Rotifer Species Richness in Kenyan Waterbodies: Contributions of Environmental Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. QB/T and QB/L Quotients
2.4. Statistical Analyses
3. Results
3.1. QB/T and QB/L Quotients
3.2. Water Chemistry Parameters
3.3. Species Richness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daufresne, M.; Lengfellner, K.; Sommer, U. Global Warming Benefits the Small in Aquatic Ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12788–12793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heino, J. A Macroecological Perspective of Diversity Patterns in the Freshwater Realm. Freshw. Biol. 2011, 56, 1703–1722. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity Redistribution under Climate Change: Impacts on Ecosystems and Human Well-Being. Science 2017, 355. [Google Scholar] [CrossRef] [PubMed]
- Chase, J.M.; McGill, B.J.; Thompson, P.L.; Antão, L.H.; Bates, A.E.; Blowes, S.A.; Dornelas, M.; Gonzalez, A.; Magurran, A.E.; Supp, S.R.; et al. Species Richness Change across Spatial Scales. Oikos 2019, 128, 1079–1091. [Google Scholar] [CrossRef] [Green Version]
- De Ridder, M. Additions to the “Annotated Checklist of Nonmarine Rotifers from African Inland Waters”. Rev. Hydrobiol. Trop. 1991, 24, 25–46. [Google Scholar]
- Fontaneto, D.; Barbosa, A.M.; Segers, H.; Pautasso, M. The ‘Rotiferologist’ Effect and Other Global Correlates of Species Richness in Monogonont Rotifers. Ecography 2012, 35, 174–182. [Google Scholar] [CrossRef]
- Dumont, H.J. Biogeography of Rotifers. Hydrobiologia 1983, 104, 19–30. [Google Scholar] [CrossRef]
- Segers, H.; De Smet, W.H. Diversity and Endemism in Rotifera: A Review, and Keratella Bory de St Vincent. In Protist Diversity and Geographical Distribution; Springer: Dordrecht, The Netherlands, 2007; pp. 69–82. ISBN 9789048128006. [Google Scholar]
- Ejsmont-Karabin, J. Does the World Need Faunists? Based on Rotifer (Rotifera) Occurrence Reflections on the Role of Faunistic Research in Ecology. Int. Rev. Hydrobiol. 2019, 104, 49–56. [Google Scholar] [CrossRef]
- Segers, H. Global Diversity of Rotifers (Rotifera) in Freshwater. In Freshwater Animal Diversity Assessment; Balian, E.V., Lévêque, C., Segers, H., Martens, K., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 49–59. ISBN 9781402082597. [Google Scholar]
- Luo, Y.; Segers, H. Eight New Lepadellidae (Rotifera, Monogononta) from the Congo Bring to Level Endemism in Africa’s Rotifers. Zootaxa 2020, 4731, 371–387. [Google Scholar] [CrossRef]
- Ahlstrom, E.H. A Revision of the Rotatorian Genera Brachionus and Platyias, with Descriptions of One New Species and Two New Varieties. Bulletin of the AMNH; v. 77, Article 3; Bulletin of The American Museum of Natural History: New York, NY, USA, 1940; pp. 143–184. [Google Scholar]
- Ahlstrom, E.H. A Revision of the Rotatorian Genus Keratella, with Descriptions of Three New Species and Five New Varieties. Bulletin of the AMNH; v. 80, Article 12; Bulletin of The American Museum of Natural History: New York, NY, USA, 1943; pp. 411–457. [Google Scholar]
- Pejler, B. On the Rotifer Plankton of Some East African Lakes. Hydrobiologia 1974, 44, 389–396. [Google Scholar] [CrossRef]
- Nogrady, T. Succession of Planktonic Rotifer Populations in Some Lakes of the Eastern Rift Valley, Kenya. Hydrobiologia 1983, 98, 45–54. [Google Scholar] [CrossRef]
- Green, J. Keratella Cochlearis (Gosse) in Africa. In Proceedings of the Fourth Rotifer Symposium; May, L., Wallace, R., Herzig, A., Eds.; Springer: Dordrecht, The Netherlands, 1987; pp. 3–8. [Google Scholar]
- Uku, J.N.; Mavuti, K.M. Comparative Limnology, Species Diversity and Biomass Relationship of Zooplankton and Phytoplankton in Five Freshwater Lakes in Kenya. Hydrobiologia 1994, 272, 251–258. [Google Scholar] [CrossRef]
- Gophen, M.; Ochumba, P.B.O.; Kaufman, L.S. Some Aspects of Perturbation in the Structure and Biodiversity of the Ecosystem of Lake Victoria (East Africa). Aquat. Living Resour. 1995, 8, 27–41. [Google Scholar] [CrossRef]
- Mavuti, K.M. Ecology and Role of Zooplankton in the Fishery of Lake Naivasha. Hydrobiologia 1990, 208, 131–140. [Google Scholar] [CrossRef]
- Segers, H.; Mbogo, D.K.; Dumont, H.J. New Rotifera from Kenya, with a Revision of the Ituridae. Zool. J. Linn. Soc. 1994, 110, 193–206. [Google Scholar] [CrossRef]
- Masai, D.M.; Omondi, R.; Owili, M. Systematics and Distribution of Zooplankton in Lake Victoria Basin, Kenya. In Proceedings of the 11th World Lakes Conference, Nairobi, Kenya, 31 October–11 November 2005; Odada, E., Olago, D.O., Eds.; Aqua Docs: Nairobi, Kenya, 2006; Volume 2, pp. 230–235. [Google Scholar]
- Omondi, R.; Yasindi, A.W.; Magana, A.M. Diel Vertical Distribution of Zooplankton in Lake Baringo, Kenya. JLS 2014, 8, 447–460. [Google Scholar]
- Omondi, R.; Yasindi, A.W.; Magana, A. Spatial and Temporal Variations of Zooplankton in Relation to Some Environmental Factors in Lake Baringo, Kenya. Egerton J. Sci. Technol. 2015, 11. [Google Scholar]
- Oyoo-Okoth, E.; Muchiri, M.; Ngugi, C.C.; Njenga, E.W.; Ngure, V.; Orina, P.S.; Chemoiwa, E.C.; Wanjohi, B.K. Zooplankton Partitioning in a Tropical Alkaline–Saline Endorheic Lake Nakuru, Kenya: Spatial and Temporal Trends in Relation to the Environment. Lakes Reserv. 2011, 16, 35–47. [Google Scholar] [CrossRef]
- Wallace, R.L.; Walsh, E.J.; Arroyo, M.L.; Starkweather, P.L. Life on the Edge: Rotifers From Springs and Ephemeral Waters in the Chihuahuan Desert, Big Bend National Park (Texas, USA). Hydrobiologia 2005, 546, 147–157. [Google Scholar] [CrossRef]
- Vale, C.G.; Pimm, S.L.; Brito, J.C. Overlooked Mountain Rock Pools in Deserts Are Critical Local Hotspots of Biodiversity. PLoS One 2015, 10, e0118367. [Google Scholar] [CrossRef]
- Olmo, C.; Armengol, X.; Ortells, R. Re-Establishment of Zooplankton Communities in Temporary Ponds after Autumn Flooding: Does Restoration Age Matter? Limnologica 2012, 42, 310–319. [Google Scholar] [CrossRef]
- Smolak, R. What Do Forest Wells and Temporary Puddles Hide? Nat. Sci. Biol.-Ecol. 2013, 17, 36–41. [Google Scholar]
- Obona, J.; Demkova, L.; Smolak, R.; Dominiak, P.; Scerbakova, S. Invertebrates in Overlooked Aquatic Ecosystem in the Middle of the Town. Period. Biol. 2017, 119. [Google Scholar] [CrossRef]
- Thiéry, A. Multispecies Coexistence of Branchiopods (Anostraca, Notostraca & Spinicaudata) in Temporary Ponds of Chaouia Plain (Western Morocco): Sympatry or Syntopy between Usually Allopatric Species. In Developments in Hydrobiology: Studies on Large Branchiopod Biology and Aquaculture; Springer: Dordrecht, The Netherlands, 1991; pp. 117–136. ISBN 9789401054881. [Google Scholar]
- Williams, D.D. Temporary Ponds and Their Invertebrate Communities. Aquat. Conserv. Mar. Freshw. Ecosyst. 1997, 7, 105–117. [Google Scholar] [CrossRef]
- Bayly, I.A.E. Invertebrate Occurrence and Succession after Episodic Flooding of a Central Australian Rock-Hole. J. R. Soc. West. Aust. 2001, 84, 29–32. [Google Scholar]
- Jocqué, M.; Martens, K.; Riddoch, B.; Brendonck, L. Faunistics of Ephemeral Rock Pools in Southeastern Botswana. Arch. Hydrobiol. 2006, 165, 415–431. [Google Scholar] [CrossRef]
- Walsh, E.J.; Smith, H.A.; Wallace, R.L. Rotifers of Temporary Waters. Int. Rev. Hydrobiol. 2014, 99, 3–19. [Google Scholar] [CrossRef]
- Sharma, B.K. Rotifer Communities of Deepor Beel, Assam, India: Richness, Abundance and Ecology. J. Threat. Taxa 2010, 2, 1077–1086. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.K. Zooplankton Diversity of Two Floodplain Lakes (Pats) of Manipur, Northeast India. Opusc. Zool. Bp. 2011, 42, 185–197. [Google Scholar]
- Sharma, B.K.; Sharma, S. Faunal Diversity of Rotifers (Rotifera: Eurotatoria) of Nokrek Biosphere Reserve, Meghalaya, India. J. Threat. Taxa 2011, 3, 1535–1541. [Google Scholar] [CrossRef] [Green Version]
- Fontaneto, D. Long-Distance Passive Dispersal in Microscopic Aquatic Animals. Mov. Ecol. 2019, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, P.J.; Greenwood, M.T.; Agnew, M.D. Pond Biodiversity and Habitat Loss in the UK. Area 2003, 35, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Straubinger-Gansberger, N.; Kaggwa, M.N.; Schagerl, M. Phytoplankton Patterns along a Series of Small Man-Made Reservoirs in Kenya. Environ. Monit. Assess. 2014, 186, 5153–5166. [Google Scholar] [CrossRef] [PubMed]
- Brendonck, L.; Lanfranco, S.; Timms, B.; Vanschoenwinkel, B. Invertebrates in Rock Pools. In Invertebrates in Freshwater Wetlands; Batzer, D., Boix, D., Eds.; Springer Nature: Cham, Switzerland, 2016; pp. 25–53. [Google Scholar]
- Aka, M.; Pagano, M.; Saint-Jean, L.; Arfi, R.; Bouvy, M.; Cecchi, P.; Corbin, D.; Thomas, S. Zooplankton Variability in 49 Shallow Tropical Reservoirs of Ivory Coast (West Africa). Internat. Rev. Hydrobiol. 2000, 85, 491–504. [Google Scholar] [CrossRef]
- Edema, C.U.; Ayeni, J.O.; Aruoture, A. Some Observations on the Zooplankton and Macrobenthos of the Okhuo River, Nigeria. J. Aquat. Sci. 2002, 17, 145–149. [Google Scholar] [CrossRef]
- Mustapha, M.K. Zooplankton Assemblage of Oyun Reservoir, Offa, Nigeria. Rev. Biol. Trop. 2009, 57, 1027–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okogwu, O.I. Seasonal Variations of Species Composition and Abundance of Zooplankton in Ehoma Lake, a Floodplain Lake in Nigeria. Rev. Biol. Trop. 2010, 58, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahr, J. An Ecological Assessment of the Hazard of Eight Insecticides Used in Desert Locust Control, to Invertebrates in Temporary Ponds in the Sahel. Aquat. Ecol. 1998, 32, 153–162. [Google Scholar] [CrossRef]
- Osore, M.K.W. Zooplankton of the Kenya Coast: Ecology and Systematics. Ph.D. Thesis, Vrije Universiteit Brussel, Brussel, Belgium, 2003. [Google Scholar]
- Riato, L.; Van Ginkel, C.; Taylor, J.C. Zooplankton and Diatoms of Temporary and Permanent Freshwater Pans in the Mpumalanga Highveld Region, South Africa. Afr. Zool. 2014, 49, 113–127. [Google Scholar] [CrossRef]
- Dalu, T.; Weyl, O.L.F.; Froneman, P.W.; Wasserman, R.J. Trophic Interactions in an Austral Temperate Ephemeral Pond Inferred Using Stable Isotope Analysis. Hydrobiologia 2016, 768, 81–94. [Google Scholar] [CrossRef]
- Stoch, F.; Korn, M.; Turki, S.; Naselli-Flores, L.; Marrone, F. The Role of Spatial Environmental Factors as Determinants of Large Branchiopod Distribution in Tunisian Temporary Ponds. Hydrobiologia 2016, 782, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Bird, M.S.; Mlambo, M.C.; Wasserman, R.J.; Dalu, T.; Holland, A.J.; Day, J.A.; Villet, M.H.; Bilton, D.T.; Barber-James, H.M.; Brendonck, L. Deeper Knowledge of Shallow Waters: Reviewing the Invertebrate Fauna of Southern African Temporary Wetlands. Hydrobiologia 2019, 827, 89–121. [Google Scholar] [CrossRef]
- Anusa, A.; Ndagurwa, H.G.T.; Magadza, C.H.D. The Influence of Pool Size on Species Diversity and Water Chemistry in Temporary Rock Pools on Domboshawa Mountain, Northern Zimbabwe. Afr. J. Aquat. Sci. 2012, 37, 89–99. [Google Scholar] [CrossRef]
- Wallace, R.L.; Snell, T.W.; Ricci, C.; Nogrady, T. Rotifera 1: Biology, Ecology and Systematics, 2nd ed.; Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; Segers, H., Ed.; 23; Backhuys Publishers: Leiden, The Netherlands, 2006; Volume 1, ISBN 9789057821783. [Google Scholar]
- Allan, J.D. Life History Patterns in Zooplankton. Am. Nat. 1976, 110, 165–180. [Google Scholar] [CrossRef]
- Wallace, R.L.; Snell, T.W.; Smith, H.A. Chapter 13—Phylum Rotifera. In Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Thorp, J.H., Covich, A.P., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 225–271. [Google Scholar]
- Moore, M.; Folt, C. Zooplankton Body Size and Community Structure: Effects of Thermal and Toxicant Stress. Trends Ecol. Evol. 1993, 8, 178–183. [Google Scholar] [CrossRef]
- Špoljar, M.; Dražina, T.; Šargač, J.; Borojević, K.K.; Žutinić, P. Submerged Macrophytes as a Habitat for Zooplankton Development in Two Reservoirs of a Flow-through System (Papuk Nature Park, Croatia). Ann. Limnol.-Int. J. Lim. 2012, 48, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Pejler, B.; Bērziņš, B. On Relation to Substrate in Sessile Rotifers. Hydrobiologia 1993, 259, 121–124. [Google Scholar] [CrossRef]
- Branco, C.W.C.; Rocha, M.-I.A.; Pinto, G.F.S.; Gômara, G.A.; Filippo, R.D. Limnological Features of Funil Reservoir (R.J., Brazil) and Indicator Properties of Rotifers and Cladocerans of the Zooplankton Community. Lakes Reserv. 2002, 7, 87–92. [Google Scholar] [CrossRef]
- Bini, L.M.; Galli Vieira, L.C.; Machado, J.; Machado Velho, L.F. Concordance of Species Composition Patterns among Microcrustaceans, Rotifers and Testate Amoebae in a Shallow Pond. Int. Rev. Hydrobiol. 2007, 92, 9–22. [Google Scholar] [CrossRef]
- Angeler, D.G.; Alvarez-Cobelas, M.; Sánchez-Carrillo, S. Evaluating Environmental Conditions of a Temporary Pond Complex Using Rotifer Emergence from Dry Soils. Ecol. Indic. 2010, 10, 545–549. [Google Scholar] [CrossRef]
- Stefanidis, K.; Papastergiadou, E. Influence of Hydrophyte Abundance on the Spatial Distribution of Zooplankton in Selected Lakes in Greece. Hydrobiologia 2010, 656, 55–65. [Google Scholar] [CrossRef]
- Ferreira, M.; Wepener, V.; Van Vuren, J.H.J. Aquatic Invertebrate Communities of Perennial Pans in Mpumalanga, South Africa: A Diversity and Functional Approach. Afr. Invertebr. 2012, 53, 751–768. [Google Scholar] [CrossRef]
- Gürbüzer, P.; Buyurgan, Ö.; Tekatli, Ç.; Altindağ, A. Species Diversity and Community Structure of Zooplankton in Three Different Types of Water Body within the Sakarya River Basin, Turkey. Turk. J. Zool. 2017, 41, 848–859. [Google Scholar] [CrossRef]
- Bērziņš, B.; Pejler, B. Rotifer Occurrence in Relation to Oxygen Content. Hydrobiologia 1989, 183, 165–172. [Google Scholar] [CrossRef]
- Armengol, X.; Esparcia, A.; Miracle, M.R. Rotifer Vertical Distribution in a Strongly Stratified Lake: A Multivariate Analysis. In Proceedings of the Rotifera VIII: A Comparative Approach; Wurdak, E., Wallace, R., Segers, H., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 161–170. [Google Scholar]
- Walsh, E.J.; Schröder, T.; Wallace, R.L.; Ríos-Arana, J.V.; Rico-Martínez, R. Rotifers from Selected Inland Saline Waters in the Chihuahuan Desert of México. Aquat. Biosyst. 2008, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, M.; Fontaneto, D.; Segers, H.; Altindağ, A. Temperature and Salinity as Interacting Drivers of Species Richness of Planktonic Rotifers in Turkish Continental Waters. J. Limnol. 2010, 69, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Hessen, D.O.; Andersen, T.; Faafeng, B.A. Replacement of Herbivore Zooplankton Species along Gradients of Ecosystem Productivity and Fish Predation Pressure. Can. J. Fish. Aquat. Sci. 1995, 52, 733–742. [Google Scholar] [CrossRef]
- Pinel-Alloul, B.; Niyonsenga, T.; Legendre, P.; Gril, G. Spatial and Environmental Components of Freshwater Zooplankton Structure. Écoscience 1995, 2, 1–19. [Google Scholar] [CrossRef]
- Anton-Pardo, M.; Ortega, J.C.G.; Melo, A.S.; Bini, L.M. Global Meta-Analysis Reveals That Invertebrate Diversity Is Higher in Permanent than in Temporary Lentic Water Bodies. Freshw. Biol. 2019, 64, 2234–2246. [Google Scholar] [CrossRef]
- Sahuquillo, M.; Miracle, M.R. Crustacean and Rotifer Seasonality in a Mediterranean Temporary Pond with High Biodiversity (Lavajo de Abajo de Sinarcas, Eastern Spain). Limnetica 2010, 29, 75–92. [Google Scholar] [CrossRef]
- Habdija, I.; Primc-Habdija, B.; Špoljar, M.; Perić, M.S. Ecological Determinants of Rotifer Vertical Distribution in a Coastal Karst Lake (Vrana Lake, Cres Island, Croatia). Biologia 2011, 66, 130–137. [Google Scholar] [CrossRef]
- Basińska, A.M.; Świdnicki, K.; Kuczyńska-Kippen, N. Effect of Surrounding Trees and Dry Rush Presence on Spring Zooplankton Community in an Urban Pond Complex. Ann. Limnol.-Int. J. Lim. 2014, 50, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Meksuwan, P.; Pholpunthin, P.; Walsh, E.J.; Segers, H.; Wallace, R.L. Nestedness in Sessile and Periphytic Rotifer Communities: A Meta-Analysis. Int. Rev. Hydrobiol. 2014, 99, 48–57. [Google Scholar] [CrossRef]
- Gabaldón, C.; Devetter, M.; Hejzlar, J.; Šimek, K.; Znachor, P.; Nedoma, J.; Seďa, J. Seasonal Strengths of the Abiotic and Biotic Drivers of a Zooplankton Community. Freshw. Biol. 2019, 64, 1326–1341. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.; Pronin, M. Diversity and Zooplankton Species Associated with Certain Hydroperiods and Fish State in Field Ponds. Ecol. Indic. 2018, 90, 171–178. [Google Scholar] [CrossRef]
- Zimmermann-Timm, H.; Holst, H.; Kausch, H. Spatial Dynamics of Rotifers in a Large Lowland River, the Elbe, Germany: How Important Are Retentive Shoreline Habitats for the Plankton Community? Hydrobiologia 2007, 593, 49–58. [Google Scholar] [CrossRef]
- Malekzadeh Viayeh, R.; Špoljar, M. Structure of Rotifer Assemblages in Shallow Waterbodies of Semi-Arid Northwest Iran Differing in Salinity and Vegetation Cover. Hydrobiologia 2012, 686, 73–89. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.; Joniak, T. Zooplankton Diversity and Macrophyte Biometry in Shallow Water Bodies of Various Trophic State. Hydrobiologia 2016, 774, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Castro, B.B.; Antunes, S.C.; Pereira, R.; Soares, A.M.V.M.; Gonçalves, F. Rotifer Community Structure in Three Shallow Lakes: Seasonal Fluctuations and Explanatory Factors. Hydrobiologia 2005, 543, 221–232. [Google Scholar] [CrossRef]
- Kuczynska-Kippen, N. The Species Diversity of Rotifers (Rotifera) of Differentiated Macrophyte Habitats of Lake Budzynskie. Rocz. Ak. Rol. Poz. Bot.-Steciana 2005, 9, 171–176. [Google Scholar]
- Basu, B.K.; Kalff, J.; Pinel-Alloul, B. The Influence of Macrophyte Beds on Plankton Communities and Their Export from Fluvial Lakes in the St Lawrence River. Freshw. Biol. 2000, 45, 373–382. [Google Scholar] [CrossRef]
- Walsh, E.J. Habitat-Specific Predation Susceptibilities of a Littoral Rotifer to Two Invertebrate Predators. Hydrobiologia 1995, 313, 205–211. [Google Scholar] [CrossRef]
- Enríquez García, C.; Nandini, S.; Sarma, S.S.S. Seasonal Dynamics of Zooplankton in Lake Huetzalin, Xochimilco (Mexico City, Mexico). Limnologica 2009, 39, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4, International Centre for Tropical Agriculture (CIAT). Available online: https://ci.nii.ac.jp/naid/10027883137/ (accessed on 15 December 2021).
- Ojwang, W.O.; Obiero, K.O.; Donde, O.O.; Gownaris, N.; Pikitch, E.K.; Omondi, R.; Agembe, S.; Malala, J.; Avery, S.T. Lake Turkana: World’s Largest Permanent Desert Lake (Kenya); Springer: Heidelberg, Germany, 2016; Volume 1, ISBN 9789400761735. [Google Scholar]
- Segers, H. Rotifera 2: The Lecanidae (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; Nogrady, T., Ed.; 6; SPB Academic Publishing: The Hague, The Netherlands, 1995; Volume 2, ISBN 9789051030914. [Google Scholar]
- De Smet, W.H. Rotifera 4: The Proalidae (Monogomonta). Guides to the Identifications of Microinvertebrates of the Continental Continental Waters of the World; Nogrady, T., Ed.; 9; SPB Academic Publishing: The Hague, The Netherlands, 1996; Volume 4, ISBN 9789051031195. [Google Scholar]
- Nogrady, T.; Pourriot, R.; Segers, H. Rotifera 3: The Notommatidae (Monogononta) and the Scaridiidae (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; Nogrady, T., Ed.; 8; SPB Academic Publishing: The Hague, The Netherlands, 1995; Volume 3, ISBN 9789051031034. [Google Scholar]
- De Smet, W.H.; Pourriot, R. Rotifera 5: The Dicranophoridae (Monogononta) and The Ituridae (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; Nogrardy, T., Ed.; 12; SPB Academic Publishing: The Hague, The Netherlands, 1997; Volume 5, ISBN 9789051031355. [Google Scholar]
- Segers, H. Rotifera 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; Nogrady, T., Ed.; 18; Backhuys Publishers: Leiden, The Netherlands, 2002; Volume 6, ISBN 9780009282447. [Google Scholar]
- Ruttner-Kolisko, A. Plankton Rotifers: Biology and Taxonomy; Stuttgarut E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1974; Volume 26, p. 146. [Google Scholar]
- Koste, W. Die Radertiere Mitteleuropas I; Borntraeger, Gebruder: Berlin and Stuttgart, Germany, 1978; Volume 1, p. 673. [Google Scholar]
- Jersabek, C.D.; De Smet, W.H.; Hinz, C.; Fontaneto, D.; Hussey, C.G.; Michaloudi, E.; Wallace, R.L.; Segers, H. List of Available Names in Zoology, Candidate Part Phylum Rotifera, Species-Group Names Established before 1 January 2000. Available online: https://archive.org/details/LANCandidatePartSpeciesRotifera (accessed on 22 September 2021).
- Sládeček, V. Rotifers as Indicators of Water Quality. Hydrobiologia 1983, 100, 169–201. [Google Scholar] [CrossRef]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5; Cambridge University Press: New York, NY, USA, 2014; p. 361. ISBN 9781107694408. [Google Scholar]
- Mills, S.; Alcántara-Rodríguez, J.A.; Ciros-Pérez, J.; Gómez, A.; Hagiwara, A.; Galindo, K.H.; Jersabek, C.D.; Malekzadeh-Viayeh, R.; Leasi, F.; Lee, J.-S.; et al. Fifteen Species in One: Deciphering the Brachionus Plicatilis Species Complex (Rotifera, Monogononta) through DNA Taxonomy. Hydrobiologia 2017, 796, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Avery, S.T. What Future for Lake Turkana? The Impact of Hydropower and Irrigation Development on the World’s Large Desert Lake; African Studies Centre, University of Oxford: Oxford, UK, 2013; p. 64. [Google Scholar]
- Kiama, C.W.; Njire, M.M.; Kambura, A.K.; Mugweru, J.N.; Matiru, V.N.; Wafula, E.N.; Kagali, R.N.; Kuja, J.O. Prokaryotic Diversity and Composition within Equatorial Lakes Olbolosat and Oloiden in Kenya (Africa). Curr. Res. Microb. Sci. 2021, 2, 100066. [Google Scholar] [CrossRef]
- Seaman, M.T.; Ashton, P.J.; Williams, W.D. Inland Salt Waters of Southern Africa. Hydrobiologia 1991, 210, 75. [Google Scholar] [CrossRef]
- Williams, D.D. Introduction to Temporary Waters. In The Ecology of Temporary Waters; Williams, D.D., Ed.; 1; Croom Helm: London, UK, 1987; pp. 1–3. ISBN 9789401160841. [Google Scholar]
- Collinson, N.H.; Biggs, J.; Corfield, A.; Hodson, M.J.; Walker, D.; Whitfield, M.; Williams, P.J. Temporary and Permanent Ponds: An Assessment of the Effects of Drying out on the Conservation Value of Aquatic Macroinvertebrate Communities. Biol. Conserv. 1995, 74, 125–133. [Google Scholar] [CrossRef]
- Brucet, S.; Boix, D.; López-Flores, R.; Badosa, A.; Moreno-Amich, R.; Quintana, X.D. Zooplankton Structure and Dynamics in Permanent and Temporary Mediterranean Salt Marshes: Taxon-Based and Size-Based Approaches. Arch. Hydrobiol. 2005, 162, 535–555. [Google Scholar] [CrossRef]
- Florencio, M.; Díaz-Paniagua, C.; Serrano, L. Relationships between Hydroperiod Length, and Seasonal and Spatial Patterns of Beta-Diversity of the Microcrustacean Assemblages in Mediterranean Ponds. Hydrobiologia 2016, 774, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.B.O.; Silva, L.H.S.; Branco, C.W.C.; Huszar, V.L.M. The Roles of Environmental Conditions and Geographical Distances on the Species Turnover of the Whole Phytoplankton and Zooplankton Communities and Their Subsets in Tropical Reservoirs. Hydrobiologia 2016, 764, 171–186. [Google Scholar] [CrossRef]
- Fontaneto, D.; Ricci, C. Spatial Gradients in Species Diversity of Microscopic Animals: The Case of Bdelloid Rotifers at High Altitude. J. Biogeogr. 2006, 33, 1305–1313. [Google Scholar] [CrossRef]
- Fontaneto, D.; Ficetola, G.F.; Ambrosini, R.; Ricci, C. Patterns of Diversity in Microscopic Animals: Are They Comparable to Those in Protists or in Larger Animals? Glob. Ecol. Biogeogr. 2006, 15, 153–162. [Google Scholar] [CrossRef]
- Ríos-Arana, J.V.; Agüero-Reyes, L.d.C.; Wallace, R.L.; Walsh, E.J. Limnological Characteristics and Rotifer Community Composition of Northern Mexico Chihuahuan Desert Springs. J. Arid Environ. 2019, 160, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Ejsmont-Karabin, J. The Usefulness of Zooplankton as Lake Ecosystem Indicators: Rotifer Trophic State Index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- Liang, D.; Wang, Q.; Wei, N.; Tang, C.; Sun, X.; Yang, Y. Biological Indicators of Ecological Quality in Typical Urban River-Lake Ecosystems: The Planktonic Rotifer Community and Its Response to Environmental Factors. Ecol. Indic. 2020, 112, 106127. [Google Scholar] [CrossRef]
- Harper, D.M.; Phillips, G.; Chilvers, A.; Kitaka, N.; Mavuti, K. Eutrophication Prognosis for Lake Naivasha, Kenya. Verh. Int. Ver. Theor. Angew. Limnol. 1993, 25, 861–865. [Google Scholar] [CrossRef]
- Takamura, N.; Kadono, Y.; Fukushima, M.; Nakagawa, M.; Kim, B.-H.O. Effects of Aquatic Macrophytes on Water Quality and Phytoplankton Communities in Shallow Lakes. Ecol. Res. 2003, 18, 381–395. [Google Scholar] [CrossRef]
- Habdija, I.; Radanović, I.; Maria, P.-H.B.Š. Vegetation Cover and Substrate Type as Factors Influencing the Spatial Distribution of Trichopterans along a Karstic River. Internat. Rev. Hydrobiol. 2002, 97, 423–437. [Google Scholar] [CrossRef]
- Basińska, A.; Kuczyńska-Kippen, N.; Świdnicki, K. The Body Size Distribution of Filinia Longiseta (Ehrenberg) in Different Types of Small Water Bodies in the Wielkoposka Region. Limnetica 2010, 29, 171–182. [Google Scholar] [CrossRef]
- Braghin, L.d.S.M.; Simões, N.R.; Bonecker, C.C. Hierarchical Effects of Local Factors on Zooplankton Species Diversity. Inland Waters 2016, 6, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Balkić, A.G.; Ternjej, I.; Špoljar, M. Hydrology Driven Changes in the Rotifer Trophic Structure and Implications for Food Web Interactions. Ecohydrology 2018, 11, e1917. [Google Scholar] [CrossRef]
- Fahd, K.; Arechederra, A.; Florencio, M.; León, D.; Serrano, L. Copepods and Branchiopods of Temporary Ponds in the Doñana Natural Area (SW Spain): A Four-Decade Record (1964–2007). In Pond Conservation in Europe; Springer: Dordrecht, The Netherlands, 2009; pp. 375–386. ISBN 9789048190874. [Google Scholar]
- Florencio, M.; Serrano, L.; Gómez-Rodríguez, C.; Millán, A.; Díaz-Paniagua, C. Inter- and Intra-Annual Variations of Macroinvertebrate Assemblages Are Related to the Hydroperiod in Mediterranean Temporary Ponds. In Pond Conservation in Europe. Developments in Hydrobiology 210; Oertli, B., Céréghino, R., Biggs, J., Declerck, S., Hull, A., Miracle, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 323–339. [Google Scholar]
- Serrano, L.; Fahd, K. Zooplankton Communities across a Hydroperiod Gradient of Temporary Ponds in the Donana National Park (SW Spain). Wetlands 2005, 20, 101–111. [Google Scholar] [CrossRef]
- Tavernini, S.; Mura, G.; Rossetti, G. Factors Influencing the Seasonal Phenology and Composition of Zooplankton Communities in Mountain Temporary Pools. Int. Rev. Hydrobiol. 2005, 90, 358–375. [Google Scholar] [CrossRef]
- Waterkeyn, A.; Grillas, P.; Vanschoenwinkel, B.; Brendonck, L. Invertebrate Community Patterns in Mediterranean Temporary Wetlands along Hydroperiod and Salinity Gradients. Freshw. Biol. 2008, 53, 1808–1822. [Google Scholar] [CrossRef]
- Bonecker, C.C.; Lansac-Tôha, F.A.; Rossa, D.C. Planktonic and Non-Planktonic Rotifers in Two Environments of the Upper Paraná River Floodplain, State of Mato Grosso Do Sul, Brazil. Braz. Arch. Biol. Technol. 1998, 41, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Aoyagui, A.S.M.; Bonecker, C.C. Rotifers in Different Environments of the Upper Paraná River Floodplain (Brazil): Richness, Abundance and the Relationship with Connectivity. Hydrobiologia 2004, 522, 281–290. [Google Scholar] [CrossRef]
- Bonecker, C.C.; Costa, C.L.D.; Velho, L.F.M.; Lansac-Tôha, F.A. Diversity and Abundance of the Planktonic Rotifers in Different Environments of the Upper Paraná River Floodplain (Paraná State—Mato Grosso Do Sul State, Brazil). Hydrobiologia 2005, 546, 405–414. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.; Ejsmont-Karabin, J. Rotifera of Various Aquatic Environments of Costa Rica in Reference to Central American Rotifer Fauna. Turk. J. Zool. 2020, 44, 238–247. [Google Scholar] [CrossRef]
- Neschuk, N.; Claps, M.; Gabellone, N. Planktonic Rotifers of a Saline-Lowland River: The Salado River (Argentina). Ann. Limnol.-Int. J. Lim. 2002, 38, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Lucinda, I.; Moreno, I.H.; Melão, M.G.G.; Matsumura-Tundisi, T. Rotifers in Freshwater Habitats in the Upper Tietê River Basin, São Paulo State, Brazil. Acta Limnol. Brasil. 2004, 16, 203–224. [Google Scholar]
- Ricci, C.; Melone, G. Key to the Identification of the Genera of Bdelloid Rotifers. Hydrobiologia 2000, 418, 73–80. [Google Scholar] [CrossRef]
- Stemberger, R.S.; Evans, M.S. Rotifer Seasonal Succession and Copepod Predation in Lake Michigan. J. Great Lakes Res. 1984, 10, 417–428. [Google Scholar] [CrossRef]
- Fontaneto, D.; Eckert, E.M.; Aninic, N.; Lara, E.; Mitchell, E.A.D. We Are Ready for Faunistic Surveys of Bdelloid Rotifers through DNA Barcoding: The Example of Sphagnum Bogs of the Swiss Jura Mountains. Limnetica 2019, 38, 213–225. [Google Scholar] [CrossRef]
- Fontaneto, D.; Giordani, I.; Melone, G.; Serra, M. Disentangling the Morphological Stasis in Two Rotifer Species of the Brachionus Plicatilis Species Complex. Hydrobiologia 2007, 583, 297–307. [Google Scholar] [CrossRef]
- Fontaneto, D.; Herniou, E.A.; Boschetti, C.; Caprioli, M.; Melone, G.; Ricci, C.; Barraclough, T.G. Independently Evolving Species in Asexual Bdelloid Rotifers. PLoS Biol. 2007, 5, e87. [Google Scholar] [CrossRef]
- Kordbacheh, A.; Garbalena, G.; Walsh, E.J. Population Structure and Cryptic Species in the Cosmopolitan Rotifer Euchlanis Dilatata. Zool. J. Linn. Soc. 2017, 181, 757–777. [Google Scholar] [CrossRef]
- Michaloudi, E.; Papakostas, S.; Stamou, G.; Neděla, V.; Tihlaříková, E.; Zhang, W.; Declerck, S.A.J. Reverse Taxonomy Applied to the Brachionus Calyciflorus Cryptic Species Complex: Morphometric Analysis Confirms Species Delimitations Revealed by Molecular Phylogenetic Analysis and Allows the (Re)Description of Four Species. PLoS One 2018, 13, e0203168. [Google Scholar] [CrossRef]
- Blaustein, L.; Schwartz, S.S. Why Study Ecology in Temporary Pools? Isr. J. Zool. 2001, 47, 303–312. [Google Scholar] [CrossRef]
- De Meester, L.; Declerck, S.; Stoks, R.; Louette, G.; Van De Meutter, F.; De Bie, T.; Michels, E.; Brendonck, L. Ponds and Pools as Model Systems in Conservation Biology, Ecology and Evolutionary Biology. Aquat. Conserv. 2005, 15, 715–725. [Google Scholar] [CrossRef]
- Semlitsch, R.D.; Bodie, J.R. Are Small, Isolated Wetlands Expendable? Conserv. Biol. 1998, 12, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
# | Sampling Site | Latitude | Longitude | Altitude [m a.s.l.] | Climatic reg. | Temp. [°C] | pH | O2 [%] | O2 [mg L−1] | Cond. [μS cm−1] | Sal. [g kg−1] | Habitat Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Lake Turkana—Koobi Fora north | 3°57′01.84″ N | 36°11′09.96″ E | 363 | warm desert | 25.5 | 9.32 | 54.2 | 4.29 | 3150 | 1.5 | large lake |
2 | Lake Turkana—Koobi Fora pond | 3°57′01.02″ N | 36°11′09.65″ E | 363 | warm desert | 24.5 | 9.46 | 60.04 | 4.91 | 6550 | 3.6 | puddle |
3 | Lake Turkana—Koobi Fora south | 3°56′31.85″ N | 36°11′11.54″ E | 363 | warm desert | 25.1 | 9.37 | 64.4 | 4.83 | 3350 | 1.5 | large lake |
4 | Lake Turkana—Loiyangalani | 2°50′50.88″ N | 36°42′03.43″ E | 363 | warm desert | 25.3 | 9.35 | 68.4 | 4.94 | 3660 | 1.7 | large lake |
5 | Lake Turkana—Elmolo village | 2°49′41.60″ N | 36°41′51.56″ E | 363 | warm desert | 24.6 | 9.32 | 30 | 2.38 | 3510 | 1.8 | large lake |
6 | Loiyangalani—Molo camp | 2°45′46.02″ N | 36°43′22.65″ E | 466 | warm desert | 30.0 | 8.82 | 80 | 6.83 | 849 | 0.2 | oasis |
7 | Loiyangalani—Clay puddle | 2°45′22.00″ N | 36°43′20.14″ E | 388 | warm desert | 31.2 | 9.34 | 69.8 | 5.04 | 3730 | 1.9 | puddle |
8 | Loiyangalani—Oasis H1 | 2°43′56.01″ N | 36°45′14.13″ E | 453 | warm desert | 31.8 | 8.89 | 13.1 | 0.93 | 927 | 0.2 | oasis |
9 | Loiyangalani—Oasis H2 | 2°43′48.07″ N | 36°45′27.10″ E | 466 | warm desert | 30.0 | 8.82 | 80 | 6.84 | 849 | 0.2 | oasis |
10 | Loiyangalani—Oasis H3 | 2°43′51.96″ N | 36°45′20.89″ E | 464 | warm desert | 24.3 | 7.72 | 22.2 | 1.83 | 925 | 0.2 | oasis |
11 | Loiyangalani—Oasis H4 | 2°43′55.70″ N | 36°45′18.89″ E | 458 | warm desert | 32.2 | 7.66 | 15.6 | 1.12 | 907 | 0.2 | oasis |
12 | Lake Turkana—south | 2°39′24.99″ N | 36°41′25.40″ E | 363 | warm desert | 25.1 | 9.37 | 64.4 | 4.83 | 3350 | 1.5 | large lake |
13 | Mt. Kulal—Nanta Mesi | 2°40′22.71″ N | 36°57′08.09″ E | 1881 | humid subtropical | 20.1 | 8.06 | 40.3 | 2.92 | 706 | 0 | puddle |
14 | Mt. Kulal—Lelekan | 2°40′06.94″ N | 36°56′36.23″ E | 2149 | humid subtropical | 16.6 | 7.27 | 0.9 | 0.08 | 448 | 0 | puddle |
15 | Mt. Kulal—Lolkujita | 2°38′59.17″ N | 36°55′30.13″ E | 1470 | humid subtropical | 21.1 | 7.43 | 10.3 | 0.88 | 532 | 0 | puddle |
16 | Ndoto Mts.—Darawell upstream | 1°43′08.83″ N | 37°15′56.63″ E | 1091 | tropical savanna | 25.3 | 6.68 | 8.5 | 0.63 | 178 | 0 | rock pools |
17 | Ndoto Mts.—Darawell d.stream | 1°43′21.54″ N | 37°16′43.92″ E | 881 | tropical savanna | 27.9 | 8.52 | 64.4 | 4.61 | 183 | 0 | stream basin |
18 | Nyahururu—Ahiti farm | 0°00′45.26″ S | 36°22′24.79″ E | 2352 | tropical savanna | 17.7 | 7.69 | 31.3 | 2.27 | 116 | 0 | channel |
19 | Nyahururu—Bridge Hill stream | 0°02′33.19″ S | 36°21′43.83″ E | 2366 | tropical savanna | 22.0 | 7.56 | 54.4 | 3.57 | 121 | 0 | stream basin |
20 | Nyahururu—watering hole | 0°02′42.62″ S | 36°21′42.61″ E | 2374 | tropical savanna | 20.4 | 7.08 | 0.9 | 0.06 | 136 | 0 | art. waterhole |
21 | Nyahururu—Amina | 0°03′10.55″ S | 36°21′49.96″ E | 2368 | tropical savanna | 17.5 | 7.79 | 28.1 | 2.02 | 324 | 0 | fish pond |
22 | Lake Ol’Bolossat—north | 0°03′11.99″ S | 36°25′04.60″ E | 2331 | tropical savanna | 24.8 | 7.98 | 28.5 | 2.12 | 1037 | 0.3 | large lake |
23 | Nyahururu—Kibindo reservoir | 0°07′29.08″ S | 36°22′40.58″ E | 2375 | tropical savanna | 19.2 | 8.17 | 62.6 | 4.34 | 88 | 0 | fish pond |
24 | Lake Ol’Bolossat—south | 0°03′11.99″ S | 36°25′04.60″ E | 2331 | t. Mediterranean | 24.8 | 7.98 | 29.5 | 2.15 | 1037 | 0.3 | large lake |
25 | Lake Naivasha—Kijabe camp | 0°46′27.64″ S | 36°25′07.90″ E | 1897 | t. Mediterranean | 18.0 | 8.53 | 46.3 | 3.49 | 673 | 0.1 | large lake |
26 | Lake Naivasha—metal bucket | 0°46′33.18″ S | 36°25′13.43″ E | 1904 | t. Mediterranean | 22.9 | 7.28 | 27.6 | 1.88 | 275 | 0 | metal bucket |
27 | Lake Naivasha—Nini farm #1 | 0°47′41.22″ S | 36°23′59.57″ E | 1897 | t. Mediterranean | 23.6 | 7.72 | 56.9 | 3.83 | 288 | 0 | large lake |
28 | Lake Naivasha—Nini farm #2 | 0°47′43.45″ S | 36°23′50.71″ E | 1890 | t. Mediterranean | 23.8 | 7.75 | 58.7 | 3.88 | 272 | 0 | large lake |
29 | Lake Oloiden #1 | 0°48′55.60″ S | 36°15′46.49″ E | 1893 | t. Mediterranean | 22.9 | 9.37 | 36.1 | 2.49 | 2230 | 1 | large lake |
30 | Lake Naivasha—Valley Breeze | 0°49′31.25″ S | 36°20′07.62″ E | 1901 | t. Mediterranean | 24.7 | 6.72 | 33.7 | 2.26 | 278 | 0 | large lake |
31 | Lake Oloiden #2 | 0°49′32.36″ S | 36°16′42.96″ E | 1893 | t. Mediterranean | 23.1 | 9.34 | 35.8 | 2.47 | 2282 | 1 | large lake |
32 | Lake Naivasha—Cray Fish | 0°49′44.61″ S | 36°21′10.23″ E | 1890 | t. Mediterranean | 24.6 | 7.39 | 28.4 | 2.02 | 284 | 0 | large lake |
33 | Arabuko Sokoke Forest | 3°15′46.76″ S | 39°58′31.51″ E | 45 | tropical savanna | 25.6 | 8.08 | 21.0 | 1.50 | 611 | 0 | art. waterhole |
# | Taxon | Sites Found | Occurrence [%] |
---|---|---|---|
1 | Asplanchnidae Asplanchna brightwellii Gosse, 1850 | 21, 22, 24, 28, 30, 32 | 18.2 |
2 | Bdelloidae bdelloid (unidentified) | 1, 2, 8, 10–12, 14–17, 21, 22, 26, 31, 33 | 45.5 |
3 | Brachionidae Brachionus angularis Gosse, 1851 | 2, 10, 11, 16, 21, 28–30, 32, 33 | 30.3 |
4 | Brachionus bidentatus Anderson, 1889 | 7, 21, 23, 33 | 12.1 |
5 | Brachionus budapestinensis Daday, 1885 † | 26 | 3.0 |
6 | Brachionus calyciflorus Pallas, 1766 | 7–11, 13, 21, 23, 25, 27–32 | 45.5 |
7 | Brachionus caudatus Barrois & Daday, 1894 | 22–24, 26, 27, 29–32 | 27.3 |
8 | Brachionus dimidiatus Bryce, 1931 | 1–3, 7, 8, 12 | 18.2 |
9 | Brachionus dorcas Gosse, 1851 | 7, 11 | 6.1 |
10 | Brachionus falcatus Zacharias, 1898 | 22, 23, 26 | 9.1 |
11 | Brachionus leydigii rotundus Rousselet, 1907 † | 22, 29, 31 | 9.1 |
12 | Brachionus plicatilis Müller, 1786 | 1, 2, 8, 9, 11, 12, 21, 24, 26, 33 | 30.3 |
13 | Brachionus plicatilis “(SM9) Turkana” § | 2 | 3.0 |
14 | Brachionus quadridentatus Hermann, 1783 | 1–3, 9–13, 21, 26–28, 30, 32 | 42.4 |
15 | Brachionus rotundiformis Tschugunoff, 1921 | 2 | 3.0 |
16 | Brachionus sp. | 2, 7, 11, 24-27, 30, 32 | 27.3 |
17 | Keratella cochlearis (Gosse, 1851) | 25, 26, 28, 30, 32 | 15.2 |
18 | Keratella tropica (Apstein, 1907) | 25, 26, 29–32 | 18.2 |
19 | Notholca sp. | 32 | 3.0 |
20 | Plationus patulus (Müller, 1786) | 28, 30, 33 | 9.1 |
21 | Platyias leloupi Gillard, 1967 † | 32 | 3.0 |
22 | Platyias quadricornis (Ehrenberg, 1832) | 26, 28, 30, 32 | 12.1 |
23 | Collothecidae Collotheca sp. | 23 | 3.0 |
24 | Dicranophoridae Dicranophorus grandis (Ehrenberg, 1832) † | 21, 23 | 6.1 |
25 | Encentrum sp.† | 21 | 3.0 |
26 | Kostea wockei (Koste, 1961) † | 21 | 3.0 |
27 | Euchlanidae Dipleuchlanis elegans (Wierzejski, 1893) ‡ | 11 | 3.0 |
28 | Euchlanis deflexa Gosse, 1851† | 17, 27, 28, 32 | 12.1 |
29 | Euchlanis dilatata Ehrenberg, 1832 | 8, 13, 16, 17 | 12.1 |
30 | Euchlanis sp. | 11 | 3.0 |
31 | Epiphanidae Epiphanes brachionus (Ehrenberg, 1837) | 11 | 3.0 |
32 | Epiphanes clavulata (Ehrenberg, 1832) | 33 | 3.0 |
33 | Filinidae Filinia limnetica (Zacharias, 1893) | 26, 27, 30, 32, 33 | 15.2 |
34 | Filinia novaezealandiae Shiel & Sanoamuang, 1993 † | 11, 21 | 6.1 |
35 | Filinia pejleri Hutchinson, 1964 † | 11, 23 | 6.1 |
36 | Filinia terminalis (Plate, 1886) | 8, 28, 29, 32 | 12.1 |
37 | Filinia sp. | 11, 21, 22, 29, 31–33 | 21.2 |
38 | Floscularidae Floscularia ringens (Linnaeus, 1758) † | 25, 30 | 6.1 |
39 | Limnias sp. † | 32 | 3.0 |
40 | Hexarthridae Hexarthra intermedia (Wiszniewski, 1929) † | 33 | 3.0 |
41 | Hexarthra mira (Hudson, 1871) | 25-27, 29 | 12.1 |
42 | Lecanidae Lecane bulla (Gosse, 1851) | 1, 2, 8, 10, 11, 14, 16, 17, 21–23, 27, 29–33 | 51.5 |
43 | Lecane candida Harring & Myers, 1926 † | 21 | 3.0 |
44 | Lecane closterocerca (Schmarda, 1859) | 14 | 3.0 |
45 | Lecane crepida Harring, 1914 † | 9 | 3.0 |
46 | Lecane curvicornis (Murray, 1913) | 23, 30, 32 | 9.1 |
47 | Lecane elsa Hauer, 1931 ‡ | 10, 11, 21 | 9.1 |
48 | Lecane hamata (Stokes, 1896) | 2, 3, 8, 11, 23 | 15.2 |
49 | Lecane lateralis Sharma, 1978 | 30, 32 | 6.1 |
50 | Lecane luna (Müller, 1776) | 2, 8, 10, 11, 21, 22 | 18.2 |
51 | Lecane lunaris (Ehrenberg, 1832) | 21, 29 | 6.1 |
52 | Lecane papuana (Murray, 1913) | 2, 8, 10, 11, 16, 17, 21 | 21.2 |
53 | Lecane quadridentata (Ehrenberg, 1830) † | 28, 32 | 6.1 |
54 | Lecane unguitata (Fadeev, 1925) | 30, 32 | 6.1 |
55 | Lecane ungulata (Gosse, 1887) | 23, 28, 30 | 9.1 |
56 | Lecane sp. | 1–3, 8, 12, 21, 22, 25 | 24.2 |
57 | Lepadellidae Colurella adriatica Ehrenberg, 1831 † | 8 | 3.0 |
58 | Colurella colurus (Ehrenberg, 1830) † | 26, 32 | 6.1 |
59 | Colurella obtusa (Gosse, 1886) | 1, 3, 27, 30, 32 | 15.2 |
60 | Colurella uncinata (Müller, 1773) | 16 | 3.0 |
61 | Lepadella latusinus (Hilgendorf, 1899) † | 27, 28 | 6.1 |
62 | Lepadella patella (Müller, 1773) | 30 | 3.0 |
63 | Lepadella triptera (Ehrenberg, 1832) | 30, 32 | 6.1 |
64 | Lepadella sp. | 1–3, 11, 12, 14 | 18.2 |
65 | Mytilinidae Mytilina ventralis (Ehrenberg, 1830) | 30, 32 | 6.1 |
66 | Mytilina sp. | 26 | 3.0 |
67 | Notommatidae Cephalodella forficula (Ehrenberg, 1832) ‡ | 11 | 3.0 |
68 | Cephalodella gibba (Ehrenberg, 1830)† | 30 | 3.0 |
69 | Cephalodella tenuiseta (Burn, 1890) ‡ | 25, 27, 30 | 9.1 |
70 | Cephalodella sp. | 13, 14, 30, 32 | 12.1 |
71 | Notommata sp. | 10, 11 | 6.1 |
72 | Pleurotrocha sp. | 11 | 3.0 |
73 | Philodinidae Rotaria neptunia (Ehrenberg, 1830) | 21 | 3.0 |
74 | Rotaria sp. | 26, 28, 33 | 9.1 |
75 | Proalidae Proales sp. | 7 | 3.0 |
76 | Synchaetidae Polyarthra remata Idelson, 1925 | 25-27, 30, 32 | 15.2 |
77 | Polyarthra vulgaris Carlin, 1943 | 26, 29, 30, 32 | 12.1 |
78 | Synchaeta sp. | 11,21,26,30,32 | 15.2 |
79 | Testudinellidae Testudinella parva semiparva Hauer, 1938 † | 30 | 3.0 |
80 | Testudinella patina dendradena de Beauchamp, 1955 | 25, 27, 32 | 9.1 |
81 | Testudinella patina (Hermann, 1783) | 2, 28, 32 | 9.1 |
82 | Trichocercidae Trichocerca cylindrica (Imhof, 1891) † | 26, 27, 30 | 9.1 |
83 | Trichocerca similis (Wierzejski, 1893) † | 25, 30 | 6.1 |
84 | Trichocerca sp. | 22, 24, 27–30 | 18.2 |
85 | Trichotriidae Trichotria tetractis (Ehrenberg, 1830) | 18, 28, 30 | 9.1 |
# | Taxon | LK | LOB | LN | LOD | KR |
---|---|---|---|---|---|---|
1 | Asplanchna brightwellii Gosse, 1850 | * | * | |||
2 | bdelloid (unidentified) | * | * | * | * | |
3 | Brachionus angularis Gosse, 1851 | * | * | * | ||
4 | Brachionus bidentatus Anderson, 1889 | * | ||||
5 | Brachionus budapestinensis Daday, 1885 | * | ||||
6 | Brachionus calyciflorus Pallas, 1766 | * | * | * | ||
7 | Brachionus caudatus Barrois & Daday, 1894 | * | * | * | * | |
8 | Brachionus dimidiatus Bryce, 1931 | * | ||||
9 | Brachionus falcatus Zacharias, 1898 | * | * | * | ||
10 | Brachionus leydigii rotundus Rousselet, 1907 | * | * | |||
11 | Brachionus plicatilis Müller, 1786 | * | * | * | ||
12 | Brachionus plicatilis “(SM9) Turkana” § | * | ||||
13 | Brachionus quadridentatus Hermann, 1783 | * | * | |||
14 | Brachionus sp. | * | * | * | ||
15 | Cephalodella gibba (Ehrenberg, 1830) | * | ||||
16 | Cephalodella sp. | * | ||||
17 | Cephalodella tenuiseta (Burn, 1890) | * | ||||
18 | Collotheca sp. | * | ||||
19 | Colurella colurus (Ehrenberg, 1830) | * | ||||
20 | Colurella obtusa (Gosse, 1886) | * | * | |||
21 | Dicranophorus grandis (Ehrenberg, 1832) | * | ||||
22 | Euchlanis deflexa Gosse, 1851 | * | ||||
23 | Filinia limnetica (Zacharias, 1893) | * | ||||
24 | Filinia pejleri Hutchinson, 1964 | * | ||||
25 | Filinia sp. | * | * | * | ||
26 | Filinia terminalis (Plate, 1886) | * | * | |||
27 | Floscularia ringens (Linnaeus, 1758) | * | ||||
28 | Hexarthra mira (Hudson, 1871) | * | * | |||
29 | Keratella cochlearis (Gosse, 1851) | * | ||||
30 | Keratella tropica (Apstein, 1907) | * | * | * | * | |
31 | Lecane bulla (Gosse, 1851) | * | * | * | * | * |
32 | Lecane curvicornis (Murray, 1913) | * | * | |||
33 | Lecane hamata (Stokes, 1896) | * | * | |||
34 | Lecane lateralis Sharma, 1978 | * | ||||
35 | Lecane luna (Müller, 1776) | * | * | |||
36 | Lecane lunaris (Ehrenberg, 1832) | * | ||||
37 | Lecane papuana (Murray, 1913) | * | ||||
38 | Lecane quadridentata (Ehrenberg 1830) | * | ||||
39 | Lecane sp. | * | * | * | ||
40 | Lecane unguitata (Fadeev, 1925) | * | ||||
41 | Lecane ungulata (Gosse, 1887) | * | * | |||
42 | Lepadella latusinus (Hilgendorf, 1899) | * | ||||
43 | Lepadella patella (Müller, 1773) | * | ||||
44 | Lepadella sp. | * | ||||
45 | Lepadella triptera (Ehrenberg, 1830) | * | ||||
46 | Limnias sp. | * | ||||
47 | Mytilina sp. | * | ||||
48 | Mytilina ventralis (Ehrenberg, 1830) | * | ||||
49 | Notholca sp. | * | ||||
50 | Plationus patulus (Müller, 1786) | * | ||||
51 | Platyias leloupi Gillard, 1967 | * | ||||
52 | Platyias quadricornis (Ehrenberg, 1832) | * | ||||
53 | Polyarthra remata Skorikov, 1896 | * | ||||
54 | Polyarthra vulgaris Carlin, 1943 | * | * | |||
55 | Rotaria sp. | * | ||||
56 | Synchaeta sp. | * | ||||
57 | Testudinella parva Hauer, 1938 | * | ||||
58 | Testudinella patina (Hermann, 1783) | * | * | |||
59 | Trichocerca cylindrica (Imhof, 1891) | * | ||||
60 | Trichocerca similis (Wierzejski, 1893) | * | ||||
61 | Trichocerca sp. | * | * | * | ||
62 | Trichotria tetractis (Ehrenberg, 1830) | * |
A. Coefficients | Value | Standard Error | t Value | p Value |
---|---|---|---|---|
Intercept | 7.887 | 1.765 | 4.469 | <0.001 |
macrophytes | −0.025 | 0.010 | −2.549 | 0.010 |
Habitat type 2 | −4.446 | 1.393 | −3.192 | 0.001 |
Habitat type 3 | −1.945 | 0.472 | −4.118 | <0.001 |
Habitat type 4 | −3.541 | 1.115 | −3.175 | 0.002 |
Habitat type 5 | −2.716 | 0.608 | −4.466 | <0.001 |
Habitat type 6 | −0.624 | 0.299 | −2.089 | 0.037 |
Climatic reg 2 | 3.647 | 1.256 | 2.904 | 0.004 |
Climatic reg 3 | 2.558 | 1.223 | 2.091 | <0.001 |
Climatic reg 4 | 1.773 | 0.436 | 4.070 | <0.001 |
Depth | −0.076 | 0.027 | −2.822 | 0.005 |
Temperature | 0.087 | 0.032 | 2.741 | 0.006 |
pH | −0.819 | 0.230 | −3.565 | <0.001 |
Conductivity | −0.001 | 0.001 | −2.044 | 0.041 |
B. Coefficients | Value | Standard Error | t Value | pValue |
Intercept | 80.447 | 25.948 | 3.100 | 0.017 |
Macrophytes | 0.011 | 0.152 | 0.073 | 0.944 |
Habitat type 2 | −36.671 | 16.169 | −2.268 | 0.058 |
Habitat type 3 | −14.441 | 4.670 | −3.092 | 0.018 |
Habitat type 4 | −27.741 | 12.337 | −2.249 | 0.059 |
Habitat type 5 | −28.314 | 8.597 | −3.293 | 0.013 |
Habitat type 6 | −5.719 | 4.827 | −1.185 | 0.275 |
Climatic reg 2 | 29.097 | 15.237 | 1.910 | 0.098 |
Climatic reg 3 | 19.644 | 13.833 | 1.602 | 0.200 |
Climatic reg 4 | 18.129 | 6.228 | 3.348 | 0.023 |
Depth | −0.588 | 0.295 | −1.992 | 0.087 |
Temperature | 0.881 | 0.455 | 1.938 | 0.094 |
pH | −10.125 | 3.588 | −2.821 | 0.026 |
Conductivity | −0.003 | 0.003 | −1.144 | 0.290 |
C. Coefficients | Estimate | Standard Error | t Value | p Value |
Intercept | 3.0575 | 1.2785 | 2.3914 | 0.034 |
Macrophytes | −0.02263 | 0.0081 | −2.808 | 0.016 |
Habitat type | −0.0591 | 0.06563 | −0.9005 | 0.386 |
Depth | 0.0135 | 0.0111 | 1.219 | 0.246 |
Temperature | 0.0212 | 0.0209 | 1.0137 | 0.331 |
pH | −0.1454 | 0.1699 | −0.8559 | 0.409 |
Conductivity | 0.0007 | 0.0007 | 0.9350 | 0.368 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolak, R.; Walsh, E.J. Rotifer Species Richness in Kenyan Waterbodies: Contributions of Environmental Characteristics. Diversity 2022, 14, 583. https://doi.org/10.3390/d14070583
Smolak R, Walsh EJ. Rotifer Species Richness in Kenyan Waterbodies: Contributions of Environmental Characteristics. Diversity. 2022; 14(7):583. https://doi.org/10.3390/d14070583
Chicago/Turabian StyleSmolak, Radoslav, and Elizabeth J. Walsh. 2022. "Rotifer Species Richness in Kenyan Waterbodies: Contributions of Environmental Characteristics" Diversity 14, no. 7: 583. https://doi.org/10.3390/d14070583
APA StyleSmolak, R., & Walsh, E. J. (2022). Rotifer Species Richness in Kenyan Waterbodies: Contributions of Environmental Characteristics. Diversity, 14(7), 583. https://doi.org/10.3390/d14070583