Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Ras homolog enriched in brain (RHEB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6357 KiB  
Article
The Rheb-mTORC1 Coordinates Cell Cycle Progression and Endoreplication in Bombyx mori
by Zhangchen Tang, Huawei Liu, Qingsong Liu, Xin Tang, Jiahui Xu, Gan Luo, Qingyou Xia and Ping Zhao
Insects 2025, 16(7), 647; https://doi.org/10.3390/insects16070647 - 20 Jun 2025
Viewed by 547
Abstract
The mechanistic target of the Rapamycin complex 1 (mTORC1) signaling pathway plays a pivotal role in regulating crucial life processes, including cell growth and proliferation, by sensing and integrating various signals, such as growth factors, energy status, and amino acids. Our previous studies [...] Read more.
The mechanistic target of the Rapamycin complex 1 (mTORC1) signaling pathway plays a pivotal role in regulating crucial life processes, including cell growth and proliferation, by sensing and integrating various signals, such as growth factors, energy status, and amino acids. Our previous studies showed that activation of the mTORC1 signaling pathway enhances silk protein synthesis and silk gland size. Here, the potential of the molecular mechanism mTORC1 to regulate the growth and development of silk gland cells was investigated. Inhibiting mTORC1 with rapamycin decreased proliferation in the Bombyx mori embryonic (BmE) cells and endoreplication in silk gland cells, reducing CyclinB and CyclinE protein levels and DNA content, and arresting the BmE cell cycle at G2/M. Conversely, the overexpression of Ras homolog enriched in brain (Rheb) led to increased proliferation of BmE cells and endoreplication in silk gland cells, as well as a significant elevation in DNA content. This study provides a molecular explanation for the increase in silk protein synthesis and silk gland length through the activation of mTORC1, thereby refining the regulatory network of the silkworm endoreplication and providing new molecular targets for breeding high-yield varieties of Bombyx mori. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

30 pages, 2548 KiB  
Review
Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling
by Mostafizur Rahman, Tuan Minh Nguyen, Gi Jeong Lee, Boram Kim, Mi Kyung Park and Chang Hoon Lee
Int. J. Mol. Sci. 2024, 25(3), 1489; https://doi.org/10.3390/ijms25031489 - 25 Jan 2024
Viewed by 2899
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions [...] Read more.
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1’s involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer. Full article
Show Figures

Figure 1

18 pages, 3182 KiB  
Article
A β-Cyclodextrin-Based Nanoparticle with Very High Transfection Efficiency Unveils siRNA-Activated TLR3 Responses in Human Prostate Cancer Cells
by Cristina de la Torre, Pablo Játiva, Inmaculada Posadas, Darío Manzanares, José L. Jiménez Blanco, Carmen Ortiz Mellet, José Manuel García Fernández and Valentín Ceña
Pharmaceutics 2022, 14(11), 2424; https://doi.org/10.3390/pharmaceutics14112424 - 9 Nov 2022
Cited by 10 | Viewed by 3040
Abstract
Synthetic double-stranded small interfering RNAs (siRNAs) mimic interference RNAs (RNAi) and can bind target mRNAs with a high degree of specificity, leading to selective knockdown of the proteins they encode. However, siRNAs are very labile and must be both protected and transported by [...] Read more.
Synthetic double-stranded small interfering RNAs (siRNAs) mimic interference RNAs (RNAi) and can bind target mRNAs with a high degree of specificity, leading to selective knockdown of the proteins they encode. However, siRNAs are very labile and must be both protected and transported by nanoparticles to be efficiently delivered into cells. In this work, we used a Janus-type polycationic amphiphilic β-cyclodextrin derivative to efficiently transfect siRNAs targeting mRNAs encoding mitogen-activated protein kinase (p42-MAPK) or Ras homolog enriched in brain (Rheb) into different cancer cell lines as well as astrocytes. We took advantage of this high transfection efficiency to simultaneously knock down p42-MAPK and Rheb to boost docetaxel (DTX)-mediated toxicity in two human prostate cancer cell lines (LNCaP and PC3). We found that double knockdown of p42-MAPK and Rheb increased DTX-toxicity in LNCaP but not in PC3 cells. However, we also observed the same effect when scramble siRNA was used, therefore pointing to an off-target effect. Indeed, we found that the siRNA we used in this work induced toll-like receptor 3 activation, leading to β-interferon production and caspase activation. We believe that this mechanism could be very useful as a general strategy to elicit an immune response against prostate cancer cells. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Delivery Systems for Anticancer Drugs)
Show Figures

Figure 1

19 pages, 3899 KiB  
Article
HDAC6 Negatively Regulates miR-155-5p Expression to Elicit Proliferation by Targeting RHEB in Microvascular Endothelial Cells under Mechanical Unloading
by Liqun Xu, Lijun Zhang, Xiaoyan Zhang, Gaozhi Li, Yixuan Wang, Jingjing Dong, Honghui Wang, Zebing Hu, Xinsheng Cao, Shu Zhang and Fei Shi
Int. J. Mol. Sci. 2021, 22(19), 10527; https://doi.org/10.3390/ijms221910527 - 29 Sep 2021
Cited by 9 | Viewed by 2497
Abstract
Mechanical unloading contributes to significant cardiovascular deconditioning. Endothelial dysfunction in the sites of microcirculation may be one of the causes of the cardiovascular degeneration induced by unloading, but the detailed mechanism is still unclear. Here, we first demonstrated that mechanical unloading inhibited brain [...] Read more.
Mechanical unloading contributes to significant cardiovascular deconditioning. Endothelial dysfunction in the sites of microcirculation may be one of the causes of the cardiovascular degeneration induced by unloading, but the detailed mechanism is still unclear. Here, we first demonstrated that mechanical unloading inhibited brain microvascular endothelial cell proliferation and downregulated histone deacetylase 6 (HDAC6) expression. Furthermore, HDAC6 promoted microvascular endothelial cell proliferation and attenuated the inhibition of proliferation caused by clinorotation unloading. To comprehensively identify microRNAs (miRNAs) that are regulated by HDAC6, we analyzed differential miRNA expression in microvascular endothelial cells after transfection with HDAC6 siRNA and selected miR-155-5p, which was the miRNA with the most significantly increased expression. The ectopic expression of miR-155-5p inhibited microvascular endothelial cell proliferation and directly downregulated Ras homolog enriched in brain (RHEB) expression. Moreover, RHEB expression was downregulated under mechanical unloading and was essential for the miR-155-5p-mediated promotion of microvascular endothelial cell proliferation. Taken together, these results are the first to elucidate the role of HDAC6 in unloading-induced cell growth inhibition through the miR-155-5p/RHEB axis, suggesting that the HDAC6/miR-155-5p/RHEB pathway is a specific target for the preventative treatment of cardiovascular deconditioning. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1523 KiB  
Communication
Evaluation of the Binding Kinetics of RHEB with mTORC1 by In-Cell and In Vitro Assays
by Raef Shams, Yoshihiro Ito and Hideyuki Miyatake
Int. J. Mol. Sci. 2021, 22(16), 8766; https://doi.org/10.3390/ijms22168766 - 16 Aug 2021
Cited by 7 | Viewed by 3807
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is activated by the small G-protein, Ras homolog enriched in brain (RHEB–GTPase). On lysosome, RHEB activates mTORC1 by binding the domains of N-heat, M-heat, and the focal adhesion targeting (FAT) domain, which allosterically regulates ATP [...] Read more.
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is activated by the small G-protein, Ras homolog enriched in brain (RHEB–GTPase). On lysosome, RHEB activates mTORC1 by binding the domains of N-heat, M-heat, and the focal adhesion targeting (FAT) domain, which allosterically regulates ATP binding in the active site for further phosphorylation. The crucial role of RHEB in regulating growth and survival through mTORC1 makes it a targetable site for anti-cancer therapeutics. However, the binding kinetics of RHEB to mTORC1 is still unknown at the molecular level. Therefore, we studied the kinetics by in vitro and in-cell protein–protein interaction (PPI) assays. To this end, we used the split-luciferase system (NanoBiT®) for in-cell studies and prepared proteins for the in vitro measurements. Consequently, we demonstrated that RHEB binds to the whole mTOR both in the presence or absence of GTPγS, with five-fold weaker affinity in the presence of GTPγS. In addition, RHEB bound to the truncated mTOR fragments of N-heat domain (∆N, aa 60–167) or M-heat domain (∆M, aa 967–1023) with the same affinity in the absence of GTP. The reconstructed binding site of RHEB, ∆N-FAT-M, however, bound to RHEB with the same affinity as ∆N-M, indicating that the FAT domain (∆FAT, aa 1240–1360) is dispensable for RHEB binding. Furthermore, RHEB bound to the truncated kinase domain (∆ATP, aa 2148–2300) with higher affinity than to ∆N-FAT-M. In conclusion, RHEB engages two different binding sites of mTOR, ∆N-FAT-M and ∆ATP, with higher affinity for ∆ATP, which likely regulates the kinase activity of mTOR through multiple different biding modes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 12583 KiB  
Review
Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases
by Youngpyo Nam, Gyeong Joon Moon and Sang Ryong Kim
Int. J. Mol. Sci. 2021, 22(6), 3064; https://doi.org/10.3390/ijms22063064 - 17 Mar 2021
Cited by 6 | Viewed by 3537
Abstract
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of [...] Read more.
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD. Full article
(This article belongs to the Special Issue Neuroglial Cross-Talk in Neuroprotection and Plasticity)
Show Figures

Figure 1

16 pages, 1048 KiB  
Review
Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain
by Gyeong Joon Moon, Minsang Shin and Sang Ryong Kim
Int. J. Mol. Sci. 2020, 21(6), 2023; https://doi.org/10.3390/ijms21062023 - 16 Mar 2020
Cited by 6 | Viewed by 4737
Abstract
Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and [...] Read more.
Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb–mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1–Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms. Full article
Show Figures

Figure 1

12 pages, 1485 KiB  
Article
Therapeutic Potential of AAV1-Rheb(S16H) Transduction Against Alzheimer’s Disease
by Gyeong Joon Moon, Sehwan Kim, Min-Tae Jeon, Kea Joo Lee, Il-Sung Jang, Michiko Nakamura and Sang Ryong Kim
J. Clin. Med. 2019, 8(12), 2053; https://doi.org/10.3390/jcm8122053 - 22 Nov 2019
Cited by 6 | Viewed by 4491
Abstract
We recently reported that adeno-associated virus serotype 1-constitutively active Ras homolog enriched in brain [AAV1-Rheb(S16H)] transduction of hippocampal neurons could induce neuron-astroglia interactions in the rat hippocampus in vivo, resulting in neuroprotection. However, it remains uncertain whether AAV1-Rheb(S16H) transduction induces neurotrophic effects and [...] Read more.
We recently reported that adeno-associated virus serotype 1-constitutively active Ras homolog enriched in brain [AAV1-Rheb(S16H)] transduction of hippocampal neurons could induce neuron-astroglia interactions in the rat hippocampus in vivo, resulting in neuroprotection. However, it remains uncertain whether AAV1-Rheb(S16H) transduction induces neurotrophic effects and preserves the cognitive memory in an animal model of Alzheimer’s disease (AD) with characteristic phenotypic features, such as β-amyloid (Aβ) accumulation and cognitive impairments. To assess the therapeutic potential of Rheb(S16H) in AD, we have examined the beneficial effects of AAV1-Rheb(S16H) administration in the 5XFAD mouse model. Rheb(S16H) transduction of hippocampal neurons in the 5XFAD mice increased the levels of neurotrophic signaling molecules, including brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), and their corresponding receptors, tropomyosin receptor kinase B (TrkB) and CNTF receptor α subunit (CNTFRα), respectively. In addition, Rheb(S16H) transduction inhibited Aβ production and accumulation in the hippocampus of 5XFAD mice and protected the decline of long-term potentiation (LTP), resulting in the prevention of cognitive impairments, which was demonstrated using novel object recognition testing. These results indicate that Rheb(S16H) transduction of hippocampal neurons may have therapeutic potential in AD by inhibiting Aβ accumulation and preserving LTP associated with cognitive memory. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

37 pages, 2340 KiB  
Review
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons
by Hendrik Schöneborn, Fabian Raudzus, Mathieu Coppey, Sebastian Neumann and Rolf Heumann
Int. J. Mol. Sci. 2018, 19(12), 4052; https://doi.org/10.3390/ijms19124052 - 14 Dec 2018
Cited by 21 | Viewed by 13647
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their [...] Read more.
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

16 pages, 3671 KiB  
Article
Diosgenin Glucoside Protects against Spinal Cord Injury by Regulating Autophagy and Alleviating Apoptosis
by Xian-Bing Chen, Zi-Li Wang, Qing-Yu Yang, Fang-Yu Zhao, Xiao-Li Qin, Xian-E Tang, Jun-Long Du, Zong-Hai Chen, Kui Zhang and Fei-Jun Huang
Int. J. Mol. Sci. 2018, 19(8), 2274; https://doi.org/10.3390/ijms19082274 - 2 Aug 2018
Cited by 44 | Viewed by 5204
Abstract
Spinal cord injury (SCI) is a severe traumatic lesion of central nervous system (CNS) with only a limited number of restorative therapeutic options. Diosgenin glucoside (DG), a major bioactive ingredient of Trillium tschonoskii Max., possesses neuroprotective effects through its antioxidant and anti-apoptotic functions. [...] Read more.
Spinal cord injury (SCI) is a severe traumatic lesion of central nervous system (CNS) with only a limited number of restorative therapeutic options. Diosgenin glucoside (DG), a major bioactive ingredient of Trillium tschonoskii Max., possesses neuroprotective effects through its antioxidant and anti-apoptotic functions. In this study, we investigated the therapeutic benefit and underlying mechanisms of DG treatment in SCI. We found that in Sprague-Dawley rats with traumatic SCI, the expressions of autophagy marker Light Chain 3 (LC3) and Beclin1 were decreased with concomitant accumulation of autophagy substrate protein p62 and ubiquitinated proteins, indicating an impaired autophagic activity. DG treatment, however, significantly attenuated p62 expression and upregulated the Rheb/mTOR signaling pathway (evidenced as Ras homolog enriched in brain) due to the downregulation of miR-155-3p. We also observed significantly less tissue injury and edema in the DG-treated group, leading to appreciable functional recovery compared to that of the control group. Overall, the observed neuroprotection afforded by DG treatment warrants further investigation on its therapeutic potential in SCI. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2018)
Show Figures

Graphical abstract

17 pages, 1255 KiB  
Review
Evolutionary Conservation of the Components in the TOR Signaling Pathways
by Hisashi Tatebe and Kazuhiro Shiozaki
Biomolecules 2017, 7(4), 77; https://doi.org/10.3390/biom7040077 - 1 Nov 2017
Cited by 92 | Viewed by 10111
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that controls multiple cellular processes upon various intracellular and extracellular stimuli. Since its first discovery, extensive studies have been conducted both in yeast and animal species including humans. Those studies have revealed that [...] Read more.
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that controls multiple cellular processes upon various intracellular and extracellular stimuli. Since its first discovery, extensive studies have been conducted both in yeast and animal species including humans. Those studies have revealed that TOR forms two structurally and physiologically distinct protein complexes; TOR complex 1 (TORC1) is ubiquitous among eukaryotes including animals, yeast, protozoa, and plants, while TOR complex 2 (TORC2) is conserved in diverse eukaryotic species other than plants. The studies have also identified two crucial regulators of mammalian TORC1 (mTORC1), Ras homolog enriched in brain (RHEB) and RAG GTPases. Of these, RAG regulates TORC1 in yeast as well and is conserved among eukaryotes with the green algae and land plants as apparent exceptions. RHEB is present in various eukaryotes but sporadically missing in multiple taxa. RHEB, in the budding yeast Saccharomyces cerevisiae, appears to be extremely divergent with concomitant loss of its function as a TORC1 regulator. In this review, we summarize the evolutionarily conserved functions of the key regulatory subunits of TORC1 and TORC2, namely RAPTOR, RICTOR, and SIN1. We also delve into the evolutionary conservation of RHEB and RAG and discuss the conserved roles of these GTPases in regulating TORC1. Full article
(This article belongs to the Special Issue TOR Signaling Pathway)
Show Figures

Figure 1

13 pages, 3573 KiB  
Article
Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration
by Sajjad Ashraf, In-Bo Han, Hansoo Park and Soo-Hong Lee
Int. J. Mol. Sci. 2017, 18(4), 880; https://doi.org/10.3390/ijms18040880 - 24 Apr 2017
Cited by 13 | Viewed by 5921
Abstract
Advances in mesenchymal stem cells (MSCs) and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains [...] Read more.
Advances in mesenchymal stem cells (MSCs) and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains limited. Herein, we describe the role of RHEB (Ras homolog enriched in brain) regulating gene signature for differentiation of human adipose derived mesenchymal stem cells (ASCs) into chondrogenic, osteogenic, and adipogenic lineages. RHEB-overexpression increases the proliferation of the ASCs. RHEB enhances the chondrogenic differentiation of ASCs in 3D culture via upregulation of SOX9 with concomitant increase in glycosaminoglycans (GAGs), and type II collagen (COL2). RHEB increases the osteogenesis via upregulation of runt related transcription factor 2 (RUNX2) with an increase in the calcium and phosphate contents. RHEB also increases the expression of osteogenic markers, osteonectin and osteopontin. RHEB knockdown ASCs were incapable of expressing sufficient SRY (Sex determining region Y)-box 9 (SOX9) and RUNX2, and therefore had decreased chondrogenic and osteogenic differentiation. RHEB-overexpression impaired ASCs differentiation into adipogenic lineage, through downregulation of CCAAT/enhancer binding protein beta (C/EBPβ). Conversely, RHEB knockdown abolished the negative regulation of adipogenesis. We demonstrate that RHEB is a novel regulator, with a critical role in ASCs lineage determination, and RHEB-modulated ASCs may be useful as a cell therapy for cartilage and bone defect treatments. Full article
(This article belongs to the Special Issue Advances in Bone and Cartilage Research)
Show Figures

Graphical abstract

12 pages, 1071 KiB  
Article
Genetic Deletion of Rheb1 in the Brain Reduces Food Intake and Causes Hypoglycemia with Altered Peripheral Metabolism
by Wanchun Yang, Wanxiang Jiang, Liping Luo, Jicheng Bu, Dejiang Pang, Jing Wei, Chongyangzi Du, Xiaoqiang Xia, Yiyuan Cui, Shuang Liu, Qing Mao and Mina Chen
Int. J. Mol. Sci. 2014, 15(1), 1499-1510; https://doi.org/10.3390/ijms15011499 - 21 Jan 2014
Cited by 7 | Viewed by 6596
Abstract
Excessive food/energy intake is linked to obesity and metabolic disorders, such as diabetes. The hypothalamus in the brain plays a critical role in the control of food intake and peripheral metabolism. The signaling pathways in hypothalamic neurons that regulate food intake and peripheral [...] Read more.
Excessive food/energy intake is linked to obesity and metabolic disorders, such as diabetes. The hypothalamus in the brain plays a critical role in the control of food intake and peripheral metabolism. The signaling pathways in hypothalamic neurons that regulate food intake and peripheral metabolism need to be better understood for developing pharmacological interventions to manage eating behavior and obesity. Mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a master regulator of cellular metabolism in different cell types. Pharmacological manipulations of mTOR complex 1 (mTORC1) activity in hypothalamic neurons alter food intake and body weight. Our previous study identified Rheb1 (Ras homolog enriched in brain 1) as an essential activator of mTORC1 activity in the brain. Here we examine whether central Rheb1 regulates food intake and peripheral metabolism through mTORC1 signaling. We find that genetic deletion of Rheb1 in the brain causes a reduction in mTORC1 activity and impairs normal food intake. As a result, Rheb1 knockout mice exhibit hypoglycemia and increased lipid mobilization in adipose tissue and ketogenesis in the liver. Our work highlights the importance of central Rheb1 signaling in euglycemia and energy homeostasis in animals. Full article
(This article belongs to the Section Biochemistry)
Show Figures

19 pages, 2962 KiB  
Article
Cardiac Ablation of Rheb1 Induces Impaired Heart Growth, Endoplasmic Reticulum-Associated Apoptosis and Heart Failure in Infant Mice
by Yunshan Cao, Lichan Tao, Shutong Shen, Junjie Xiao, Hang Wu, Beibei Li, Xiangqi Wu, Wen Luo, Qi Xiao, Xiaoshan Hu, Hailang Liu, Junwei Nie, Shuangshuang Lu, Baiyin Yuan, Zhonglin Han, Bo Xiao, Zhongzhou Yang and Xinli Li
Int. J. Mol. Sci. 2013, 14(12), 24380-24398; https://doi.org/10.3390/ijms141224380 - 13 Dec 2013
Cited by 14 | Viewed by 7904
Abstract
Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from [...] Read more.
Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop