Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Raman thermometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2124 KB  
Article
Simultaneous Submicron Temperature Mapping of Substrate and Channel in P-GaN/AlGaN/GaN HEMTs Using Raman Thermometry
by Jaesun Kim, Seungyoung Lim, Gyeong Eun Choi, Jung-ki Park, Ho-Young Cha, Cheol-Ho Kwak, Jinhong Lim, Youngboo Moon and Jung-Hoon Song
Appl. Sci. 2025, 15(14), 7860; https://doi.org/10.3390/app15147860 - 14 Jul 2025
Viewed by 406
Abstract
In this study, we introduce a high-resolution, high-speed thermal imaging technique using Raman spectroscopy to simultaneously measure the temperature of a substrate and a channel. By modifying the Raman spectrometer, we achieved a measurement speed faster than commercial spectrometers. This system demonstrated a [...] Read more.
In this study, we introduce a high-resolution, high-speed thermal imaging technique using Raman spectroscopy to simultaneously measure the temperature of a substrate and a channel. By modifying the Raman spectrometer, we achieved a measurement speed faster than commercial spectrometers. This system demonstrated a sub-micron spatial resolution and the ability to measure the temperatures of the Si substrate and GaN channel simultaneously. During high-current operation, we observed significant self-heating in the GaN channel, with hotspots 100 °C higher than the surroundings, while the Si substrate showed an even temperature distribution. The ability to detect hotspots can help secure the reliability of devices through early failure analysis and can also be used for improvement research to reduce hotspots. These findings highlight the potential of this technique for early defect inspection and device improvement research. This study provides a novel and effective method for measuring the sub-micron resolution temperature distribution in devices, which can be applied to various semiconductor devices, including SiC-based power devices. Full article
(This article belongs to the Special Issue Electric Power Applications II)
Show Figures

Figure 1

26 pages, 10223 KB  
Article
Silver–Titania Nanocomposites for Photothermal Applications
by Leonardo Bottacin, Roberto Zambon, Francesca Tajoli, Veronica Zani, Roberto Pilot, Naida El Habra, Silvia Gross and Raffaella Signorini
Gels 2025, 11(6), 461; https://doi.org/10.3390/gels11060461 - 16 Jun 2025
Viewed by 555
Abstract
Local temperature measurement is crucial for understanding nanoscale thermal transport and developing nanodevices for biomedical, photonic, and optoelectronic applications. The rise of photothermal therapy for cancer treatment has increased the demand for high-resolution nanothermometric techniques capable of non-contact intracellular temperature measurement and modification. [...] Read more.
Local temperature measurement is crucial for understanding nanoscale thermal transport and developing nanodevices for biomedical, photonic, and optoelectronic applications. The rise of photothermal therapy for cancer treatment has increased the demand for high-resolution nanothermometric techniques capable of non-contact intracellular temperature measurement and modification. Raman spectroscopy meets this need: the ratio of anti-Stokes to Stokes Raman intensities for a specific vibrational mode correlates with local temperature through the Boltzmann distribution. The present study proposes a novel photothermal therapy agent designed to advance the current state of the art while adhering to green chemistry principles, thereby favoring low-temperature synthesis involving limited energy consumption. A key challenge in this field is to achieve close contact between plasmonic nanosystems, which act as nanoheaters, and local temperature sensors. This is achieved by employing silver nanoparticles as a heat release agent, coated with anatase-phase titanium dioxide, as a local temperature sensor. The proposed synthesis, which combines refluxing and subcritical solvothermal treatments, enables direct anatase formation, despite its metastability under standard conditions, thus eliminating the need for a calcination step. Structural characterization through SAED-HRTEM and Raman spectroscopy confirms the successful crystallization of the desired phase. Moreover, the nanothermometry measurements conducted at various wavelengths ultimately demonstrate both the effectiveness of these nanomaterials as thermometric probes, with a relative sensitivity of about 0.24 K−1%, and their capability as local heaters, with a release of a few tens of degrees. This work demonstrates a new synthetic strategy for these nanocomposites, which offers a promising pathway for the optimization of nanosystems in therapeutic applications. Full article
Show Figures

Graphical abstract

14 pages, 4940 KB  
Article
Near-Infrared Multiwavelength Raman Anti-Stokes/Stokes Thermometry of Titanium Dioxide
by Veronica Zani, Roberto Pilot, Danilo Pedron and Raffaella Signorini
Chemosensors 2024, 12(9), 191; https://doi.org/10.3390/chemosensors12090191 - 17 Sep 2024
Cited by 1 | Viewed by 1691
Abstract
The use of multiple wavelengths to excite Titanium Dioxide Raman scattering in the near-infrared was investigated for optical nanothermometry. Indeed, Raman spectroscopy can be a very interesting technique for this purpose, as it offers non-disruptive contactless measurements with a high spatial resolution, down [...] Read more.
The use of multiple wavelengths to excite Titanium Dioxide Raman scattering in the near-infrared was investigated for optical nanothermometry. Indeed, Raman spectroscopy can be a very interesting technique for this purpose, as it offers non-disruptive contactless measurements with a high spatial resolution, down to a few µm. A method based on the ratio between the anti-Stokes and Stokes peaks of Anatase Titanium Dioxide was proposed and tested at three different wavelengths, 785, 800 and 980 nm, falling into the first biological transparency window (BTW-I). Using a temperature-controller stage, the temperature response of the sample was measured between 20 and 50 °C, allowing the thermal sensitivity for this range to be estimated. The use of sufficiently high laser power results in the generation of local heating. A proof of concept of the proposed thermometric method was performed by determining the extent of local heating induced by increasing laser power. By exciting with an 800 nm laser at low power intensities, a temperature equal to room temperature (RT) was found, while a maximum temperature increase of 15 °C was detected using the anti-Stokes/Stokes method. Full article
(This article belongs to the Special Issue Recent Advances in Optical Chemo- and Biosensors)
Show Figures

Figure 1

19 pages, 2694 KB  
Review
Advances in Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry
by Kaiyuan Song, Mingze Xia, Sheng Yun, Yuan Zhang, Sheng Zhang, Hui Ge, Yanyan Deng, Meng Liu, Wei Wang, Longfei Zhao, Yulei Wang, Zhiwei Lv and Yuanqin Xia
Photonics 2024, 11(7), 622; https://doi.org/10.3390/photonics11070622 - 28 Jun 2024
Cited by 2 | Viewed by 2000
Abstract
The combustion process is complex and harsh, and the supersonic combustion flow field is also characterized by short duration and supersonic speed, which makes the real-time diagnostic technology for the transient environment extremely demanding. It is of great significance to realize high time-resolved [...] Read more.
The combustion process is complex and harsh, and the supersonic combustion flow field is also characterized by short duration and supersonic speed, which makes the real-time diagnostic technology for the transient environment extremely demanding. It is of great significance to realize high time-resolved accurate measurement of temperature, component concentration, and other parametric information of the combustion field to study the transient chemical reaction dynamics of the combustion field. Femtosecond CARS spectroscopy can effectively avoid the collision effect between particles in the measurement process and reduce the influence of the non-resonant background to improve the measurement accuracy and realize the time-resolved measurement on a millisecond scale. This paper introduces the development history of femtosecond CARS spectroscopy, points out its advantages and disadvantages, and looks forward to the future development trend to carry out high time-resolved measurements, establish a database of temperature changes in various complex combustion fields, and provide support for the study of engine mechanisms. Full article
(This article belongs to the Special Issue Emerging Topics in High-Power Laser and Light–Matter Interactions)
Show Figures

Figure 1

17 pages, 4923 KB  
Article
Characteristics of Ore-Forming Fluids and Genesis of the First Mining Area and Eastern Ore Section of the Pulang Porphyry Copper Deposit, Southeastern China: A Comparative Study
by Dengpan Hu, Shenjin Guan, Yan Su, Sheng Li, Zhipeng Li, Fan Yang, Lei Wang and Tao Ren
Minerals 2024, 14(1), 98; https://doi.org/10.3390/min14010098 - 16 Jan 2024
Cited by 2 | Viewed by 2163
Abstract
The Pulang copper deposit, formed in the Late Triassic, is the largest porphyry Cu-Mo-Au deposit in the eastern Tethys, and its genetic type and mineralization potential have received widespread attention. Identifying the characteristics of ore-forming fluids and the sources of ore-forming materials in [...] Read more.
The Pulang copper deposit, formed in the Late Triassic, is the largest porphyry Cu-Mo-Au deposit in the eastern Tethys, and its genetic type and mineralization potential have received widespread attention. Identifying the characteristics of ore-forming fluids and the sources of ore-forming materials in the deep and peripheral ore bodies of Pulang is particularly important for constructing a complete porphyry copper mineralization system. Based on detailed core logging and geological observations, this article provides extensive petrographic, fluid inclusion micro-thermometry, laser Raman spectroscopy, and H-O-S isotope data on the veins of the main mineralization stage (B veins) in the first mining area and eastern ore section of the Pulang porphyry copper deposit. The genetic correlation between the eastern ore section and the first mining area is clarified, and their mineralization potential is inferred. The results indicate that the deep vein bodies in the first mining area exhibit multi-stage characteristics, and the fluid in B veins exhibits both high-temperature and salinity characteristics. The magma-derived early ore-forming fluids underwent processes such as boiling and experienced immiscibility during meteoric water mixing, which could be the primary mechanism of the precipitation of Cu, Mo, Au, and other metals. The outer eastern ore section is located in a medium-to-low-temperature hydrothermal mineralization zone far from the mineralization center. This outer eastern ore section is a distant part of the magmatic–hydrothermal system of the first mining area. Full article
(This article belongs to the Special Issue Advances in Fluid Inclusions and Geofluids)
Show Figures

Figure 1

17 pages, 4915 KB  
Article
Precious-Metal Mineralization and Formation Conditions of the Biche-Kadyr-Oos Epithermal Au-Ag Ore Occurrence (Eastern Sayan, Russia)
by Renat V. Kuzhuget, Natalia N. Ankusheva, Ailai K. Hertek, Yuri A. Kalinin, Bulat B. Damdinov, Franco Pirajno, Yuri V. Butanaev, Nadezhda V. Suge-Maadyr and Sholban N. Soldup
Minerals 2023, 13(12), 1529; https://doi.org/10.3390/min13121529 - 8 Dec 2023
Cited by 1 | Viewed by 1744
Abstract
The Biche-Kadyr-Oos epithermal Au-Ag ore occurrence is a prospective object in the Ak-Sug porphyry copper ore cluster (Eastern Sayan) in the northern part of the Central Asian orogenic belt (CAOB). The mineralization consists of gold-sulfide-quartz and gold-polysulfide-carbonate-quartz veins with argillic zones in the [...] Read more.
The Biche-Kadyr-Oos epithermal Au-Ag ore occurrence is a prospective object in the Ak-Sug porphyry copper ore cluster (Eastern Sayan) in the northern part of the Central Asian orogenic belt (CAOB). The mineralization consists of gold-sulfide-quartz and gold-polysulfide-carbonate-quartz veins with argillic zones in the Lower Cambrian volcanic-sedimentary rocks. The origin of the Au-Ag ore occurrence is still debatable. To determine the origin, we examined the mineralogical and geochemical features, conditions of formation, and fluid sources of the Biche-Kadyr-Oos ore. A mineralogical and geochemical investigation outlines three stages of mineral formation: early argillic stage; gold-sulfide-quartz stage with pyrite, marcasite, pyrrhotite, arsenopyrite, chalcopyrite, less frequently sphalerite, hessite, gold, and electrum; and late gold-polysulfide-carbonate-quartz stage with gold, electrum, Hg-electrum, Se-acanthite, Se-galena, bornite, tennantite, tetrahedrite, hessite, tellurobismuthite, bismuthinite, matildite, jamesonite, ourayite, native Bi, and barite. Fluid inclusion study (thermometry, Raman spectroscopy) in quartz and mineral thermometry (electrum and sphalerite paragenesis) determined that ore veins were formed at P~0.5 kbar from CO2-water Na-K-chloride fluid (4.9–9.6 wt % NaCl eqv) and temperatures from 300 to 200 °C (early gold-sulfide-quartz veins at 300–230 °C, and late gold-polysulfide-carbonate-quartz veins at 290–200 °C) and variations in fO2, fS2, fSe2 and fTe2. The S isotopic composition in sulfides and δ34SH2S values of the fluid are +1.3‰ and +4.7‰, respectively, (T = 300–275 °C) indicating magmatic S in ore formation. The oxygen isotope data indicate that during the formation of veins, the magmatic fluid mixed with meteoric water (δ18Ofluid is from +3.4 to +6.4‰). The isotopic data that were obtained combined with mineralogical and geochemical features and conditions of ore formation indicate the similarity of Biche-Kadyr-Oos ore occurrence with epithermal Au-Ag deposits of intermediate sulfidation (IS) type. The presence of epithermal Au-Ag mineralization of the Biche-Kadyr-Oos IS type in ore cluster of the Ak-Sug Cu-Au-Mo porphyry deposit indicates the existence of a single porphyry-epithermal ore-magmatic system. Full article
Show Figures

Figure 1

23 pages, 8826 KB  
Article
Uranium in Fluorite, a Case Study: The La Azul Fluorspar Deposit, Taxco, Guerrero, Mexico
by Teresa Pi-Puig, Jesús Solé and Leticia Alba-Aldave
Minerals 2023, 13(12), 1495; https://doi.org/10.3390/min13121495 - 29 Nov 2023
Cited by 1 | Viewed by 2818
Abstract
Uranium can be found in the Earth’s crust in different reservoirs, with igneous rocks being the primary source of this element from which many types of secondary deposits are formed. Fluorspar deposits generally do not contain uranium, but in some cases, fluorite can [...] Read more.
Uranium can be found in the Earth’s crust in different reservoirs, with igneous rocks being the primary source of this element from which many types of secondary deposits are formed. Fluorspar deposits generally do not contain uranium, but in some cases, fluorite can carry both uranium in solid solutions and inclusions of uranium minerals. We studied the concentration (ICP-MS), composition (electronic microprobe), and spatial distribution (microscopy and auto-radiography) of elemental uranium and uranium minerals at different scales (microscopy and auto-radiography in fluorite from the La Azul fluorspar deposit (Taxco, Mexico) to assess the origin of uranium and its significance in this ore deposit. Auto-radiography images with the CR-39 detector were found to be impressive in their ability to elucidate uranium distribution at the millimeter scale. The limit between the solid solution of elemental uranium in natural fluorite and the appearance of uranium oxides as inclusions appeared to be between 20 μg g−1 and 40 μg g−1 bulk uranium concentration in this fluorspar ore. The maximum concentration of U in fluorite from the La Azul deposit was about 100 μg g−1. Using Raman spectroscopy and microprobe analysis, we identified the micro-inclusions of uranium minerals as uraninite (of the pitchblende variety); its composition suggested a hydrothermal origin for this fluorspar deposit. We also calculated a chemical age that can be compared with the previously published regional geology and isotopic (U-Th-Sm)/He ages in fluorite. Micro-thermometric studies of fluid inclusions were carried out in different samples of uranium-rich fluorite to identify the nature and origin of the mineralizing fluid and the precipitation mechanisms of uranium minerals. We concluded that the uranium-rich fluorite precipitated in the initial phases of mineralization from a reducing fluid, with low salinity (<8% NaCl eq.) and an intermediate temperature (110–230 °C), and that the presence of organic compounds and sulfides (mainly pyrite) favored the simultaneous precipitation of uraninite (pitchblende variety) and fluorite. Full article
Show Figures

Figure 1

13 pages, 4723 KB  
Article
Constraints on Crystallinity of Graphite Inclusions in Nephrite Jade from Xinjiang, Northwest China: Implications for Nephrite Jade Formation Temperatures
by Jifei Zheng, Lei Chen, Cun Zhang, Yue Liu, Ruicong Tian, Jinlin Wu, Yu Wu and Shouting Zhang
Minerals 2023, 13(11), 1403; https://doi.org/10.3390/min13111403 - 1 Nov 2023
Cited by 4 | Viewed by 2211
Abstract
Graphite usually occurs in mineral/rock associations in the form of solid inclusions and plays an important role in tracing regional metamorphic degree, ore-forming temperature, fluid evolution, as well as the deep carbon cycle of the Earth. In this study, we investigate the placer [...] Read more.
Graphite usually occurs in mineral/rock associations in the form of solid inclusions and plays an important role in tracing regional metamorphic degree, ore-forming temperature, fluid evolution, as well as the deep carbon cycle of the Earth. In this study, we investigate the placer black nephrite jade where the co-occurrence of abundant graphite inclusions and jade remains extraordinary. By employing petrographic, mineral-chemical, and Raman spectroscopic methods, we characterize the textures and crystallinity of graphite inclusions that exist in nephrite jade. EPMA and petrological data indicate that the main constituents of black jade are tremolite and graphite, with minor phases of diopside, calcite, dolomite, epidote, and apatite. Micro-Raman spectroscopic thermometry of carbonaceous material shows that most of the formation temperatures of graphite inclusions are between 378 and 556 °C, and only a few temperatures may be above 650 °C, indicating that graphite inclusions were formed at medium- to high-temperature metamorphic facies. The petrologic and spectral investigations of graphite inclusions in these nephrite jade samples show major metamorphic signatures with mixed features associated with fluid precipitation. Our results allow us to propose that primary nephrite jade was formed under multi-stage tectonic evolution conditions, and regional temperatures were predominately driven by the late continent–continent collision, while the ore-controlling temperatures of nephrite jade formation were found in a medium- to high-temperature environment. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene)
Show Figures

Figure 1

12 pages, 1980 KB  
Article
Improved Thermal Anisotropy of Multi-Layer Tungsten Telluride on Silicon Substrate
by Mengke Fang, Xiao Liu, Jinxin Liu, Yangbo Chen, Yue Su, Yuehua Wei, Yuquan Zhou, Gang Peng, Weiwei Cai, Chuyun Deng and Xue-Ao Zhang
Nanomaterials 2023, 13(12), 1817; https://doi.org/10.3390/nano13121817 - 7 Jun 2023
Viewed by 2019
Abstract
WTe2, a low-symmetry transition metal dichalcogenide, has broad prospects in functional device applications due to its excellent physical properties. When WTe2 flake is integrated into practical device structures, its anisotropic thermal transport could be affected greatly by the substrate, which [...] Read more.
WTe2, a low-symmetry transition metal dichalcogenide, has broad prospects in functional device applications due to its excellent physical properties. When WTe2 flake is integrated into practical device structures, its anisotropic thermal transport could be affected greatly by the substrate, which matters a lot to the energy efficiency and functional performance of the device. To investigate the effect of SiO2/Si substrate, we carried out a comparative Raman thermometry study on a 50 nm-thick supported WTe2 flake (with κzigzag = 62.17 W·m−1·K−1 and κarmchair = 32.93 W·m−1·K−1), and a suspended WTe2 flake of similar thickness (with κzigzag = 4.45 W·m−1·K−1, κarmchair = 4.10 W·m−1·K−1). The results show that the thermal anisotropy ratio of supported WTe2 flake (κzigzagarmchair ≈ 1.89) is about 1.7 times that of suspended WTe2 flake (κzigzagarmchair ≈ 1.09). Based on the low symmetry nature of the WTe2 structure, it is speculated that the factors contributing to thermal conductivity (mechanical properties and anisotropic low-frequency phonons) may have affected the thermal conductivity of WTe2 flake in an uneven manner when supported on a substrate. Our findings could contribute to the 2D anisotropy physics and thermal transport study of functional devices based on WTe2 and other low-symmetry materials, which helps solve the heat dissipation problem and optimize thermal/thermoelectric performance for practical electronic devices. Full article
Show Figures

Figure 1

11 pages, 7013 KB  
Communication
Thermal Performance of Cu Electroplated GaN/AlGaN High-Electron-Mobility Transistors with Various-Thickness Si Substrates
by Ray-Hua Horng, Hsiao-Yun Yeh and Niall Tumilty
Electronics 2023, 12(9), 2033; https://doi.org/10.3390/electronics12092033 - 27 Apr 2023
Cited by 2 | Viewed by 2515
Abstract
Thermal dissipation is an important issue for power devices. In this work, the impact of thermal effects on the performance of Cu electroplated GaN-based high-electron-mobility transistors (HEMTs) are considered. Electrical, thermometry and micro-Raman characterization techniques were used to correlate the effects of improved [...] Read more.
Thermal dissipation is an important issue for power devices. In this work, the impact of thermal effects on the performance of Cu electroplated GaN-based high-electron-mobility transistors (HEMTs) are considered. Electrical, thermometry and micro-Raman characterization techniques were used to correlate the effects of improved heat dissipation on device performance for GaN HEMTs with different thicknesses of Si substrate (50, 100, 150 μm), with and without an additional electroplated Cu layer. GaN HEMTs on electroplated Cu on Si (≤50 μm) demonstrate an enhanced on/off current ratio compared to bare Si substrate by a factor of ~400 (from 9.61 × 105 to 4.03 × 108). Of particular importance, surface temperature measurements reveal a much lower channel temperature for thinner HEMT devices with electroplated Cu samples compared to those without. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor: From Epilayer to Devices)
Show Figures

Figure 1

18 pages, 15173 KB  
Article
A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry
by Thomas Pretto, Marina Franca, Veronica Zani, Silvia Gross, Danilo Pedron, Roberto Pilot and Raffaella Signorini
Sensors 2023, 23(5), 2596; https://doi.org/10.3390/s23052596 - 26 Feb 2023
Cited by 7 | Viewed by 3221
Abstract
The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques [...] Read more.
The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques with greatest sensitivity. In this study, the Raman technique was exploited for the determination of the local temperature as a non-contact technique and titania nanoparticles (NPs) were tested as nanothermometer Raman active material. Biocompatible titania NPs were synthesized following a combination of sol-gel and solvothermal green synthesis approaches, with the aim of obtaining pure anatase samples. In particular, the optimization of three different synthesis protocols allowed materials to be obtained with well-defined crystallite dimensions and good control over the final morphology and dispersibility. TiO2 powders were characterized by X-ray diffraction (XRD) analyses and room-temperature Raman measurements, to confirm that the synthesized samples were single-phase anatase titania, and using SEM measurements, which clearly showed the nanometric dimension of the NPs. Stokes and anti-Stokes Raman measurements were collected, with the excitation laser at 514.5 nm (CW Ar/Kr ion laser), in the temperature range of 293–323 K, a range of interest for biological applications. The power of the laser was carefully chosen in order to avoid possible heating due to the laser irradiation. The data support the possibility of evaluating the local temperature and show that TiO2 NPs possess high sensitivity and low uncertainty in the range of a few degrees as a Raman nanothermometer material. Full article
Show Figures

Figure 1

10 pages, 2711 KB  
Article
ZnTe Crystal Multimode Cryogenic Thermometry Using Raman and Luminescence Spectroscopy
by Evgenii V. Borisov, Alexey A. Kalinichev and Ilya E. Kolesnikov
Materials 2023, 16(3), 1311; https://doi.org/10.3390/ma16031311 - 3 Feb 2023
Cited by 15 | Viewed by 2445
Abstract
In this study, ZnTe crystal was applied to provide precise thermal sensing for cryogenic temperatures. Multiple techniques, namely Raman and photoluminescence spectroscopies, were used to broaden the operating temperature range and improve the reliability of the proposed thermometers. Raman-based temperature sensing could be [...] Read more.
In this study, ZnTe crystal was applied to provide precise thermal sensing for cryogenic temperatures. Multiple techniques, namely Raman and photoluminescence spectroscopies, were used to broaden the operating temperature range and improve the reliability of the proposed thermometers. Raman-based temperature sensing could be applied in the range of 20–100 K, while luminescence-based thermometry could be utilized in a narrower range of 20–70 K. However, the latter strategy provides better relative thermal sensitivity and temperature resolution. The best thermal performances based on a single temperature-dependent parameter attain Sr = 3.82% K−1 and ΔT = 0.12 K at T = 50 K. The synergy between multiple linear regression and multiparametric thermal sensing demonstrated for Raman-based thermometry results in a ten-fold improvement of Sr and a two-fold enhancement of ΔT. All studies performed testify that the ZnTe crystal is a promising multimode contactless optical sensor for cryogenic thermometry. Full article
(This article belongs to the Special Issue Optical Properties and Applications of Nanocrystals)
Show Figures

Figure 1

7 pages, 1978 KB  
Communication
Planar Laser Induced Fluorescence of OH for Thermometry in a Flow Field Based on Two Temperature Point Calibration Method
by Guohua Li, Zhenrong Zhang, Jingfeng Ye, Sheng Wang, Jun Shao, Haolong Wu, Yamin Wang, Zhiyun Hu, Jinhua Wang and Zuohua Huang
Appl. Sci. 2023, 13(1), 176; https://doi.org/10.3390/app13010176 - 23 Dec 2022
Cited by 3 | Viewed by 2040
Abstract
In view of the uncertainty in the calibration process of two-color plane laser-induced fluorescence (PLIF) temperature measurement, a new calibration method is proposed, in which the influence of fluorescence yield is considered. The calibration process was carried out at high and low temperature [...] Read more.
In view of the uncertainty in the calibration process of two-color plane laser-induced fluorescence (PLIF) temperature measurement, a new calibration method is proposed, in which the influence of fluorescence yield is considered. The calibration process was carried out at high and low temperature region, respectively. Then, the bias of thermometry results origin from quenching is restrained. This new calibration method is validated in a jet flame with temperature range of 1300–1800 K. Here, the temperature results from Coherent Anti-Stokes Raman scattering (CARS), single-point calibrated PLIF, and two-point calibrated PLIF are all acquired with the maximum standard errors of 13 K, 36 K, and 37 K, respectively. The temperature deviation between the average results from PLIF and Coherent Anti-Stokes Raman scattering (CARS) is 120 K and 10 K, when the two-point and one-point calibration methods are used. Therefore, the two-point calibrated PLIF is preferred in the combustion field, especially with a large temperature range and strong quenching coefficient. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

18 pages, 3445 KB  
Article
Tracing the Source of Hydrothermal Fluid in Ophiolite-Related Volcanogenic Massive Sulfide Deposits: A Case Study from the Italian Northern Apennines
by Gabriella B. Kiss, Kata Molnár, Zsolt Benkó, Péter Skoda, Zsuzsanna Kapui, Giorgio Garuti, Federica Zaccarini, László Palcsu and György Czuppon
Minerals 2023, 13(1), 8; https://doi.org/10.3390/min13010008 - 21 Dec 2022
Cited by 4 | Viewed by 2226
Abstract
The Italian Northern Apennines contain several Fe-Cu-Zn-bearing, Cyprus-type volcanogenic massive sulfide (VMS) deposits, which significantly contribute to the Cu resources of Italy. The massive sulfide lenses and related stockwork mineralizations are hosted by several levels (from basalt to serpentinite) of the unmetamorphosed ophiolitic [...] Read more.
The Italian Northern Apennines contain several Fe-Cu-Zn-bearing, Cyprus-type volcanogenic massive sulfide (VMS) deposits, which significantly contribute to the Cu resources of Italy. The massive sulfide lenses and related stockwork mineralizations are hosted by several levels (from basalt to serpentinite) of the unmetamorphosed ophiolitic series; therefore, this region offers perfect locations to study the ore-forming hydrothermal system in detail. A combination of fluid inclusion microthermometry, Raman spectroscopy, electron probe analyses (chlorite thermometry) and stable and noble gas isotope geochemistry was used to determine the fluid source of the VMS system at Bargone, Boccassuolo, Campegli, Casali–Monte Loreto, Corchia, Reppia and Vigonzano. This question of the fluid source is the focus of modern VMS research worldwide, as it has a direct influence on the metal content of the deposit. The obtained temperature and compositional data are both in the typical range of VMS systems and basically suggest evolved seawater origin for the mineralizing fluid. Modification of seawater was most commonly due to fluid–rock interaction processes, which happened during long-lasting circulation in the crust. The role of a small amount of magmatic fluid input was traced only at the lower block of Boccassuolo, which may be responsible for its higher ore grade. This fluid origin model is evidenced by O, H and C stable isotopic as well as He, Ne and Ar noble gas isotopic values. Full article
Show Figures

Figure 1

9 pages, 1150 KB  
Article
Toward Gas-Phase Thermometry Using Pure-Rotational Impulsive Stimulated Raman Scattering Spectroscopy with a Low-Energy Femtosecond Oscillator
by Mauro Falconieri, Davide Tedeschi, Serena Gagliardi, Flaminia Rondino, Michele Marrocco and Waruna D. Kulatilaka
Appl. Sci. 2022, 12(24), 12710; https://doi.org/10.3390/app122412710 - 11 Dec 2022
Viewed by 1664
Abstract
Femtosecond coherent Raman techniques have significant diagnostic value for the sensitive and non-intrusive measurement of temperature, pressure, and composition of gas mixtures. Due to the low density of samples, however, such measurements make use of high-energy amplified laser sources, with unwieldy and costly [...] Read more.
Femtosecond coherent Raman techniques have significant diagnostic value for the sensitive and non-intrusive measurement of temperature, pressure, and composition of gas mixtures. Due to the low density of samples, however, such measurements make use of high-energy amplified laser sources, with unwieldy and costly experimental setups. In this paper, we demonstrate an experimental setup equipped with a low-energy and low-average-power femtosecond oscillator allowing measurement of the pure-rotational spectrum of nitrogen down to atmospheric pressure using impulsive stimulated Raman scattering. Using a simplified model to analyze the experimental data we were able to derive the gas temperature with reasonable accuracy. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Graphical abstract

Back to TopTop