Characterization and Genomic Analysis of Fererhizobium litorale gen. nov., sp. nov., Isolated from the Sandy Sediments of the Sea of Japan Seashore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Phenotypic Characterization of Bacteria
2.2. 16S rRNA Gene Sequence and Phylogenetic Analysis
2.3. Whole-Genome Sequencing, Phylogenomic, and Comparative Analyses
3. Results and Discussion
3.1. Phylogenetic and Phylogenomic Analyses
3.2. Genomic Characteristics
3.3. Phenotypic Characterization and Chemotaxonomy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hördt, A.; Lopez, M.G.; Meier-Kolthoff, J.P.; Schleuning, M.; Weinhold, L.M.; Tindall, B.J.; Gronow, S.; Kyrpides, N.C.; Woyke, T.; Göker, M. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front. Microbiol. 2020, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Frank, B. Ueber die pilzsymbiose der Leguminosen. Ber. Dtsch. Bot. Ges. 1989, 7, 332–346. [Google Scholar]
- Young, J.M.; Kuykendall, L.D.; Martinez-Romero, E.; Kerr, A.; Sawada, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J Syst. Evol. Microbiol. 2001, 51, 89–103. [Google Scholar] [PubMed]
- Gaunt, M.W.; Turner, S.L.; Rigottier-Gois, L.; Lloyd-Macgilp, S.A.; Young, J.P. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol. 2001, 51, 2037–2048. [Google Scholar] [CrossRef]
- Martens, M.; Dawyndt, P.; Coopman, R.; Gillis, M.; De Vos, P.; Willem, A. Advantages of multilocus sequence analysis for taxonomic studies: A case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int. J. Syst. Evol. Microbiol. 2008, 58, 200–214. [Google Scholar] [CrossRef]
- Merabet, C.; Martens, M.; Mahdhi, M.; Zakhia, F.; Sy, A.; Le Roux, C.; Domergue, O.; Coopman, R.; Bekki, A.; Mars, M.; et al. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int. J. Syst. Evol. Microbiol. 2010, 60, 664–674. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Österman, J.; Wahlberg, N.; Nesme, X.; Lavire, C.; Vial, L.; Paulin, L.; De Lajudie, P.; Lindström, K. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst. Appl. Microbiol. 2014, 37, 208–215. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Willems, A.; Nesme, X.; De Lajudie, P.; Lindström, K. Revised phylogeny of Rhizobiaceae: Proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst. Appl. Microbiol. 2015, 38, 84–90. [Google Scholar] [CrossRef]
- Kuzmanovic, N.; Fagorzi, C.; Mengoni, A.; Lassalle, F.; diCenzo, G. Taxonomy of Rhizobiaceae revisited: Proposal of a new framework for genus delimitation. Int. J. Syst. Evol. Microbiol. 2022, 72, 005243. [Google Scholar] [CrossRef]
- Willems, A.; Fernández-López, M.; Muñoz-Adelantado, E.; Goris, J.; De Vos, P.; Martínez-Romero, E.; Toro, N.; Gillis, M. Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. Int. J. Syst. Evol. Microbiol. 2003, 43, 1207–1217. [Google Scholar] [CrossRef]
- Young, J.M. The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an Opinion. Int. J. Syst. Evol. Microbiol. 2003, 53, 2107–2110. [Google Scholar] [PubMed]
- Ramírez-Bahena, M.H.; García-Fraile, P.; Peix, A.; Valverde, A.; Rivas, R.; Igual, J.M.; Mateos, P.F.; Martínez-Molina, E.; Velázquez, E. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 889AL, Rhizobium phaseoli 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 2484–2490. [Google Scholar] [PubMed]
- Young, J.P.W.; Moeskjær, S.; Afonin, A.; Rahi, P.; Maluk, M.; James, E.K.; Cavassim, M.I.A.; Rashid, M.H.-o.; Aserse, A.A.; Perry, B.J.; et al. Defining the Rhizobium leguminosarum species complex. Genes 2021, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Casida, L.E., Jr. Ensifer adhaerens gen. nov., sp. nov.: A bacterial predator of bacteria in soil. Int. J. Syst. Bacteriol. 1982, 32, 339–345. [Google Scholar] [CrossRef]
- Ramana, C.V.; Parag, B.; Girija, K.R.; Ram, B.R.; Venkata Ramana, V.; Sasikala, C. Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int. J. Syst. Evol. Microbiol. 2013, 63, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Sheu, S.-Y.; Huang, H.-W.; Young, C.-C.; Chen, W.-M. Rhizobium alvei sp. nov., isolated from a freshwater river. Int. J. Syst. Evol. Microbiol. 2015, 65, 472–478. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.-P.; Ren, C.; Lai, Q.-L.; Zeng, R.-Y. Rhizobium marinum sp. nov., a malachite-green tolerant bacterium isolated from the sea water. Int. J. Syst. Evol. Microbiol. 2015, 65, 4449–4454. [Google Scholar] [CrossRef]
- Li, Y.; Lei, X.; Xu, Y.; Zhu, H.; Xu, M.; Fu, L.; Zheng, W.; Zhang, J.; Zheng, T. Rhizobium albus sp. nov., isolated from lake water in Xiamen Fujian Province of China. Curr. Microbiol. 2017, 74, 42–48. [Google Scholar] [CrossRef]
- Mathe, I.; Toth, E.; Mentes, A.; Szabo, A.; Marialigeti, K.; Schumann, P.; Felfoldi, T. A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie Van Leeuwenhoek 2018, 111, 2175–2183. [Google Scholar] [CrossRef]
- Cao, J.; Wei, Y.; Lai, Q.; Wu, Y.; Deng, J.; Li, J.; Liu, R.; Wang, L.; Fang, J. Georhizobium profundi gen. nov., sp. nov., a piezotolerant bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Int. J. Syst. Evol. Microbiol. 2020, 70, 373–379. [Google Scholar] [CrossRef]
- Wang, X.N.; Wang, L.; He, W.; Yang, Q.; Zhang, D.F. Description of Flavimaribacter sediminis gen. nov., sp. nov., a new member of the family Rhizobiaceae isolated from marine sediment. Curr. Microbiol. 2023, 80, 301. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, L.A.; Uchino, M.; Tebo, B.; Tanaka, N.; Frolova, G.M.; Mikhailov, V.V. Pseudomonas marincola sp. nov. isolated from marine environments. Int. J. Syst. Evol. Microbiol. 2008, 58, 706–710. [Google Scholar] [CrossRef]
- Smibert, R.M.; Krieg, N.R. Phenotypic characterization. In Methods for general and molecular bacteriology; Gerhardt, P., Murray, R.G.E., Eds.; American Society for Microbiology: Washington, DC, USA, 1994; pp. 607–655. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.D.; Shah, H.N. Fatty acid, menaquinone and polar lipid composition of Rothia dentosacariosa. Arch. Microbiol. 1984, 137, 247–249. [Google Scholar] [CrossRef]
- Mitchell, K.; Fallon, R.J. The determination of ubiquinone profiles by reversed-phase high performance thin-layer chromatography as an aid to the speciation of Legionellaceae. J. Gen. Microbiol. 1990, 136, 2035–2041. [Google Scholar] [CrossRef]
- Sasser, M. Microbial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl esters (GC-FAME); Technical Note 101; MIDI: Newark, DE, USA, 1990. [Google Scholar]
- Saito, H.; Miura, K.I. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta. 1963, 72, 619–629. [Google Scholar] [CrossRef]
- Shida, O.; Takagi, H.; Kadowaki, K.; Nakamura, L.K.; Komagata, K. Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int. J. Syst. Bacteriol. 1997, 47, 299–306. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2021, 7, D801–D807. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Hahnke, R.L.; Petersen, J.; Scheuner, C.; Michael, V.; Fiebig, A.; Rohde, C.; Rohde, M.; Fartmann, B.; Goodwin, L.A.; et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand. Genom. Sci. 2014, 8, 10. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Goloboff, P.A.; Farris, J.S.; Nixon, K.C. TNT, a free program for phylogenetic analysis. Cladistics 2008, 24, 774–786. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Rodriguez-R, L.M.; Konstantinidis, K.T. The enveomics collection: A toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016, 4, e1900v1. [Google Scholar]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Zheng, J.; Ge, Q.; Yan, Y.; Zhang, X.; Huang, L.; Yin, Y. dbCAN3: Automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res. 2023, 51, W115–W121. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Dong, Z.; Fang, L.; Luo, Y.; Wei, Z.; Guo, H.; Zhang, G.; Gu, Y.Q.; Coleman-Derr, D.; Xia, Q.; et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019, 47, W52–W58. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2013, 1, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. EggNOG-Mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. BioRxiv 2021, 38, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Rodriguez-R, L.M.; Konstantinidis, K.T. MyTaxa: An advanced taxonomic classifer for genomic and metagenomic sequences. Nucleic Acids Res. 2014, 42, e73. [Google Scholar] [CrossRef]
- Rahi, P.; Khairnar, M.; Hagir, A.; Narayan, A.; Jain, K.R.; Madamwar, D.; Pansare, A.; Shouche, Y. Peteryoungia gen. nov. with four new species combinations and description of Peteryoungia desertarenae sp. nov., and taxonomic revision of the genus Ciceribacter based on phylogenomics of Rhizobiaceae. Arch. Microbiol. 2021, 203, 3591–3604. [Google Scholar] [CrossRef]
- Hang, P.; Zhang, L.; Zhou, X.Y.; Hu, Q.; Jiang, J.D. Rhizobium album sp. nov., isolated from a propanil-contaminated soil. Antonie Van Leeuwenhoek 2019, 112, 319–327. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Tighe, S.W.; de Lajudie, P.; Dipietro, K.; Lindström, K.; Nick, G.; Jarvis, B.D. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int. J. Syst. Evol. Microbiol. 2000, 50, 787–801. [Google Scholar] [CrossRef]
Feature | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Assembly level | contig | contig | contig | scaffolds | scaffolds | scaffolds | contig | contig | contig |
Genome size (Mb) | 5.3 | 5.5 | 7.9 | 7.3 | 6.8 | 6.8 | 5.5 | 7.0 | 6.9 |
Number of contigs | 67 | 94 | 108 | 3 | 3 | 190 | 27 | 53 | 62 |
G + C Content (mol%) | 61.5 | 61.4 | 60.5 | 62 | 61 | 60.5 | 59 | 59.5 | 61.5 |
N50 (Kb) | 350 | 212 | 413 | 4071 | 4218 | 312 | 481 | 476 | 303 |
L50 | 5 | 8 | 5 | 1 | 1 | 8 | 4 | 7 | 7 |
Coverage | 61× | 41× | 50× | 75× | 592× | - | 54× | 92× | 12× |
Total genes | 4981 | 5244 | 7623 | 6937 | 6424 | 6631 | 5396 | 6675 | 6685 |
Protein coding genes | 4819 | 5054 | 7246 | 6722 | 6111 | 6275 | 5146 | 6621 | 6438 |
rRNAs (5S/16S/23S) | 1/1/1 | 1/1/1 | 1/1/1 | 5/5/5 | 3/3/3 | 2 | 1/1/1 | 1/1/1 | 1/1/1 |
tRNA | 45 | 46 | 46 | 64 | 55 | 48 | 51 | 51 | 49 |
checkM completeness (%) | 98.24 | 100 | 99.69 | 94.94 | 96.29 | 99.28 | 94.71 | 99.78 | 97.29 |
checkM contamination (%) | 0.04 | 0.22 | 0.55 | 4.5 | 1.61 | 1.37 | 6.06 | 1.32 | 2.41 |
WGS project | JALDYZ01 | JALDYY01 | QBLB01 | JNAE01 | CP120373, CP120374, CP120375 | ARBG01 | VZPW01 | BAYX01 | QFBC01 |
Genome assembly | ASM3002890 v1 | ASM3002885 v1 | ASM305838 v1 | ASM69796 v2 | ASM2989206 v1 | ASM37960 v1 | ASM880138 v1 | ASM69609 v1 | ASM312232 v1 |
Feature | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Growth at/in: | |||||||||
37 °C | + | + | + | + | + | + | + | + | - |
38 °C | (+) | (+) | (+) | + | + | + | + | + | - |
40 °C | - | - | - | (+) | - | (+) | + | + | - |
2% NaCl | + | + | - | + | + | + | + | - | - |
3% NaCl | + | + | - | (+) | - | - | + | - | - |
4% NaCl | + | + | - | - | - | - | + | - | - |
Growth on TSA | + | + | - | + | + | - | + | + | - |
Tyrosine hydrolysis | + | + | + | (+) | + | - | - | - | - |
DNA hydrolysis | (+) | + | - | - | - | - | + | + | - |
Simmon’s citrate test | - | - | + | - | - | + | - | + | - |
H2S production | + | + | + | - | - | - | - | - | - |
Nitrate reduction | - | - | - | - | - | - | + | + | - |
API 20E tests: | |||||||||
ONPG | + | + | + | + | + | (+) | (+) | - | - |
Citrate | + | + | + | - | - | - | + | + | - |
Urease | + | + | + | + | - | - | + | + | - |
Glucose | - | - | - | + | - | - | - | + | - |
Mannitol | - | - | - | - | - | - | + | - | - |
Inositol | - | - | - | + | - | - | + | - | - |
Sorbitol | - | - | - | (+) | - | - | + | - | - |
L-rhamnose | - | - | + | + | - | + | + | + | - |
D-sucrose | (+) | (+) | - | - | - | - | + | - | - |
D-melibiose | - | - | - | (+) | - | + | + | + | - |
Amygdalin | - | - | - | + | - | + | + | - | - |
L-arabinose | - | + | - | - | - | + | + | + | - |
Sensitivity to antibiotics: | |||||||||
Ampicillin | - | - | + | - | - | - | - | + | - |
Vancomycin | + | + | + | + | + | + | + | + | + |
Chloramphenicol | - | - | + | - | - | - | - | + | - |
Kanamycin | + | + | + | - | - | + | + | + | + |
Carbenicillin | + | (+) | + | - | - | + | + | + | - |
Neomycin | + | + | + | + | + | + | + | + | + |
Tetracycline | + | + | + | + | + | + | + | + | + |
Oleandomycin | - | + | - | - | + | - | - | + | - |
Oxacillin | + | (+) | + | - | - | - | - | + | - |
Streptomycin | + | + | + | - | + | + | - | - | + |
Cephazolin | - | + | - | - | - | - | - | + | - |
Cephalexin | + | + | + | - | - | + | - | + | - |
Fatty Acid | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
C14:0 | 0.16 | 0.31 | - | - | 0.18 | - | 1.07 | - | 0.34 |
C14:0 3-OH | 12.77 | 3.86 | 2.51 | 7.84 | 19.50 | 12.39 | 20.95 | 19.50 | - |
C16:1ω7c | 0.18 | - | 0.25 | 0.43 | 1.19 | 2.30 | - | - | 0.68 |
C16:0 | 3.79 | 4.10 | 8.29 | 13.11 | 8.25 | 17.23 | 16.58 | 12.53 | 13.13 |
C15:0 3-OH | - | - | - | - | - | - | - | 15.91 | - |
iso-C17:0 | - | - | - | - | - | - | - | - | 3.41 |
C17:0 cyclo | - | - | - | 1.41 | - | 2.97 | 3.80 | - | 0.82 |
C16:0 3-OH | - | - | - | 1.67 | - | 0.20 | 11.63 | 17.14 | - |
C18:1ω9c | 0.48 | 0.37 | 0.27 | 1.12 | 3.28 | 1.02 | 1.02 | - | 1.67 |
C18:1ω7c | 46.16 | 52.47 | 61.81 | 51.35 | 42.17 | 47.38 | 17.32 | 6.24 | 34.94 |
C18:0 | 7.09 | 10.98 | 5.90 | 2.96 | 3.29 | 3.22 | 0.87 | 0.59 | 3.57 |
11-Methyl C18:1ω7c | 14.11 | 14.91 | 5.01 | 8.48 | 7.03 | 5.58 | 0.30 | - | 13.46 |
C19:0 cyclo | 15.27 | 13.01 | 15.96 | 10.47 | 9.75 | 5.94 | 26.62 | 20.98 | 27.99 |
C18:0 3-OH | - | - | - | 1.14 | 4.25 | 1.77 | - | 0.90 | - |
C19:0 | - | - | - | - | - | - | - | 6.81 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanenko, L.; Otstavnykh, N.; Tanaka, N.; Kurilenko, V.; Svetashev, V.; Tekutyeva, L.; Mikhailov, V.; Isaeva, M. Characterization and Genomic Analysis of Fererhizobium litorale gen. nov., sp. nov., Isolated from the Sandy Sediments of the Sea of Japan Seashore. Microorganisms 2023, 11, 2385. https://doi.org/10.3390/microorganisms11102385
Romanenko L, Otstavnykh N, Tanaka N, Kurilenko V, Svetashev V, Tekutyeva L, Mikhailov V, Isaeva M. Characterization and Genomic Analysis of Fererhizobium litorale gen. nov., sp. nov., Isolated from the Sandy Sediments of the Sea of Japan Seashore. Microorganisms. 2023; 11(10):2385. https://doi.org/10.3390/microorganisms11102385
Chicago/Turabian StyleRomanenko, Lyudmila, Nadezhda Otstavnykh, Naoto Tanaka, Valeriya Kurilenko, Vasily Svetashev, Liudmila Tekutyeva, Valery Mikhailov, and Marina Isaeva. 2023. "Characterization and Genomic Analysis of Fererhizobium litorale gen. nov., sp. nov., Isolated from the Sandy Sediments of the Sea of Japan Seashore" Microorganisms 11, no. 10: 2385. https://doi.org/10.3390/microorganisms11102385
APA StyleRomanenko, L., Otstavnykh, N., Tanaka, N., Kurilenko, V., Svetashev, V., Tekutyeva, L., Mikhailov, V., & Isaeva, M. (2023). Characterization and Genomic Analysis of Fererhizobium litorale gen. nov., sp. nov., Isolated from the Sandy Sediments of the Sea of Japan Seashore. Microorganisms, 11(10), 2385. https://doi.org/10.3390/microorganisms11102385