Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Re–Os geochronology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11136 KB  
Article
Genesis and Timing of Low-Sulphide Gold–Quartz Mineralization of the Upryamoye Ore Field, Western Chukotka
by Ludmila Salete Canhimbue, Andrey Tarasenko, Elena Vatrushkina, Irina Latysheva and Afanasii Telnov
Minerals 2025, 15(11), 1130; https://doi.org/10.3390/min15111130 - 29 Oct 2025
Viewed by 649
Abstract
The Upryamoye ore field is located in the Chukotka metallogenic belt in Northeast Russia. The orebodies are hosted within Late Jurassic–Early Cretaceous greenschist-facies metamorphosed rocks and structurally controlled by NW-trending fold-and-thrust dislocations. Based on geological exploration, petrographic, mineralogical, and geochronological studies, new data [...] Read more.
The Upryamoye ore field is located in the Chukotka metallogenic belt in Northeast Russia. The orebodies are hosted within Late Jurassic–Early Cretaceous greenschist-facies metamorphosed rocks and structurally controlled by NW-trending fold-and-thrust dislocations. Based on geological exploration, petrographic, mineralogical, and geochronological studies, new data on the geological structure and composition of gold–quartz mineralization of the Upryamoye ore field are presented. Optical and scanning microscopy were used to study the lithological features of the host rocks and determine the ore textures and the morphology and internal structure of native gold, auriferous pyrite, and arsenopyrite. Qualitative and quantitative characterization of the ore minerals was carried out using SEM-EDS and EPMA. To determine the age of the gold mineralization, Re-Os dating of arsenopyrite and U-Th/He dating of pyrite were performed. The results show that the orebodies comprise carbonate–quartz and sulphide–carbonate–quartz saddle reef veins in both the fold hinge and limbs, as well as mineralized shatter zones and mylonite zones that trace thrust faults. The main ore minerals are arsenopyrite and pyrite, associated with minor amounts of galena, sphalerite, chalcopyrite, tetrahedrite, and bournonite. Native gold is distributed extremely unevenly, forming thin and finely dispersed inclusions in pyrite and arsenopyrite. U-Th/He isotopic analyses of auriferous pyrites suggest that gold mineralization in the Upryamoye ore field occurred at 123 ± 4 Ma. The data obtained by Re–Os dating of auriferous arsenopyrite are inconsistent with direct geological observations but indicate that Os in the arsenopyrite was derived from the crustal source. According to a number of characteristic features of mineralization, the Upryamoye ore field is attributed to a metamorphic genetic type of orogenic low-sulphide gold–quartz deposits. The ore-forming process was long and multi-stage, occurring during the final collisional phase and the beginning of the extensional phase of the Chukotka orogen. Full article
Show Figures

Figure 1

17 pages, 6008 KB  
Article
Small-Scale Porphyry Cu (Au) Systems in Collisional Orogens: A Case Study of the Xifanping Deposit with Implications for Mineralization Potential in Western Yangtze Craton, SW China
by Yunhai Hu, Mimi Yang, Xingyuan Li, Guoxiang Chi and Fufeng Zhao
Minerals 2025, 15(9), 1001; https://doi.org/10.3390/min15091001 - 20 Sep 2025
Viewed by 623
Abstract
The Xifanping Cu–(Au) deposit, a small-scale porphyry system in the central Jinshajiang–Red River tectonic belt (JSRR), formed in a Cenozoic collisional setting. This study integrates zircon U–Pb geochronology, Lu–Hf isotopes, whole-rock geochemistry, and zircon trace element analyses of ore-bearing and barren porphyries, combined [...] Read more.
The Xifanping Cu–(Au) deposit, a small-scale porphyry system in the central Jinshajiang–Red River tectonic belt (JSRR), formed in a Cenozoic collisional setting. This study integrates zircon U–Pb geochronology, Lu–Hf isotopes, whole-rock geochemistry, and zircon trace element analyses of ore-bearing and barren porphyries, combined with regional comparisons, to constrain magma sources, metallogenic controls, and genetic processes. Ore-bearing biotite quartz monzonite porphyries were emplaced at 32.15 ± 0.43 Ma and 32.49 ± 0.57 Ma, post-dating barren quartz monzonite porphyry (33.15 ± 0.51 Ma). These ages are consistent with molybdenite Re–Os ages (32.1 ± 1.6 Ma), indicating near-synchronous magmatism and mineralization. Both porphyry types belong to the shoshonitic, peraluminous series, enriched in LILE, depleted in HFSE, enriched in LREE, and lacking significant Eu anomalies. Their εHf (t) values (–2.94 to +3.68) and crustal model ages (TDM2 = 0.88–1.30 Ga) indicate derivation from Neoproterozoic subduction-modified lower crust. Ore-bearing porphyries, however, exhibit higher zircon Ce4+/Ce3+ ratios (average = 584 vs. 228 for barren porphyries) and elevated hydrous mineral contents (>10 vol.% amphibole + biotite), indicating more oxidized and water-rich parental magmas. Compared with large-scale porphyry systems (e.g., Dexing, northern Chile), the absence of adakitic signatures and only moderate oxidation limited the scale of mineralization. Overall, the Xifanping deposit formed through partial melting of Neoproterozoic subduction-modified lower crust in a post-collisional extensional regime: at ~33.2 Ma, melting of metasomatized ancient lower crust generated barren porphyries; at ~32 Ma, further evolution and differentiation of this lower crust magmas led to the extraction and enrichment of ore-forming materials from the thicken lower crust, producing hydrated, oxidized, ore-bearing magmas that intruded at shallow levels to form base and precious metal mineralizations. These results underscore the distinctive metallogenic characteristics of small-scale porphyry systems in collisional settings and provide new insights into how source composition and magma oxidation state constrain mineralization potential. Full article
Show Figures

Figure 1

39 pages, 8119 KB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 1549
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

32 pages, 32586 KB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 3501
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 10400 KB  
Article
Origin of the Xulaojiugou Pb–Zn Deposit, Heilongjiang Province, NE China: Constraints from Molybdenite Re–Os Isotopic Dating, Trace Elements, and Isotopic Compositions of Sulfides
by Gan Liu, Yunsheng Ren, Jingmou Li and Wentan Xu
Minerals 2025, 15(5), 441; https://doi.org/10.3390/min15050441 - 25 Apr 2025
Viewed by 783
Abstract
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan [...] Read more.
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan Formation. Orebodies exhibit typical skarn characteristics and are structurally controlled by NE trending faults. To constrain the metallogenic age, ore-forming processes, and sources of ore-forming materials, we conducted integrated geochemical analyses, Re–Os isotope dating, in situ sulfur isotope analysis, and trace element analysis. Five molybdenite samples provided a Re–Os isochron age of 184.6 ± 3.0 Ma, indicating Early Jurassic mineralization. In situ δ34S values from 20 sphalerite and 9 galena samples ranged from 5.31‰ to 5.83‰, suggesting derivation of sulfur from a deep magmatic source. Trace element analysis of 42 spots from three sphalerite samples revealed formation temperatures of 248–262 °C, which are consistent with mesothermal conditions. Integrated with regional tectonic evolution, the Xulaojiugou deposit is genetically linked to medium-grained monzogranite emplacement and represents a typical skarn polymetallic deposit, which is genetically associated with the regional porphyry–skarn metallogenic system that developed during the Early Yanshanian (Jurassic) tectonic–magmatic event and was driven by the subduction of the Paleo-Pacific plate. Full article
Show Figures

Figure 1

22 pages, 29178 KB  
Article
Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China
by Mingchao Wu, Zhongliang Wang and Pengyu Liu
Appl. Sci. 2025, 15(3), 1199; https://doi.org/10.3390/app15031199 - 24 Jan 2025
Viewed by 1127
Abstract
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so [...] Read more.
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so as to illustrate the genesis of gold mineralization and its implication for exploration. Four molybdenite samples yield a well-defined Re–Os isochron age of 118.4 ± 2.5 Ma (2σ), which is identical to the weighted average Re–Os model age of 118 ± 1.7 Ma (2σ). Integration of the new geochronologic data with those reported recently from the other gold mines in the Muping–Rushan gold metallogenic belt suggests that a discrete gold event occurred in Xiawolong ca. 4 m.y. older than that for the other gold mineralization at ca. 114 Ma in eastern Jiaodong. In addition, two fine-grained granite samples, measured using the LA-ICP-MS zircon U–Pb method, produce the first precise ages of 118 ± 2 to 117 ± 2 Ma (2σ), identical to the molybdenite Re–Os ages, within the margin of error and obtained in this study. The fine-grained granite has a similar lithology and emplacement age as those of the medium-grained monzogranite consisting of the marginal facies of the Sanfoshan batholith, and is considered to be the crystallization products of Sanfoshan granitic magma in the late stage. Combined with the previous S-Pb-D-O isotope, fluid inclusion and geological studies, which suggest that the ore-forming fluid of Xiawolong gold mineralization is from magmatic water, and the identification that the magnetite coexists with the gold-bearing pyrite and molybdenite in the gold ores, which indicates a high oxygen fugacity (fO2) of both the magma and resultant hydrothermal fluids, it is logical to infer that the Xiawolong gold deposit is genetically in relation to the Sanfoshan granitic magmatism, which is high in fO2 and rich in Au at the magmatic–hydrothermal transition stage, and the change in fO2 mostly likely makes a significant contribution to the precipitation of Au. This result reveals that the late-stage granitic magma with high fO2, which is crystallized into the fine-grained granite, probably is also rich in Au, except the W–Mo–Cu–Zn–U–Be–Li–Nb–Ta–Sn–Bi-elements. Therefore, based on the extensional tectonic regime for the early Cretaceous Jiaodong gold deposits, we propose that gold exploration in the Jiaodong should not only focus on the fault-hosted Au but also on the fine-grained granite-hosted Au around the apical portions of the late Early Cretaceous small-granitic intrusions with high fO2. This model could also be important for prospecting in other gold ore districts, which have a similar tectonic setting. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

20 pages, 21100 KB  
Article
Petrogenesis and Metallogenic Significance of the Demingding Mo-Cu Porphyry Deposit in the Gangdese Belt, Xizang: Insights from U-Pb and Re-Os Geochronology and Geochemistry
by Sudong Shi, Shuyuan Chen, Sangjiancuo Luo, Huan Ren and Xiaojia Jiang
Minerals 2024, 14(12), 1232; https://doi.org/10.3390/min14121232 - 3 Dec 2024
Cited by 2 | Viewed by 1556
Abstract
The 1500 km-long Gangdese magmatic belt is a crucial region for copper polymetallic mineralization, offering valuable insights into collisional porphyry copper systems. This study focuses on the Demingding deposit, a newly identified occurrence of molybdenum–copper (Mo-Cu) mineralization within the eastern segment of the [...] Read more.
The 1500 km-long Gangdese magmatic belt is a crucial region for copper polymetallic mineralization, offering valuable insights into collisional porphyry copper systems. This study focuses on the Demingding deposit, a newly identified occurrence of molybdenum–copper (Mo-Cu) mineralization within the eastern segment of the belt. While the mineralization age, magmatic characteristics, and tectonic context are still under investigation, we examine the deposit’s petrology, zircon U-Pb geochronology, whole-rock chemistry, and Re-Os isotopic data. The Demingding deposit exhibits a typical alteration zoning, transitioning from an inner potassic zone to an outer propylitic zone, which is significantly overprinted by phyllic alteration closely associated with Mo and Cu mineralization. Zircon U-Pb dating of the ore-forming monzogranite porphyries reveals crystallization ages ranging from 21 to 19 Ma, which is indistinguishable within error from the mean Re-Os age of 21.3 ± 0.4 Ma for Mo veins and veinlets hosted by these porphyries. This alignment suggests a late Miocene magmatic event characterized by Mo-dominated mineralization, coinciding with the continuous thickening of the continental crust during the collision of the Indian and Asian continents. The ore-forming porphyries range in composition from granodiorite to monzogranite and are classified as high-K calc-alkaline with adakite-like features, primarily resulting from the partial melting of subduction-modified thickened mafic lower crust. Notably, the ore-forming porphyries exhibit higher fO2 and H2O levels than barren porphyries in this area during crustal thickening, highlighting the significant contributions of hydrous and oxidized fluids from their source to the Mo-Cu mineralization process. Regional data indicate that the Gangdese porphyry metallogenic belt experienced concentrated Cu-Mo mineralization between 17 and 13 Ma. The formation of Mo-dominated deposits such as Demingding and Tangbula in the eastern segment of the belt, with slightly older ages around 20 Ma, underscores the presence of a significant porphyry Mo metallogenic event during this critical post-collision mineralization period. Full article
Show Figures

Graphical abstract

16 pages, 6740 KB  
Article
Re Variation Triggered from the Paleo-Pacific Plate Evolution: Constrains from Mo Polymetallic Deposits in Zhejiang Province, South China Mo Province
by Xiangcai Li, Yongbin Wang, Xuance Wang, Jiaqi Cai, Yunkang Guo and Song Lin
Minerals 2022, 12(9), 1129; https://doi.org/10.3390/min12091129 - 5 Sep 2022
Cited by 1 | Viewed by 2203
Abstract
Although highly dispersed, critical Re metal has attracted lots of attention from geoscientists, the controlling factors of Re-content variation are not completely understood, especially with regards to the genetic relationship between Re-bearing Mo polymetallic deposits and plate subduction evolution. It is well documented [...] Read more.
Although highly dispersed, critical Re metal has attracted lots of attention from geoscientists, the controlling factors of Re-content variation are not completely understood, especially with regards to the genetic relationship between Re-bearing Mo polymetallic deposits and plate subduction evolution. It is well documented that the South China Mo Province, in Zhejiang Province, is characterized by multi-stage Mo polymetallic mineralization associated with Paleo-Pacific plate subduction. The Xianlin Mo(Cu)–Fe deposit occurs in Western Zhejiang as porphyry mineralization or skarn mineralization between the granodiorite and limestone. Zircon U–Pb analysis of the ore-forming granodiorite yields a Concordia age of 150.8 ± 1.1 Ma. Six molybdenite samples have relatively high Re contents (128.9~155.7 ppm) and deliver a weighted mean model age of 149.6 ± 1.3 Ma. These geochronological data suggest the Xianlin polymetallic mineralization was genetically related to the granodiorite in the Late Jurassic. Moreover, a new compilation of reliable Re contents and Re–Os isotope age data in Zhejiang Province indicates a decreasing trend in Re contents of molybdenite from the Jurassic Fe-/Cu-dominated Mo mineralization stage to the Cretaceous PbZn-enriched Mo mineralization stage in the South China Mo Province. Based on previously proposed models relating tectonic, magmatic, and hydrothermal processes, it is suggested that the Jurassic Re-enriched Mo mineralization, associated with I-type granitoids, formed in a compressive setting during the low-angle subduction of the Paleo-Pacific slab, whilst the Cretaceous Re-poorer Mo/Mo–Pb–Zn mineralization, related to both I- and A-type granitoids, formed in an extensional back-arc setting triggered by the rollback of the Paleo-Pacific slab. Full article
Show Figures

Graphical abstract

25 pages, 7509 KB  
Article
Age, Genesis and Tectonic Setting of the Sayashk Tin Deposit in the East Junggar Region: Constraints from Lu–Hf Isotopes, Zircon U–Pb and Molybdenite Re–Os Dating
by Zhenjun Sun, Guanghu Liu, Yunsheng Ren, Xi Chen, Xinhao Sun, Chengyang Wang and Zuowu Li
Minerals 2022, 12(9), 1063; https://doi.org/10.3390/min12091063 - 23 Aug 2022
Cited by 2 | Viewed by 2418
Abstract
The Sayashk tin (Sn) deposit is located within the southern part of the Eastern Junggar orogenic belt in Xinjiang Province and forms part of the Kalamaili alkaline granite belt. There are many Sn polymetallic deposits in the area. To constrain the age, genesis, [...] Read more.
The Sayashk tin (Sn) deposit is located within the southern part of the Eastern Junggar orogenic belt in Xinjiang Province and forms part of the Kalamaili alkaline granite belt. There are many Sn polymetallic deposits in the area. To constrain the age, genesis, and tectonic setting of the Sayashk tin deposit in the East Junggar region, we conducted a bulk-rock geochemical analysis of the granite porphyry (SR1) and medium- to fine-grained granite (SR2) hosts of the deposit, LA-ICP-MS zircon U–Pb dating and Lu–Hf isotopic analysis, as well as molybdenite Re–OS dating and combined our results with the metallogenic conditions and other geological characteristics of the deposit. The results show that the Sayashk Sn deposit is indeed spatially, temporally, and genetically closely related to the granite porphyry and medium-fine-grained granite. Both zircon U–Pb ages are 308.2 ± 1.5 Ma and 310.9 ± 1.5 Ma, respectively. The isochron age of molybdenite is 301.4 ± 6.7 Ma, which represents the crystallization age of the granite porphyry and medium-fine-grained granite. Therefore, all of them formed in the late Carboniferous epoch. The medium-fine-grained granites and granite porphyry are characteristically rich in Si and alkali, poor in Ca and Mg, rich in high field-strength elements (HFSE, e.g., Zr, Hf) and Ce, and deficient in Ba, Sr, Eu, P, and Ti. They are typical A-type granites, showing the characteristics of a mixed crustal mantle source. The εHf(t) values of the zircon from the granite porphyry (SR1) range from 10.27 to 16.17 (average 13.71), εHf(t) values of the zircon from the medium-fine-grained granites (SR2) are between 5.72 and 9.21 (average 7.08), and the single model ages (TDM1) and two-stage model ages (TDM2) of the granite porphyry (SR1) fall within the ranges of 319~535 Ma and 339~644 Ma. The single model ages (TDM1) and two-stage model ages (TDM2) of the medium-fine-grained granites (SR2) fall within the ranges of 346~479 Ma and 309~557 Ma. There is little difference between their two-stage model ages and zircon U–Pb ages, indicating that the Sayashk granite may be the product of partial melting of juvenile crustal. Combined with previous research results, the Sayashk Sn deposit formed in a post-collision extensional tectonic setting after the late Carboniferous in the Kalamaili area. Full article
(This article belongs to the Special Issue Genesis and Metallogeny of Non-ferrous and Precious Metal Deposits)
Show Figures

Figure 1

24 pages, 6328 KB  
Article
Zircon U-Pb and Pyrite Re-Os Isotope Geochemistry of ‘Skarn-Type’ Fe-Cu Mineralization at the Shuikoushan Polymetallic Deposit, South China: Implications for an Early Cretaceous Mineralization Event in the Nanling Range
by Shengbin Li, Yonghua Cao, Zeyou Song and Dan Xiao
Minerals 2021, 11(5), 480; https://doi.org/10.3390/min11050480 - 30 Apr 2021
Cited by 9 | Viewed by 3299
Abstract
The Shuikoushan deposit is an economic ‘skarn-type’ polymetallic Pb-Zn deposit in South China. The deposit is located at the southern margin of the Hengyang basin in the northern part of the Nanling Range. Recently, economic Fe-Cu mineralization that occurs spatially connected to skarns [...] Read more.
The Shuikoushan deposit is an economic ‘skarn-type’ polymetallic Pb-Zn deposit in South China. The deposit is located at the southern margin of the Hengyang basin in the northern part of the Nanling Range. Recently, economic Fe-Cu mineralization that occurs spatially connected to skarns along the contact zone between the granodiorite and limestones was discovered in the lower part of this deposit. Detailed zircon U-Pb geochronological data indicate that the granodiorite was emplaced at 153.7 ± 0.58 Ma (Mean Square of Weighted Deviates (MSWD) = 2.4). However, the pyrite Re-Os isochron age reveals that Fe-Cu mineralization formed at 140 ± 11 Ma (MSWD) = 8.1), which post-dates the emplacement of the granodiorite, as well as the previously determined timing of Pb-Zn mineralization (157.8 ± 1.4 Ma) in this deposit. Considering that Fe-Cu mineralization was connected with the contact zone and also faults, and that sulfide minerals commonly occur together with quartz and calcite veins that crosscut skarns, we interpret this mineralization type as being related to injection of post-magmatic hydrothermal fluids. The timing of Fe-Cu mineralization (140 ± 11 Ma) is inconsistent with a long-held viewpoint that the time interval of 145 to 130 Ma (e.g., Early Cretaceous) in the Nanling Range is a period of magmatic quiescence with insignificant mineralization, the age of 140 Ma may represent a new mineralization event in the Nanling Range. Full article
Show Figures

Figure 1

23 pages, 24066 KB  
Article
Re-Os Age and Stable Isotope (O-H-S-Cu) Geochemistry of North Eastern Turkey’s Kuroko-Type Volcanogenic Massive Sulfide Deposits: An Example from Cerattepe-Artvin
by Ali Ucurum, Cigdem Sahin Demir, Nazmi Otlu, Mustafa Erturk, Taner Ekici, Jason Kirk, Joaquin Ruiz, Ryan Mathur and Greg B. Arehart
Minerals 2021, 11(2), 226; https://doi.org/10.3390/min11020226 - 23 Feb 2021
Cited by 5 | Viewed by 5842
Abstract
The eastern Pontide tectonic belt (EPTB) contains greater than 350 identified Kuroko type volcanogenic massive sulfide deposits/mineralization/occurrences (VMSD). The deposits are associated with Late Cretaceous felsic volcanics consisting mainly of dacitic and rhyolitic lavas and pyroclastics that outcrop within a narrow zone running [...] Read more.
The eastern Pontide tectonic belt (EPTB) contains greater than 350 identified Kuroko type volcanogenic massive sulfide deposits/mineralization/occurrences (VMSD). The deposits are associated with Late Cretaceous felsic volcanics consisting mainly of dacitic and rhyolitic lavas and pyroclastics that outcrop within a narrow zone running parallel to the eastern Black Sea coast and represent the axial zone of a paleo-magmatic arc. The Cerattepe deposit is the second-largest and is a hybrid VMS system with some epithermal features. To date, no geochemical research constrains the origin and timing of mineralization in the Cerattepe VMS deposit. Here, we provide Cu, O, H and S, isotope analysis of ores and alteration minerals to understand the hydrothermal history of the deposit and date the massive ore with Re-Os geochronology. Secondary weathering mobilized and redistributed metals in the deposit. The copper isotope signatures of shallow ores in the gossan follow patterns resulting from oxidative weathering of copper minerals with gossan Fe oxides of δ65Cu = −2.59‰, enrichment zone copper sulfide of d65Cu = +2.23 and +1.73‰, and primary ores of δ65Cu = +0.71 and +0.41‰. At the boundary of the enrichment zone, further cycling and migration of enrichment zone copper are evidenced by two samples having larger ranges of the δ65Cu = +3.59‰, and −2.93‰. Evidence for a magmatic source for fluids and S are evidenced by the O and H isotope values from quartz veins (δ18O = +7.93‰ to +10.82‰, and δD = −78‰ and −68‰) and sulfides that possess δ34S ratios of –5 and 0‰ from drill core samples. 187Os/188Os–187Re/188Os ratios from drill core sulfide samples of Cerattepe VMS deposit yields a 62±3 Ma isochron age and a highly radiogenic Os initial ratio. This age is compatible with silicate alteration ages from a proximal deposit and clearly shows mineralization occurs at a much younger time than previously proposed for VMS mineralization in the eastern Pontides. The new Re-Os age and source of Os imply that mineralization in the area occurs at a distinctly younger interval in the back-arc basin and metals could be sourced from the surrounding host rocks. Full article
(This article belongs to the Special Issue Mineral Deposits of the Balkan Peninsula and Western Turkey)
Show Figures

Figure 1

34 pages, 13450 KB  
Article
Zircon U-Pb Dating of Magmatism and Mineralizing Hydrothermal Activity in the Variscan Karkonosze Massif and Its Eastern Metamorphic Cover (SW Poland)
by Stanisław Z. Mikulski, Ian S. Williams, Holly J. Stein and Jan Wierchowiec
Minerals 2020, 10(9), 787; https://doi.org/10.3390/min10090787 - 7 Sep 2020
Cited by 19 | Viewed by 4706
Abstract
SHRIMP (Sensitive high resolution ion microprobe) zircon U-Pb dating of the two main igneous rocks types in the Karkonosze Pluton, porphyritic and equigranular monzogranite, yield 206Pb/238U ages between 312.0 ± 2.9 and 306.9 ± 3.0 Ma. These coincide, within uncertainty, [...] Read more.
SHRIMP (Sensitive high resolution ion microprobe) zircon U-Pb dating of the two main igneous rocks types in the Karkonosze Pluton, porphyritic and equigranular monzogranite, yield 206Pb/238U ages between 312.0 ± 2.9 and 306.9 ± 3.0 Ma. These coincide, within uncertainty, with the majority of previous dates from the pluton, which indicate development of the main magmatic processes between ca. 315 and 303 Ma. They also coincide with molybdenite and sulfide Re-Os ages from ore deposits developed during magmatic and pneumatolitic-hydrothermal (e.g., Szklarska Poręba Huta and Michałowice) or/and metasomatic and hydrothermal (e.g., Kowary, Czarnów and Miedzianka) processes forming Mo-W-Sn-Fe-Cu-As-REE-Y-Nb-Th-U mineralization. The 206Pb/238U zircon age of 300.7 ± 2.4 Ma from a rhyolite porphyry dyke (with disseminated base metal sulfide mineralization) in the Miedzianka Cu-(U) deposit coincides with the development of regional tectonic processes along the Intra-Sudetic Fault. Moreover, at the end-Carboniferous, transition from a collisional to within-plate tectonic setting in the central part of the European Variscides introduced volcanism in the Intra-Sudetic Basin. Together, these processes produced brecciation of older ore mineralization, as well as metal remobilization and deposition of younger medium- and low-temperature hydrothermal mineralization (mainly Cu-Fe-Zn-Pb-Ag-Au-Bi-Se, and Th-U), which became superimposed on earlier high-temperature Mo-W-Sn- Fe-As-Cu-REE mineralization. A few 206Pb/238U ages > 320 Ma remain to be reconciled, but might be due to the high U and Th contents of the zircon and the strong influence of overprinting pneumatolitic-hydrothermal processes. Full article
Show Figures

Figure 1

25 pages, 7061 KB  
Article
Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing’an Range, Northeast China: Evidence from Fluid Inclusions, H–O–S–Pb Isotopes, and Re–Os Geochronology
by Yong-gang Sun, Bi-le Li, Qing-feng Ding, Yuan Qu, Cheng-ku Wang, Lin-lin Wang and Qing-lin Xu
Minerals 2020, 10(7), 591; https://doi.org/10.3390/min10070591 - 30 Jun 2020
Cited by 14 | Viewed by 3638
Abstract
The Fukeshan Cu (Mo) deposit is a newfound porphyry deposit in the northern Great Xing’an Range (GXR), northeast China. In this paper, we present results of chalcopyrite Re–Os geochronology, microthermometry of the fluid inclusions (FIs), and isotopic (H–O–S–Pb) compositions of the Fukeshan Cu [...] Read more.
The Fukeshan Cu (Mo) deposit is a newfound porphyry deposit in the northern Great Xing’an Range (GXR), northeast China. In this paper, we present results of chalcopyrite Re–Os geochronology, microthermometry of the fluid inclusions (FIs), and isotopic (H–O–S–Pb) compositions of the Fukeshan Cu (Mo) deposit. Its ore-forming process can be divided into sulfide-barren quartz veins (A vein; stage I), quartz + chalcopyrite + pyrite veins (B vein; stage II), quartz + polymetallic sulfide veins (D vein; stage III), and barren quartz + carbonate ± pyrite veins (E vein; stage IV), with Cu mineralization mainly occurred in stage II. Three types of FIs are identified in this deposit: liquid-rich two-phase (L-type) FIs, vapor-rich two-phase (V-type) FIs, daughter mineral-bearing three-phase (S-type) FIs. The homogenization temperatures of primary FIs hosted in quartz of stages I–IV are 381–494 °C, 282–398 °C, 233–340 °C, and 144–239 °C, with salinities of 7.2–58.6, 4.8–9.9, 1.4–7.9, and 0.9–3.9 wt. % NaCl equivalent, respectively. FIs microthermometry and H–O isotope data suggest that the ore-forming fluids were magmatic in origin and were gradually mixed with meteoric water from stages II to IV. Sulfur and lead isotope results indicate that the ore-forming materials of the Fukeshan Cu (Mo) deposit were likely to have originated from Late Jurassic intrusive rocks. The available data suggest that fluid cooling and incursions of meteoric water into the magmatic fluids were two important factors for Cu precipitation in the Fukeshan Cu (Mo) deposit. Chalcopyrite Re–Os dating yielded an isochron age of 144.7 ± 5.4 Ma, which is similar to the zircon U–Pb age of the quartz diorite porphyry, indicating that Late Jurassic quartz diorite porphyry and Cu mineralization occurred contemporaneously. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Figure 1

27 pages, 8804 KB  
Article
U-Pb, Ar-Ar, and Re-Os Geochronological Constraints on Multiple Magmatic–Hydrothermal Episodes at the Lake George Mine, Central New Brunswick
by Carlin Lentz, Kathleen Thorne, Christopher R. M. McFarlane and Douglas A. Archibald
Minerals 2020, 10(6), 566; https://doi.org/10.3390/min10060566 - 23 Jun 2020
Cited by 8 | Viewed by 4984
Abstract
The Lake George antimony mine was at one time North America’s largest producer of antimony. Despite being widely known for the antimony mineralization, the deposit also hosts a range of styles of mineralization such as multiple generations of W-Mo bearing quartz veins as [...] Read more.
The Lake George antimony mine was at one time North America’s largest producer of antimony. Despite being widely known for the antimony mineralization, the deposit also hosts a range of styles of mineralization such as multiple generations of W-Mo bearing quartz veins as well as a system of As-Au bearing quartz–carbonate veins. In situ U-Pb zircon geochronology, using LA ICP-MS, of the Lake George granodiorite yielded a weighted mean 206Pb/238U age of 419.6 ± 3.0 Ma. Step heating of phlogopite separated from the lamprophyre dykes produced a 40Ar/39Ar plateau segment date of 419.4 ± 1.4 Ma. Single molybdenite crystal analysis for Re-Os geochronology was conducted on two W-Mo-bearing quartz veins, which cross-cut altered granodiorite and altered metasedimentary rocks and yielded two dates of 415.7 ± 1.7 Ma and 416.1 ± 1.7 Ma respectively. 40Ar/39Ar geochronology of muscovite from alteration associated with Au-bearing quartz–carbonate veins yielded one representative plateau segment date of 414.1 ± 1.3 Ma. The dates produced in this study revealed that the different magmatic–hydrothermal events at the Lake George mine occurred over approximately a 10-million-year period at the end of the Silurian and the start of the Devonian following the termination of the Acadian orogeny. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Figure 1

18 pages, 16479 KB  
Article
Re-Os Geochronology, Whole-Rock and Radiogenic Isotope Geochemistry of the Wulandele Porphyry Molybdenum Deposit in Inner Mongolia, China, and Their Geological Significance
by Xiaojun Zhang, Chunliang Yao, David R. Lentz, Ying Qin, Yiwen Wei, Fengshun Zhao, Zhen Yang, Rui Liu and Zhenfei Zhang
Minerals 2020, 10(4), 374; https://doi.org/10.3390/min10040374 - 21 Apr 2020
Cited by 2 | Viewed by 3765
Abstract
The Wulandele molybdenum deposit is a porphyry-type Mo deposit in the Dalaimiao area of northern Inner Mongolia, China. Molybdenite Re-Os dating yields a model age of 134.8 ± 1.9 Ma, with the fine-grained monzogranite most closely related to the mineralization. The lithogeochemical data [...] Read more.
The Wulandele molybdenum deposit is a porphyry-type Mo deposit in the Dalaimiao area of northern Inner Mongolia, China. Molybdenite Re-Os dating yields a model age of 134.8 ± 1.9 Ma, with the fine-grained monzogranite most closely related to the mineralization. The lithogeochemical data show that the monzogranite is weakly peraluminous, high-K calc-alkaline series, with reduced to slightly oxidized, highly fractionated I-type granite characteristics. The relatively low initial 87Sr/86Sr (range from 0.705347 to 0.705771), weakly negative εNd(t) (range from −2.0 to −1.3), and crust-mantle mixing of Pb isotopes suggest that the monzogranite originated from the partial melting of mafic juvenile lower continental crust derived from the depleted mantle, with a minor component of ancient continental crust. Combined with the regional tectonic evolution, we argue that the partial melting, then injection, of the monzogranite melt was probably triggered by collapse or delamination of the thickened lithosphere, which was mainly in response to the post-orogenic extensional setting of the Mongol–Okhotsk belt; this is possibly coupled with a back-arc extension related to Paleo-Pacific plate subduction. The extensively fractional crystallization of the monzogranite melt is the crucial enrichment process, resulting in magmatic hydrothermal Mo mineralization in the Wulandele deposit, and the Cretaceous granitoids are generally favorable to form Mo mineralization in the Dalaimiao area. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Figure 1

Back to TopTop