Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Rhizobium leguminosarum T88

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4932 KiB  
Article
Effect of Mineral Fertilization and Microbial Inoculation on Cabbage Yield and Nutrition: A Field Experiment
by Wilfrand F. Bejarano-Herrera, Carlos A. Marcillo-Paguay, Daniel F. Rojas-Tapias and German A. Estrada-Bonilla
Agronomy 2024, 14(1), 210; https://doi.org/10.3390/agronomy14010210 - 18 Jan 2024
Cited by 6 | Viewed by 3067
Abstract
Cabbage serves as an important food and nutrition source for numerous communities in the world, yet its production requires substantial quantities of chemical fertilizers. In this study, we assessed the impact of both increasing nitrogen and phosphorus mineral (NP) fertilization, along with the [...] Read more.
Cabbage serves as an important food and nutrition source for numerous communities in the world, yet its production requires substantial quantities of chemical fertilizers. In this study, we assessed the impact of both increasing nitrogen and phosphorus mineral (NP) fertilization, along with the application of plant growth-promoting bacteria (PGPB) on the N and P uptake, quality, and yield of cabbage. To this end, we conducted two consecutive field experiments following a randomized block design with four replicates and two factors: NP doses and PGPB inoculation. PGPB inoculation used a bacterial consortium comprising Azospirillum brasilense D7, Herbaspirillum sp. AP21, and Rhizobium leguminosarum T88. Our results showed a significant influence of both biofertilization and NP fertilization across both crop cycles; however, no interaction between these factors was observed. In the first crop cycle, 75% of NP mineral fertilization (equivalent to 93.6 kg ha−1 of N and 82.1 kg ha−1 of P) positively impacted yield and N uptake. Also, microbial inoculation significantly influenced crop yield, resulting in a 9-ton increase in crop yield per hectare due to biofertilization. In the second crop cycle, we observed a significant positive effect of mineral fertilization on cabbage yield and nutritional quality. The relative agronomic effectiveness (RAE) index showed that combining biological fertilization with 50% and 75% of the NP fertilization, respectively, increased yield by 66% and 48% compared to the commercial NP dosage without PGPB. Collectively, our results demonstrated that within our experimental setup, NP fertilization dosage can be reduced without any detrimental impact on yield. Moreover, biofertilization could enhance cabbage quality and yield in field conditions. Full article
Show Figures

Figure 1

16 pages, 3894 KiB  
Article
Bioinput Inoculation in Common Beans to Mitigate Stresses Caused by a Period of Drought
by Bruna Arruda, Wilfrand Ferney Bejarano-Herrera, Maria Camila Ortega-Cepeda, Jose Manuel Campo-Quesada, Gabriela Toro-Tobón, German Andres Estrada-Bonilla, Antonio Marcos Miranda Silva and Fernando Ferrari Putti
Stresses 2023, 3(4), 842-857; https://doi.org/10.3390/stresses3040057 - 7 Dec 2023
Cited by 2 | Viewed by 2035
Abstract
Drought conditions have made it difficult for farmers to ensure the productivity of their crops. The objective of this study was to evaluate the potential of bioinputs in stress mitigation after a drought event in common beans. Two experiments were set up in [...] Read more.
Drought conditions have made it difficult for farmers to ensure the productivity of their crops. The objective of this study was to evaluate the potential of bioinputs in stress mitigation after a drought event in common beans. Two experiments were set up in a greenhouse. Firstly, two types of soils (clayey and sandy loam) were used. After seedling emergence, treatments were set: no bacteria inoculation (NB) and inoculation with Herbaspirillum frisingense AP21. Then, a differentiation on the irrigation (15 days) was performed with no water restriction (NWR) and with water restriction (WWR). Transpiration, stomatal conductance, leaf dry matter and proline were measured. Secondly, in the clayey soil, the bacteria treatments were NB, Herbaspirillum frisingense AP21, Rhizobium leguminosarum T88 and co-inoculation (AP21 + T88). A differentiation on the irrigation (15 days) was performed: NWR and WWR. Then, Fv/Fm, photosynthetic rate, proline and sugars were assessed, and the harvest occurred 97 days after emergence. For sandy loam soil bioinputs, they did not have an effect on the parameters evaluated. For clayey soil, H. frisingense AP21 increased the transpiration rate and stomatal conductance and hence improved the leaf dry matter in comparison to NB. Under WWR, the isolated inoculations of AP21 and T88 increased grain dry matter, but the co-inoculation showed low grain production, similar to no bacteria inoculation. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

17 pages, 3716 KiB  
Article
Characterization and Genomic Analysis of Fererhizobium litorale gen. nov., sp. nov., Isolated from the Sandy Sediments of the Sea of Japan Seashore
by Lyudmila Romanenko, Nadezhda Otstavnykh, Naoto Tanaka, Valeriya Kurilenko, Vasily Svetashev, Liudmila Tekutyeva, Valery Mikhailov and Marina Isaeva
Microorganisms 2023, 11(10), 2385; https://doi.org/10.3390/microorganisms11102385 - 25 Sep 2023
Cited by 4 | Viewed by 1763
Abstract
The taxonomic status of two gram-negative, whitish-pigmented motile bacteria KMM 9576T and KMM 9553 isolated from a sandy sediment sample from the Sea of Japan seashore was defined. Phylogenetic analysis revealed that strains KMM 9576T and KMM 9553 represent a distinct [...] Read more.
The taxonomic status of two gram-negative, whitish-pigmented motile bacteria KMM 9576T and KMM 9553 isolated from a sandy sediment sample from the Sea of Japan seashore was defined. Phylogenetic analysis revealed that strains KMM 9576T and KMM 9553 represent a distinct lineage within the family Rhizobiaceae, sharing 100% 16S rRNA sequence similarity and 99.5% average nucleotide identity (ANI) to each other. The strains showed the highest 16S rRNA sequence similarities of 97.4% to Sinorhizobium garamanticum LMG 24692T, 96.9% to Ensifer adhaerens NBRC 100388T, and 96.8% to Pararhizobium giardinii NBRC 107135T. The ANI values between strain KMM 9576T and Ensifer adhaerens NBRC 100388T, Sinorhizobium fredii USDA 205T, Pararhizobium giardinii NBRC 107135T, and Rhizobium leguminosarum NBRC 14778T were 79.9%, 79.6%, 79.4%, and 79.2%, respectively. The highest core-proteome average amino acid identity (cpAAI) values of 82.1% and 83.1% were estimated between strain KMM 9576T and Rhizobium leguminosarum NBRC 14778T and ‘Rhizobium album’ NS-104, respectively. The DNA GC contents were calculated from a genome sequence to be 61.5% (KMM 9576T) and 61.4% (KMM 9553). Both strains contained the major ubiquinone Q-10 and C18:1ω7c as the dominant fatty acid followed by 11-methyl C18:1ω7c and C19:0 cyclo, and polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid, and two unidentified phospholipids. Based on phylogenetic and phylogenomic analyses, and phenotypic characterization, strains KMM 9576T and KMM 9553 are concluded to represent a novel genus and species, for which the name Fererhizobium litorale gen. nov., sp. nov. is proposed. The type strain of the type species is strain KMM 9576T (=NRIC 0957T). Full article
Show Figures

Figure 1

15 pages, 5645 KiB  
Article
Phosphate-Solubilizing Bacteria with Low-Solubility Fertilizer Improve Soil P Availability and Yield of Kikuyu Grass
by Daniel Torres-Cuesta, Duber Mora-Motta, Juan P. Chavarro-Bermeo, Andres Olaya-Montes, Cesar Vargas-Garcia, Ruth Bonilla and German Estrada-Bonilla
Microorganisms 2023, 11(7), 1748; https://doi.org/10.3390/microorganisms11071748 - 4 Jul 2023
Cited by 12 | Viewed by 3991
Abstract
Inoculation with phosphate-solubilizing bacteria (PSB) and the application of phosphorus (P) sources can improve soil P availability, enhancing the sustainability and efficiency of agricultural systems. The implementation of this technology in perennial grasses, such as Kikuyu grass, for cattle feed in soils with [...] Read more.
Inoculation with phosphate-solubilizing bacteria (PSB) and the application of phosphorus (P) sources can improve soil P availability, enhancing the sustainability and efficiency of agricultural systems. The implementation of this technology in perennial grasses, such as Kikuyu grass, for cattle feed in soils with high P retention, such as Andisols, has been little explored. The objective of this study was to evaluate the productive response of Kikuyu grass and soil P dynamics to BSF inoculation with different P sources. The experiment was conducted on a Kikuyu pasture, which was evaluated for 18 months (September 2020 to March 2022). Three P fertilizers with different solubility levels were applied: diammonium phosphate (DAP) (high-solubility), rock phosphate (RP), and compost (OM) (low-solubility). Moreover, the inoculation of a PSB consortium (Azospirillum brasilense D7, Rhizobium leguminosarum T88 and Herbaspirillum sp. AP21) was tested. Inoculation with PSB and fertilization with rock phosphate (RP) increased soil labile P and acid phosphomonoesterase activity. Increased grass yield and quality were related with higher soil inorganic P (Pi) availability. This study validated, under field conditions, the benefits of PSB inoculation for soil P availability and Kikuyu grass productivity. Full article
Show Figures

Figure 1

16 pages, 3279 KiB  
Article
Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants
by Dilara Maslennikova, Karina Nasyrova, Olga Chubukova, Ekaterina Akimova, Andrey Baymiev, Darya Blagova, Almaz Ibragimov and Oksana Lastochkina
Life 2022, 12(10), 1675; https://doi.org/10.3390/life12101675 - 21 Oct 2022
Cited by 18 | Viewed by 3216
Abstract
Cadmium (Cd) stress is an obstacle for crop production, quality crops, and sustainable agriculture. An important role is played by the application of eco-friendly approaches to improve plant growth and stress tolerance. In the current study, a pre-sowing seed treatment with Rhizobium leguminosarum [...] Read more.
Cadmium (Cd) stress is an obstacle for crop production, quality crops, and sustainable agriculture. An important role is played by the application of eco-friendly approaches to improve plant growth and stress tolerance. In the current study, a pre-sowing seed treatment with Rhizobium leguminosarum strains, isolated from the leguminous plants Phaseolus vulgaris (strain Pvu5), Vicia sylvatica (strain VSy12), Trifolium hybridium (strain Thy2), and T. pratense (strain TPr4), demonstrated different effects on wheat (Triticum aestivum L.) plant growth under normal conditions. Among all tested strains, Thy2 significantly increased seed germination, seedling length, fresh and dry biomass, and leaf chlorophyll (Chl) content. Further analysis showed that Thy2 was capable of producing indole-3-acetic acid and siderophores and fixing nitrogen. Under Cd stress, Thy2 reduced the negative effect of Cd on wheat growth and photosynthesis and had a protective effect on the antioxidant system. This was expressed in the additional accumulation of glutathione and proline and the activation of glutathione reductase. In addition, Thy2 led to a significant reduction in oxidative stress, which was evidenced by the data on the stabilization of the ascorbate content and the activity of ascorbate peroxidase. In addition, Thy2 markedly reduced Cd-induced membrane lipid peroxidation and electrolyte leakage in the plants. Thus, the findings demonstrated the ability of the R. leguminosarum strain Thy2, isolated from T. hybridium nodules, to exert a growth-promoting and anti-stress effect on wheat plants. These results suggest that the Thy2 strain may enhance wheat plant growth by mitigating Cd stress, particularly through improving photosynthesis and antioxidant capacity and reducing the severity of oxidative damage. This may provide a basic and biological approach to use the Thy2 strain as a promising, eco-friendly candidate to combat Cd stress in wheat production. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses)
Show Figures

Figure 1

19 pages, 1314 KiB  
Article
Enhancement of Clover (Trifolium alexandrinum L.) Shade Tolerance and Nitrogen Fixation under Dense Stands-Based Cropping Systems
by Wael Toukabri, Nouha Ferchichi, Meriem Barbouchi, Dorsaf Hlel, Mohamed Jadlaoui, Haithem Bahri, Ridha Mhamdi, Hatem Cheikh M’hamed, Mohamed Annabi and Darine Trabelsi
Agronomy 2022, 12(10), 2332; https://doi.org/10.3390/agronomy12102332 - 28 Sep 2022
Cited by 4 | Viewed by 2753
Abstract
Improving legumes crops’ performance under dense stands shade environment (e.g., intercropped oats–clover) is needed to promote agroecological practices. Previous studies have revealed that ethylene produced by plants under dense standing conditions is among other factors that affect crops’ growth performance and reduce legumes’ [...] Read more.
Improving legumes crops’ performance under dense stands shade environment (e.g., intercropped oats–clover) is needed to promote agroecological practices. Previous studies have revealed that ethylene produced by plants under dense standing conditions is among other factors that affect crops’ growth performance and reduce legumes’ ability to fix nitrogen (N). Here, we identified a Pseudomonas thivervalensis strain T124 as a high ACC deaminase-producing bacterium and evaluated its potential ability to alleviate the effects of reduced light (RL) and exogenous ethylene applied as ACC (ethylene precursor) on clover growth and development under controlled conditions and field conditions at dense stands of clover and oats intercrops. RL decreases clover root and shoots biomass, whereas the T124 strain counteracted RL effects, enhancing clover tolerance to shade. Exogenous ACC reduced clover growth and chlorophyll content while inducing overaccumulation of reactive oxygen species (H2O2 and O2•−). ACC-elicited cellular stress was suppressed by strain T124, suggesting the role of bacterial ACC deaminase activity. Combined with Rhizobium leguminosarum strain T618 (the strain identified as being able to fix N in symbiosis with clover), T124 prevents early nodule senescence by improving nodule leghemoglobin and reducing nodule nitric oxide levels. Co-inoculation with T124 + T618 increased shoot N content (+24%) more than T618 alone. Field experiments revealed that intercropping decreases Photosynthetic Active Radiation (PAR) at the top of clover due to oats, affecting clover photosynthesis assimilation. Interestingly, under T124 inoculation treatments, clover net photosynthetic rate (Anet) and stomatal conductance (Gs) were found to improve relative to the control and T618 inoculation treatments. Clover exhibits improved growth performance in terms of branching and nodulation after T124 inoculation. Most significant improvements occurred with the mixing of the two strains. Data suggest that co-inoculation with R. leguminosarum T618 and P. thivervalensis T124 potentially decreases the interspecific competition between clover and oats intercrops by reducing ACC (ethylene precursor) levels. Our study revealed that co-inoculation of legumes with competitive rhizobia and ACC deaminase-producing PGPRs is an eco-friendly approach to improving intercropping systems’ performance. Full article
Show Figures

Graphical abstract

17 pages, 3033 KiB  
Article
Increasing the Legume–Rhizobia Symbiotic Efficiency Due to the Synergy between Commercial Strains and Strains Isolated from Relict Symbiotic Systems
by Vera Safronova, Anna Sazanova, Irina Kuznetsova, Andrey Belimov, Polina Guro, Denis Karlov, Oleg Yuzikhin, Elizaveta Chirak, Alla Verkhozina, Alexey Afonin, Evgeny Andronov and Igor Tikhonovich
Agronomy 2021, 11(7), 1398; https://doi.org/10.3390/agronomy11071398 - 12 Jul 2021
Cited by 3 | Viewed by 3239
Abstract
The phenomenon of rhizobial synergy was investigated to increase the efficiency of nitrogen-fixing symbiosis of alfalfa (Medicago varia Martyn), common vetch (Vicia sativa L.) or red clover (Trifolium pratense L.). These plants were co-inoculated with the respective commercial strains Sinorhizobium [...] Read more.
The phenomenon of rhizobial synergy was investigated to increase the efficiency of nitrogen-fixing symbiosis of alfalfa (Medicago varia Martyn), common vetch (Vicia sativa L.) or red clover (Trifolium pratense L.). These plants were co-inoculated with the respective commercial strains Sinorhizobium meliloti RCAM1750, Rhizobium leguminosarum RCAM0626 or R. leguminosarum RCAM1365 and with the strains Mesorhizobium japonicum Opo-235, M. japonicum Opo-242, Bradyrhizobium sp. Opo-243 or M. kowhaii Ach-343 isolated from the relict legumes Oxytropis popoviana Peschkova and Astragalus chorinensis Bunge. The isolates mentioned above had additional symbiotic genes (fix, nif, nodnoe and nol) as well as the genes promoting plant growth and symbiosis formation (acdRS, genes associated with the biosynthesis of gibberellins and auxins, genes of T3SS, T4SS and T6SS secretion systems) compared to the commercial strains. Nodulation assays showed that in some variants of co-inoculation the symbiotic parameters of plants such as nodule number, plant biomass or acetylene reduction activity were increased. We assume that the study of microbial synergy using rhizobia of relict legumes will make it possible to carry out targeted selection of co-microsymbionts to increase the efficiency of agricultural legume–rhizobia systems. Full article
(This article belongs to the Special Issue Rhizobial Symbiosis in Crop Legumes: Molecular and Cellular Aspects)
Show Figures

Figure 1

23 pages, 3099 KiB  
Article
Exogenous ACC Deaminase Is Key to Improving the Performance of Pasture Legume-Rhizobial Symbioses in the Presence of a High Manganese Concentration
by Ana Paço, José Rodrigo da-Silva, Denise Pereira Torres, Bernard R. Glick and Clarisse Brígido
Plants 2020, 9(12), 1630; https://doi.org/10.3390/plants9121630 - 24 Nov 2020
Cited by 20 | Viewed by 3860
Abstract
Manganese (Mn) toxicity is a very common soil stress around the world, which is responsible for low soil fertility. This manuscript evaluates the effect of the endophytic bacterium Pseudomonas sp. Q1 on different rhizobial-legume symbioses in the absence and presence of Mn toxicity. [...] Read more.
Manganese (Mn) toxicity is a very common soil stress around the world, which is responsible for low soil fertility. This manuscript evaluates the effect of the endophytic bacterium Pseudomonas sp. Q1 on different rhizobial-legume symbioses in the absence and presence of Mn toxicity. Three legume species, Cicer arietinum (chickpea), Trifolium subterraneum (subterranean clover), and Medicago polymorpha (burr medic) were used. To evaluate the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase produced by strain Q1 in these interactions, an ACC deaminase knockout mutant of this strain was constructed and used in those trials. The Q1 strain only promoted the symbiotic performance of Rhizobium leguminosarum bv. trifolii ATCC 14480T and Ensifer meliloti ATCC 9930T, leading to an increase of the growth of their hosts in both conditions. Notably, the acdS gene disruption of strain Q1 abolished the beneficial effect of this bacterium as well as causing this mutant strain to act deleteriously in those specific symbioses. This study suggests that the addition of non-rhizobia with functional ACC deaminase may be a strategy to improve the pasture legume–rhizobial symbioses, particularly when the use of rhizobial strains alone does not yield the expected results due to their difficulty in competing with native strains or in adapting to inhibitory soil conditions. Full article
(This article belongs to the Special Issue Role of Microorganisms in Plant Growth and Phytoremediation)
Show Figures

Graphical abstract

20 pages, 2082 KiB  
Article
Search for Ancestral Features in Genomes of Rhizobium leguminosarum bv. viciae Strains Isolated from the Relict Legume Vavilovia formosa
by Elizaveta R. Chirak, Anastasiia K. Kimeklis, Evgenii S. Karasev, Vladimir V. Kopat, Vera I. Safronova, Andrey A. Belimov, Tatiana S. Aksenova, Marsel R. Kabilov, Nikolay A. Provorov and Evgeny E. Andronov
Genes 2019, 10(12), 990; https://doi.org/10.3390/genes10120990 - 1 Dec 2019
Cited by 8 | Viewed by 3150
Abstract
Vavilovia formosa is a relict leguminous plant growing in hard-to-reach habitats in the rocky highlands of the Caucasus and Middle East, and it is considered as the putative closest living relative of the last common ancestor (LCA) of the Fabeae tribe. Symbionts of [...] Read more.
Vavilovia formosa is a relict leguminous plant growing in hard-to-reach habitats in the rocky highlands of the Caucasus and Middle East, and it is considered as the putative closest living relative of the last common ancestor (LCA) of the Fabeae tribe. Symbionts of Vavilovia belonging to Rhizobium leguminosarum bv. viciae compose a discrete group that differs from the other strains, especially in the nucleotide sequences of the symbiotically specialised (sym) genes. Comparison of the genomes of Vavilovia strains with the reference group composed of R. leguminosarum bv. viciae strains isolated from Pisum and Vicia demonstrated that the vavilovia strains have a set of genomic features, probably indicating the important stages of microevolution of the symbiotic system. Specifically, symbionts of Vavilovia (considered as an ancestral group) demonstrated a scattered arrangement of sym genes (>90 kb cluster on pSym), with the location of nodT gene outside of the other nod operons, the presence of nodX and fixW, and the absence of chromosomal fixNOPQ copies. In contrast, the reference (derived) group harboured sym genes as a compact cluster (<60 kb) on a single pSym, lacking nodX and fixW, with nodT between nodN and nodO, and possessing chromosomal fixNOPQ copies. The TOM strain, obtained from nodules of the primitive “Afghan” peas, occupied an intermediate position because it has the chromosomal fixNOPQ copy, while the other features, the most important of which is presence of nodX and fixW, were similar to the Vavilovia strains. We suggest that genome evolution from the ancestral to the derived R. leguminosarum bv. viciae groups follows the “gain-and-loss of sym genes” and the “compaction of sym cluster” strategies, which are common for the macro-evolutionary and micro-evolutionary processes. The revealed genomic features are in concordance with a relict status of the vavilovia strains, indicating that V. formosa coexists with ancestral microsymbionts, which are presumably close to the LCA of R. leguminosarum bv. viciae. Full article
(This article belongs to the Special Issue Evolutionary Genetics of Microbial Symbiosis)
Show Figures

Figure 1

24 pages, 19647 KiB  
Article
Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum
by Anastasiia O. Kosolapova, Mikhail V. Belousov, Anna I. Sulatskaya, Maria E. Belousova, Maksim I. Sulatsky, Kirill S. Antonets, Kirill V. Volkov, Anna N. Lykholay, Oksana Y. Shtark, Ekaterina N. Vasileva, Vladimir A. Zhukov, Alexandra N. Ivanova, Pavel A. Zykin, Irina M. Kuznetsova, Konstantin K. Turoverov, Igor A. Tikhonovich and Anton A. Nizhnikov
Biomolecules 2019, 9(11), 694; https://doi.org/10.3390/biom9110694 - 4 Nov 2019
Cited by 30 | Viewed by 6383
Abstract
Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis [...] Read more.
Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis and infectious diseases is well known, there is a lack of information concerning the amyloids of symbiotic bacteria. In this study, using the previously developed proteomic method for screening and identification of amyloids (PSIA), we identified amyloidogenic proteins in the proteome of the root nodule bacterium Rhizobium leguminosarum. Among 54 proteins identified, we selected two proteins, RopA and RopB, which are predicted to have β-barrel structure and are likely to be involved in the control of plant-microbial symbiosis. We demonstrated that the full-length RopA and RopB form bona fide amyloid fibrils in vitro. In particular, these fibrils are β-sheet-rich, bind Thioflavin T (ThT), exhibit green birefringence upon staining with Congo Red (CR), and resist treatment with ionic detergents and proteases. The heterologously expressed RopA and RopB intracellularly aggregate in yeast and assemble into amyloid fibrils at the surface of Escherichia coli. The capsules of the R. leguminosarum cells bind CR, exhibit green birefringence, and contain fibrils of RopA and RopB in vivo. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

Back to TopTop