors connected in series and operated for about 200 treatment days. Simulated gold mine wastewater was formulated in the laboratory. Colorimetry was used to measure residual cyanide and reactive nitrogen molecules derived from cyanide biodegradation. Flocks and biofilms developed in the reactors during the acclimatization process. Using sodium cyanide at 200 mg/L as an initial concentration, the consortia degraded to 99.74 ± 0.08% of cyanide, with no significant variation (p > 0.05) occurring when the dose was increased to 800 mg/L. However, changes were observed (p < 0.05) at 1000 mg/L. Acetate was the preferred carbon source for the consortia. The established consortia effectively degraded cyanide to levels below the permissible discharge limit set by the International Cyanide Management Institute (ICMI). This study provides insights into the effectiveness of alkaliphilic microbial consortia derived from soda lakes for treating cyanide-polluted wastewater. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 4772 KiB  
Article
Spatial–Temporal Analysis of Impacts of Climate Variability on Maize Yield in Kenya
by Renish Awuor Ondiek, Mohamed Saber and Mohammed Abdel-Fattah
Agriculture 2024, 14(8), 1415; https://doi.org/10.3390/agriculture14081415 - 21 Aug 2024
Cited by 1 | Viewed by 1863
Abstract
This study examined the spatial temporal impacts of climate variability on maize yield in Kenya. The maize yield data were obtained from the Kenya Maize Yield Database while climatic variable data were obtained from the Climatic Research Unit gridded Time Series (CRU TS) [...] Read more.
This study examined the spatial temporal impacts of climate variability on maize yield in Kenya. The maize yield data were obtained from the Kenya Maize Yield Database while climatic variable data were obtained from the Climatic Research Unit gridded Time Series (CRU TS) with a spatial resolution of 0.5° × 0.5°. The non-parametric Mann–Kendall and Sen’s slope tests showed no trend in the data for maximum temperature, minimum temperature and precipitation. The spatial maps patterns highlight the rampancy of wetter areas in the Lake Victoria basin and Highlands East of Rift Valley compared to other regions. Additionally, there is a decreasing trend in the spatial distribution of precipitation in wetter areas and an increasing trend in maximum temperature in dry areas, albeit not statistically significant. Spearman’s rank correlation test showed a strong positive correlation between maize yield and the climatic parameters for the Lake Victoria basin, Highlands East of Rift Valley, Coastal Strip and North Western Regions. The findings suggest that climate variability has a significant impact on maize yield for four out of six climatological zones. We recommend adoption of policies and frameworks that will augment adaptive capacity and build resilience to climatic changes. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

24 pages, 3684 KiB  
Article
Elucidating Amendment Resources for Reclaiming Efficacy of Sodic Soils around Abaya and Chamo Lakes, South Ethiopia Rift Valley
by Azmera Walche, Wassie Haile, Alemayehu Kiflu and Dereje Tsegaye
Toxics 2024, 12(4), 265; https://doi.org/10.3390/toxics12040265 - 31 Mar 2024
Cited by 3 | Viewed by 1879
Abstract
Background: Sodic soils are harmful to agricultural and natural environments in Ethiopia’s semi-arid and arid regions, leading to soil degradation and reduced productivity. This study investigated how amendment resources could help improve the chemical properties of sodic soils around the Abaya and Chamo [...] Read more.
Background: Sodic soils are harmful to agricultural and natural environments in Ethiopia’s semi-arid and arid regions, leading to soil degradation and reduced productivity. This study investigated how amendment resources could help improve the chemical properties of sodic soils around the Abaya and Chamo Lakes in the South Ethiopia Rift Valley. Methods: A factorial experiment was conducted to study the effects of gypsum (GYP) and farmyard manure (FYM) on sodic soil reclamation. The experiment had four levels of GYP (0, 50, 100, and 150%) and four levels of FYM (0, 10, 20, and 30 tons ha−1), with three replications. The pots were incubated for three months and leached for one month, after which soil samples were collected and analyzed for chemical properties. ANOVA was performed to determine the optimal amendment level for sodic soil reclamation. Results: The study found that applying 10 ton FYM ha−1 and gypsum at 100% gypsum required (GR) rate resulted in a 99.8% decrease in exchangeable sodium percentages (ESP) compared to untreated composite sodic soil and a 1.31% reduction over the control (GYP 0% + FYM 0 ton ha−1). As a result, this leads to a decrease in soil electrical conductivity, exchangeable sodium (Ex. Na), and ESP values. The results were confirmed by the LSD test at 0.05. It is fascinating to see how different treatments can have such a significant impact on soil properties. The prediction models indicate that ESP’s sodic soil treatment effect (R2 = 0.95) determines the optimal amendment level for displacing Ex. Na from the exchange site. The best estimator models for ESP using sodic soil treatment levels were ESP = 1.65–0.33 GYP for sole gypsum application and ESP = 1.65–0.33 GYP + 0.28 FYM for combined GYP and FYM application, respectively. Conclusion: The study found that combined GYP and FYM applications reduced ESP to less than 10% in agriculture, but further research is needed to determine their effectiveness at the field level. Full article
(This article belongs to the Special Issue Environmental Risk Assessment and Control of Emerging Contaminants)
Show Figures

Figure 1

14 pages, 6962 KiB  
Article
Black Soils in the Eastern Mediterranean: Genesis and Properties
by Hussam Hag Husein, Rupert Bäumler, Bernhard Lucke and Wahib Sahwan
Geographies 2024, 4(1), 168-181; https://doi.org/10.3390/geographies4010011 - 27 Feb 2024
Cited by 2 | Viewed by 2426
Abstract
This study investigates the distribution, morphology, and properties of these soils, focusing on areas such as littoral plains, high hilly areas, and rift depression valleys. Black soils occur in the eastern Mediterranean with a limited distribution, and some of them meet the requirements [...] Read more.
This study investigates the distribution, morphology, and properties of these soils, focusing on areas such as littoral plains, high hilly areas, and rift depression valleys. Black soils occur in the eastern Mediterranean with a limited distribution, and some of them meet the requirements for black soils according to the INBS (International Network of Black Soils), while others do not. Black soils can be categorized into three types based on their genesis and evolution: calcareous black soils (mainly raw rocky rendzina), hydromorphic black soils, and black soil on basalt. While black soils were found in various bioclimatic stages and parent materials, their presence was notably limited in certain areas, contrary to prior indications. A soil morphology analysis revealed distinct color variations and depths, influenced by the accumulation of organic matter for hydromorphic and calcareous black soils and basaltic parent material for black soils on basalt. A particle size analysis indicated texture variations from clay to loam, with no clear indication of illuviation. A chemical analysis showed alkaline pH levels, except in basalt-derived soils, which exhibited a slight acidity. Hydromorphic black soil is the most important in terms of expansion and agricultural use and is only found in limestone marl deposits and lakes in depressions emerging from Dead Sea rifts under conditions of saturation or poor drainage. These soils have a thick, dark moly horizon and a high organic matter content. Full article
Show Figures

Figure 1

21 pages, 7285 KiB  
Article
Groundwater Recharge Estimation in Upper Gelana Watershed, South-Western Main Ethiopian Rift Valley
by Endale Siyoum Demissie, Demisachew Yilma Gashaw, Andarge Alaro Altaye, Solomon S. Demissie and Gebiaw T. Ayele
Sustainability 2023, 15(3), 1763; https://doi.org/10.3390/su15031763 - 17 Jan 2023
Cited by 15 | Viewed by 3279
Abstract
Estimating the spatial and temporal patterns of groundwater recharge through integrated water balance modeling plays an important role in sustainable groundwater resource management. Such modeling effort is particularly essential for data-scarce regions, such as the Rift Valley Lake basin in the Basement Complex [...] Read more.
Estimating the spatial and temporal patterns of groundwater recharge through integrated water balance modeling plays an important role in sustainable groundwater resource management. Such modeling effort is particularly essential for data-scarce regions, such as the Rift Valley Lake basin in the Basement Complex of Ethiopia, which has shallow aquifers, a proliferation of wells, and poor groundwater monitoring networks. A spatially distributed water balance model (WetSpass), along with GIS and remote sensing tools, was used for groundwater recharge estimation for its suitability and efficiency in data-scarce hydrogeological regions. The WetSpass model depicted a very good performance in simulating the groundwater recharge in the Upper Gelana watershed within the Rift Valley Lake basin. The water balance analysis revealed that about 7% of the mean annual rainfall is converted to groundwater recharge, and the remaining rainfall amounts are partitioned into surface runoff (19%) and evapotranspiration (75%). The model simulation outputs are also used to investigate the relative influences of biophysical driving factors on the water balance components. While the land use types had a greater influence on the actual evapotranspiration processes, the soil texture classes were the dominant factors in the surface runoff and groundwater recharge processes in the watershed. The groundwater recharge rates were found to be higher than 400 mm/yr in the central parts (Fisehagenent, Tore, and Gedeb) and lower than 165 mm/yr in the southern parts (Hageremariam) of the watershed. The areal proportions of the low, medium, and high recharging parts of the watershed are, respectively, estimated as 15%, 68%, and 17% of the watershed area. Therefore, the spatial and temporal patterns of groundwater recharge should be taken into consideration in developing a sustainable groundwater resources management plan for the Upper Gelana watershed. Managed aquifer recharge can be adopted in high and medium groundwater recharging parts of the watershed to capture stormwater runoff during the wet season to improve the groundwater supply during dry months. Furthermore, monthly groundwater withdrawals should be regulated according to the spatial and temporal patterns of the groundwater recharge in the watershed. Full article
(This article belongs to the Special Issue Sustainable Water Use)
Show Figures

Figure 1

22 pages, 4116 KiB  
Article
Hydrological Simulation in a Rift-Bounded Lake System and Implication of Water Abstraction: Central Rift Valley Lakes Basin, Ethiopia
by Sisay Kebede Balcha, Adane Abebe Awass, Taye Alemayehu Hulluka, Gebiaw T. Ayele and Amare Bantider
Water 2022, 14(23), 3929; https://doi.org/10.3390/w14233929 - 2 Dec 2022
Cited by 10 | Viewed by 3118
Abstract
The Katar and Meki subbasins play a significant role in supporting the livelihoods of people in the region. However, the subbasins are currently under heavy human pressures, mainly associated with the ever-increasing human population and the subsequent intensification of irrigated agricultural activities. The [...] Read more.
The Katar and Meki subbasins play a significant role in supporting the livelihoods of people in the region. However, the subbasins are currently under heavy human pressures, mainly associated with the ever-increasing human population and the subsequent intensification of irrigated agricultural activities. The aims of this study are to quantify the water balance components of the Katar and Meki rivers using the Soil and Water Assessment Tool (SWAT) model and to assess the implication of water abstraction on river hydrology. The Katar and Meki subbasins were discretized into 107 and 87 micro-subbasins, which were then subdivided further into Hydrologic Response Units (HRUs) of 683 and 658, respectively. Hydro-meteorological data from 1997 to 2014 were used for model setup, calibration, and validation. Nash–Sutcliffe Efficiency (NSE), coefficient of determination (R2), and Percent Bias (PBIAS) were used for model performance evaluation. The results of the simulation revealed NSE = 0.68–0.83, R2 = 0.72–0.85, and PBIAS = 1.6–22.7 during calibration and validation. More than 65% of the simulated flow was bracketed with the 95PPU for both subbasins, with the thickness of the 95PPU in the range of 0.90 to 1.41 calibration and 1.15 to 1.31 validation, which indicates that the overall performance of the water balance model can be rated as “very good”. The results of the water balance show that evapotranspiration (ET), surface runoff (Qs), and groundwater discharge (Qgw) were large in the Meki subbasin, while percolation (PERC) and water yield (WYLD) were large in the Katar subbasin. The model estimated 140 and 111 mm of average annual WYLD for the Katar and Meki subbasins, respectively, and the Katar subbasin is a major contributor of water to Lake Ziway. A total volume of 19.41 million cubic meters (MCM) of water is abstracted from Katar and Meki rivers for irrigation and domestic use, which significantly reduces Lake Ziway’s level by 4.5 cm (m). If the current trend of development continues, 149.92 MCM water will be abstracted each year from the lake environment and will reduce the lake level by 1.72 m. It is suspected that the Katar and Meki rivers are likely to cease to exist after a few decades and that Lake Ziway will also dry out. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 2931 KiB  
Article
Response of Winter Wheat Production to Climate Change in Ziway Lake Basin
by Aster Tesfaye Hordofa, Olkeba Tolessa Leta, Tena Alamirew and Abebe Demissie Chukalla
Sustainability 2022, 14(20), 13666; https://doi.org/10.3390/su142013666 - 21 Oct 2022
Cited by 4 | Viewed by 3119
Abstract
The crop production and limited freshwater resources in the Central Rift Valley (CRV) Lake Basin of Ethiopia have been facing pressure from warmer and drier climates. Thus, irrigation with the goal of increasing water use efficiency and the productivity of rainfed agriculture is [...] Read more.
The crop production and limited freshwater resources in the Central Rift Valley (CRV) Lake Basin of Ethiopia have been facing pressure from warmer and drier climates. Thus, irrigation with the goal of increasing water use efficiency and the productivity of rainfed agriculture is vital to address climate effects, water scarcity, and food security. This study is aimed at assessing the sustainability of winter wheat production under climate change, and irrigation as an adaptation measure to improve yield, crop water productivity (CWP), and irrigation water productivity (IWP) in the CRV of Ethiopia. AquaCrop is applied to evaluate the effects of climate change and simulate irrigation as an adaptation measure. The analysis covers the baseline (1981–2020) and future (2026–2095) periods with each period categorized into three rainfall years (wet, normal, and dry). The future period is described using two representatives’ concentration pathways (RCP4.5 and PCP8.5) scenarios. The results under rainfed and future climate conditions show that the winter wheat yield and CWP are projected to be lowered as compared to the baseline period. Most importantly, a significant reduction in wheat yield and CWP is noticed during the dry years (−60% and −80%) compared to the wet years (−30% and −51%) and normal years (−18% and −30%), respectively. As compared to rainfed agriculture, irrigation significantly reduces the risk of wheat yield decline and improves the CWP. Irrigation is also able to improve the CWP of rainfed wheat production ranging from 0.98–1.4 kg/m3 to 1.48–1.56 kg/m3. A projected CWP improvement of 1.1–1.32 kg/m3 under irrigation is possible from 0.87–1.1 kg/m3 under rainfed conditions. The study concludes that optimizing irrigation as a climate-change-adapting strategy in the CRV has a more pronounced positive impact to the rainfed production system, especially for the dry and normal years. Full article
Show Figures

Figure 1

12 pages, 1854 KiB  
Article
Diversity of Culturable Alkaliphilic Nitrogen-Fixing Bacteria from a Soda Lake in the East African Rift Valley
by Yordanos Ali, Addis Simachew and Amare Gessesse
Microorganisms 2022, 10(9), 1760; https://doi.org/10.3390/microorganisms10091760 - 31 Aug 2022
Cited by 7 | Viewed by 2449
Abstract
Lake Chitu is a highly productive soda lake found in the East African Rift Valley, where Arthrospira fusiformis (Spirulina platensis) is the main primary producer. High biomass accumulation requires an adequate supply of nitrogen. However, Lake Chitu is a closed system [...] Read more.
Lake Chitu is a highly productive soda lake found in the East African Rift Valley, where Arthrospira fusiformis (Spirulina platensis) is the main primary producer. High biomass accumulation requires an adequate supply of nitrogen. However, Lake Chitu is a closed system without any external nutrient input. A recent study has also demonstrated the presence of a diverse group of denitrifying bacteria, indicating a possible loss of nitrate released from the oxidation of organic matter. The aim of this study was to isolate culturable nitrogen-fixing alkaliphiles and evaluate their potential contribution in the nitrogen economy of the soda lake. A total of 118 alkaliphiles belonging to nine different operational taxonomic units (OTUs) were isolated using a nitrogen-free medium. Nineteen isolates were tested for the presence of the nifH gene, and 11 were positive. The ability to fix nitrogen was tested by co-culturing with a non-nitrogen-fixing alkaliphile, Alkalibacterium sp. 3.5*R1. When inoculated alone, Alkalibacterium sp. 3.5*R1 failed to grow on a nitrogen-free medium, but grew very well when co-cultured with the nitrogen-fixing alkaliphile NF10m6 isolated in this study, indicating the availability of nitrogen. These results show that nitrogen fixation by alkaliphiles may have an important contribution as a source of nitrogen in soda lakes. Full article
(This article belongs to the Special Issue Bacterial Functions in Carbon, Nitrogen, and Sulfur Cycles)
Show Figures

Figure 1

27 pages, 6498 KiB  
Article
Prediction at Ungauged Catchments through Parameter Optimization and Uncertainty Estimation to Quantify the Regional Water Balance of the Ethiopian Rift Valley Lake Basin
by Tesfalem Abraham, Yan Liu, Sirak Tekleab and Andreas Hartmann
Hydrology 2022, 9(8), 150; https://doi.org/10.3390/hydrology9080150 - 19 Aug 2022
Cited by 12 | Viewed by 3598
Abstract
Quantifying uncertainties in water resource prediction in data-scarce regions is essential for resource development. We use globally available datasets of precipitation and potential evapotranspiration for the regionalization of model parameters in the data-scarce regions of Ethiopia. A regional model was developed based on [...] Read more.
Quantifying uncertainties in water resource prediction in data-scarce regions is essential for resource development. We use globally available datasets of precipitation and potential evapotranspiration for the regionalization of model parameters in the data-scarce regions of Ethiopia. A regional model was developed based on 14 gauged catchments. Three possible parameter sets were tested for regionalization: (1) the best calibration parameters, (2) the best validation parameter set derived from behavioral parameters during the validation period, and (3) the stable parameter sets. Weighted multiple linear regression was applied by assigning more weight to identifiable parameters, using a novel leave-one-out cross-validation technique for evaluation and uncertainty quantification. The regionalized parameter sets were applied to the remaining 35 ungauged catchments in the Ethiopian Rift Valley Lake Basin (RVLB) to provide regional water balance estimations. The monthly calibration of the gauged catchments resulted in Nash Sutcliffe Efficiencies (NSE) ranging from 0.53 to 0.86. The regionalization approach provides acceptable regional model performances with a median NSE of 0.63. The results showed that, other than the commonly used best-calibrated parameters, the stable parameter sets provide the most robust estimates of regionalized parameters. As this approach is model-independent and the input data used are available globally, it can be applied to any other data-scarce region. Full article
Show Figures

Figure 1

25 pages, 4241 KiB  
Article
Rotifer Species Richness in Kenyan Waterbodies: Contributions of Environmental Characteristics
by Radoslav Smolak and Elizabeth J. Walsh
Diversity 2022, 14(7), 583; https://doi.org/10.3390/d14070583 - 21 Jul 2022
Cited by 8 | Viewed by 3624
Abstract
The aquatic microfauna of Africa is poorly characterized, especially in the case of planktonic rotifers inhabiting waterbodies other than large lakes. In addition, little is known about factors that structure these communities. Here, we assessed the roles of climatic region, habitat type, macrophyte [...] Read more.
The aquatic microfauna of Africa is poorly characterized, especially in the case of planktonic rotifers inhabiting waterbodies other than large lakes. In addition, little is known about factors that structure these communities. Here, we assessed the roles of climatic region, habitat type, macrophyte abundance, and a suite of abiotic environmental factors in determining rotifer species’ richness and composition in waterbodies located across a 2300 m altitudinal gradient in Kenya. Plankton samples were obtained from 33 sites in 23 waterbodies. From these, 93 rotifer taxa were identified from 18 families comprising 31 genera. About one fourth (25 taxa) were new records for Kenya, from which 4 species were new for Africa. Species richness was the highest in permanent as compared to temporary habitats. Richness was strongly positively correlated with all environmental factors and strongly influenced by macrophyte abundance. When spatial structure was added to the GLM model, species richness was no longer significantly correlated with macrophytes. Unconstrained detrended correspondence analysis conducted at the species level indicated four suites of species associated with either (1) longitude, (2) elevation, (3) latitude, temperature, and hydroperiod, or (4) macrophytes. This study contributes to our knowledge of the patterns of rotifer biogeography and species richness in Africa. Full article
(This article belongs to the Special Issue Biodiversity of Rotifers)
Show Figures

Figure 1

25 pages, 5516 KiB  
Article
Estimating Point and Nonpoint Source Pollutant Flux by Integrating Various Models, a Case Study of the Lake Hawassa Watershed in Ethiopia’s Rift Valley Basin
by Semaria Moga Lencha, Mihret Dananto Ulsido and Jens Tränckner
Water 2022, 14(10), 1569; https://doi.org/10.3390/w14101569 - 13 May 2022
Cited by 7 | Viewed by 4285
Abstract
Increasing pollutant emissions in the Lake Hawassa watershed (LHW) has led to a severe water quality deterioration. Allocation and quantification of responsible pollutant fluxes are suffering from scarce data. In this study, a combination of various models with monitoring data has been applied [...] Read more.
Increasing pollutant emissions in the Lake Hawassa watershed (LHW) has led to a severe water quality deterioration. Allocation and quantification of responsible pollutant fluxes are suffering from scarce data. In this study, a combination of various models with monitoring data has been applied to determine the fluxes for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), Total Dissolved Solid (TDS), Total Nitrogen (TN), Nitrate and Nitrite-nitrogen (NOx-N), Total Phosphorous (TP) and phosphate (PO4-P). Water, wastewater and stormwater samples were collected and analyzed at eight monitoring stations from rivers and point sources and six monitoring stations of stormwater samples. The flow simulated with soil and water assessment tool (SWAT) could be very well calibrated and validated with gauge data. This flow from SWAT model, measured flow during monitoring and pollutant concentrations were used in FLUX32 to estimate pollutant fluxes of main rivers and point sources in LHW. The formulas provided by Ethiopian Roads Authority and Gumbel’s theory of rainfall frequency analysis was employed to determine the 2-years return period rainfall depth for the City of Hawassa. The integration of HEC-GeoHMS and SCS-CN with the catchment area enabled to determine stormwater pollution load of Hawassa City. The estimated pollutant flux at each monitoring stations showed that the pollutant contribution from the point and nonpoint sources prevailing in the study area, where the maximum fluxes were observed at Tikur-Wuha sub-catchments. This station was located downstream of the two point sources and received flow from the upper streams where agricultural use is predominant. Furthermore, Hawassa city has been identified as a key pollutant load driver, owing to increased impacts from clearly identified point sources and stormwater pollutant flux from major outfalls. Agricultural activities, on the other hand, covers a large portion of the catchment and contributes significant amount to the overall load that reaches the lake. Thus, mitigation measures that are focused on pollutant flux reduction to the lake Hawassa have to target on the urban and agricultural activities. Full article
(This article belongs to the Special Issue Water Quality Modeling and Monitoring)
Show Figures

Figure 1

19 pages, 2589 KiB  
Article
Assessing the Water-Resources Potential and Soil Erosion Hotspot Areas for Sustainable Land Management in the Gidabo Watershed, Rift Valley Lake Basin of Ethiopia
by Mihret Dananto, Alemu O. Aga, Petros Yohannes and Lamiso Shura
Sustainability 2022, 14(9), 5262; https://doi.org/10.3390/su14095262 - 27 Apr 2022
Cited by 19 | Viewed by 4220
Abstract
For development of a comprehensive sediment management plan, it is crucial to categorize watersheds on the basis of soil erosion hotspot areas to extend the useful life of water bodies (e.g., Gidam reservoir). The goal of this study was to assess the surface [...] Read more.
For development of a comprehensive sediment management plan, it is crucial to categorize watersheds on the basis of soil erosion hotspot areas to extend the useful life of water bodies (e.g., Gidam reservoir). The goal of this study was to assess the surface water potential and identify erosion hotspot areas of the Gidabo watershed in Ethiopia using the Soil and Water Assessment Tool (SWAT) model. The SUFI-2 (Sequential Uncertainty Fitting Version 2) program was used to calibrate the model, and the model’s performance was evaluated. According to the catchment prioritization analysis, some of the sub-basins with similar land use, land cover, and soil type but with higher slope would generate higher sediment yield. Furthermore, the soil conservation scenarios were developed in SWAT, and the model result showed that average annual sediment yield could be reduced by the application of grassed waterway, filter strips, terracing, and contouring by 49%, 37.53%, 62.32%, and 54.6% respectively. It was concluded that sediment yield reduction by applying terracing was more effective than other conservation measures for affected sub-basins. The surface water potential of the watershed varies spatially from sub-basin to sub-basin, and the mean monthly surface water potential of the watershed is 33 million cubic meters. These findings can help decision-makers to develop appropriate strategies to minimize the erosion rate from erosion hotspot areas and to allocate the watershed water potential for different types of water demands. Strip planting, terracing, or contour farming may be necessary on chosen hotspot erosion sites to reduce the effect of slopes on surface runoff flow velocity and sediment transport capacity. Full article
Show Figures

Figure 1

Back to TopTop